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a b s t r a c t

We propose an exact method based on a multi-level search strategy for solving the
0–1 Multidimensional Knapsack Problem. Our search strategy is primarily based on the
reduced costs of the non-basic variables of the LP-relaxation solution. Considering that
the variables are sorted in decreasing order of their absolute reduced cost value, the top
level branches of the search tree are enumerated following Resolution Search strategy,
the middle level branches are enumerated following Branch & Bound strategy and the
lower level branches are enumerated according to a simple Depth First Search enumeration
strategy. Experimentally, this cooperative scheme is able to solve optimally large-scale
strongly correlated 0–1Multidimensional Knapsack Problem instances. The optimal values
of all the 10 constraint, 500 variable instances and some of the 30 constraint, 250 variable
instances of the OR-Librarywere found. These values were previously unknown.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The 0–1Multidimensional Knapsack Problem, denotedMKP, is awell-known optimization problemwhich can be viewed
as a resource allocation model and can be stated as follows:

(P) Maximize
n∑
j=1

cjxj (1)

subject to
n∑
j=1

aijxj ≤ bi i ∈ M = {1, . . . ,m} (2)

xj ∈ {0, 1} j ∈ N = {1, . . . , n} (3)

where n is the number of items andm is the number of knapsack constraints with capacities bi (i ∈ M). Each item j (j ∈ N)
yields cj units of profit and consumes a given amount of resource aij for each knapsack i. In comparison to general 0–1
integer problems, the MKP coefficients are all positive integer values (c ∈ Nn, A ∈ Nm×n, b ∈ Nm) and there are usually few
constraints compared to the number of variables. The MKP is a special case of 0–1 integer programs; it is known to be NP-
hard, but not stronglyNP-hard. This problemhas beenwidely discussed in the literature, and efficient exact and approximate
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algorithmshave beendeveloped for obtaining optimal andnear-optimal solutions (the reader is referred to [10] and [11] for a
comprehensive annotated bibliography). Some very efficient algorithms [19,20] exist whenm = 1, but asm increases, exact
methods usually fail to provide an optimal solution for even moderate size instances. A wide variety of different techniques
have been used for solving optimally theMKP. Among others,we canmention dynamic programming approaches [13,16,28],
tree search algorithms [24,8,12,27] and hybrid constraint programming and integer linear programming approaches [21].
Resolution Search was proposed by Chvátal (1997) [5] as an alternative to Branch & Bound for pure 0–1 linear

programming problems. Resolution Search is strongly related to Dynamic Backtracking introduced in Artificial Intelligence
literature by Ginsberg (1993) [14] to solve constraint satisfaction problems. Hanafi and Glover (2002) [17] show that the
Dynamic Branch & Bound proposed by Glover and Tangedahl (1976) [15] yields similar branching strategies as Resolution
Search, and other strategic alternatives in addition.
Recently Vimont et al. [27] proposed an efficient Branch & Bound algorithm for the MKP where the branching policy lies

more on pruning the search tree than searching for good solutions. Although interesting in terms of computational results,
this method has the disadvantage of requiring a (good) lower bound as starting point. In this paper, we propose a new
exact method which hybridizes Resolution Search, a Branch & Bound algorithm inspired by [27] and a Depth First Search
enumeration for the MKP. The proposed algorithm is self-sufficient and does not require any lower bound as starting value.
We propose an improvement of the waning phase of Resolution Search for the special case of MKP based on implied

relationships that can be deduced between nodes of the search tree. We show that partitioning the set of feasible solutions
by imposing a cardinality bound (hyperplanes with a fixed number of items) enables us to obtain a tighter upper bound and
thus to prune efficiently the search tree. This decomposition leads us to consider a set of subproblems for which the number
of items is set to an integer value. We show that the structure of Resolution Search enables these subproblems to be solved
by switching from one to another instead of solving themone by one. Thismethod induces some diversification in the search
process and seems to enable good solutions to be found rapidly. Finally, we detail the combination of Resolution Search and
the Branch & Bound in which subproblems of small size generated by Resolution Search are solved completely with Branch
& Bound. The resulting algorithm gives an exact approach that is both able to obtain good feasible solutions rapidly and to
solve hard instances in less CPU time than existing published approaches [18,27] and a commercial MIP solver. Moreover,
for the first time (to our knowledge), we provide the optimal values of all the OR-Library instances with 10 constraints
and 500 variables and the optimal values of seven of the instances with 30 constraints and 250 variables.
The paper is organized as follows: The principles of Resolution Search and an improvement of the method are explained

in Section 2. In Section 3, we detail the implementation of our approach for the MKP namely the hyperplane decomposition
and the iterative exploration of each of the subproblems. The combination of Resolution Search and the Branch & Bound is
detailed in Section 4. We provide an example in Section 5. Finally, we present our computational experiments in Section 6
and we conclude in Section 7.

2. Resolution Search

In this section we introduce the main Resolution Search features and propose an improvement of one of its mechanisms
called thewaning phase. The reader is referred to the original paper of Chvátal [5] and to further studiesmade by [17,7,6,22,3]
for more details.

2.1. Resolution Search principle

The Resolution Search algorithm progressively restricts the set of feasible solutions that offer a possibility to improve
the best known solution. The method can be viewed as generating an enumeration tree where the root corresponds to the
original problem instance. The Branch & Bound procedure usually corresponds to a tree search starting from the root and
exploring the descendant nodes until all terminal nodes are reached (a terminal node is a node whose descendants are all
infeasible or a node with no children). Conversely, Resolution Search explores the search tree starting from terminal nodes
until the root is reached. Each time a terminal node is encountered, it is recorded in a specific way in order to discard this
node from the search space and to provide the next node in the exploration. If at least one of the problem’s constraints is
violated by this node, aminimal partial instantiation of the variables responsible for the constraint violation is identified and
recorded in order to discard the corresponding subtree from the search space. The specificity of the recording mechanism
allows the algorithm to preserve memory space while keeping completeness.
Let us note u = (u1, . . . , un) a vector in {0, 1, ∗}n corresponding to a partial or complete instantiation of the variables

where uj = ∗ if uj is a free variable. Let u denote an arbitrary vector in {0, 1, ∗}n, and define the associated index sets
N0(u) = {j ∈ N : uj = 0}, N1(u) = {j ∈ N : uj = 1} and N∗(u) = {j ∈ N : uj = ∗}, we set N(u) = N0(u)∪ N1(u). Each node
u of the search tree corresponds to a subproblem P(u)which is defined as :

(P(u)) Maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi i ∈ M
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xj = uj j ∈ N(u)
xj ∈ {0, 1} j ∈ N

Thus, u is terminal if P(u) is infeasible or if N(u) = N . We shall say that a node v is the extension of u (denoted u v v) if
vj = uj whenever uj 6= ∗. In other words, if u v v then v is a descendant of u.
Chvátal [5] proposes a data structure suited for recording the terminal nodes in a family denoted F , called path-like

family, with a size that does not exceed the number of binary variables n. The family F is composed of a list of terminal
nodes and for each terminal node u ∈ F , an index ρ(u) is associated such that ρ(u) ∈ N(u). For each familyF , we are able
to construct a node uF which is the extension of no nodes in F . For each terminal node u ∈ F with its associated index
ρ(u), we define a node ũ such that

∀j ∈ N, ũj =
{
1− uj if j = ρ(u),
uj otherwise.

Given the nodes ũ ∈ F , uF can be constructed in the following way:

∀j ∈ N, uF
j =

{
ũj if j ∈ N(u)with u ∈ F ,
∗ if j ∈ ∩u∈F N∗(u).

This construction makes sense because some specific rules for constructing F impose that ũj = ṽj for all u, v ∈ F with
j ∈ N(u) ∩ N(v) (see [5] for more details).
Starting with uF , a function called obstacle performs two different phases:

1. The waxing phasewhich replaces step by step the components uF
j = ∗ by 0 or 1 until a terminal node u

∗ is reached.
2. The waning phase which tries to find a minimal element u− of {0, 1, ∗}n such that u− v u∗ and u− is a terminal node.
Such an element is called an obstacle.

While an obstacle u− has been identified, it is added to the familyF in order to discard the corresponding subtree from
the search space.
Since each ρi determines one of the variables which will be fixed to their opposite value in the next iteration, the choice

of ρi has an influence on the global behavior of the algorithm. Here we propose to choose the index in N(ui) of the variable
with the greatest absolute reduced cost value (see Section 2.3). This strategy provided better results than other strategies
tested like choosing the variable with the lower cost (cj) or choosing the variable with the greatest consumption (

∑
i∈M aij).

The update of F is achieved according to a specific mechanism based on the observation that some terminal nodes can
be simplified using a resolvent operator. Vectors u and v are said to clash if there is exactly one index j ∈ N(u) ∩ N(v), such
that uj = 1− vj, their resolvent which we denotew = u∇v is defined by

∀j ∈ N, wj =

{
uj if uj = vj
∗ if uj = 1− vj.

Trivially, if vectors u and v are clashing terminal nodes, their resolvent u∇v is also a terminal node. For example, if
u = (1, 0, ∗, ) and v = (1, 1, ∗) are terminal nodes then u∇v = (1, ∗, ∗) is also a terminal node. During the update of
F , the new terminal node u− can be simplified in that way by applying the resolvent operator between u− and the other
recorded terminal nodes. If it appears after simplification that u− = (∗, ∗, . . . , ∗), then the enumeration is over and the
best known solution is an optimal solution; otherwise, uF will be the next starting node for the function obstacle.
Thewaxing and thewaning phases of obstacle are achieved by considering an evaluation function called oracle. This

function consists in solving the continuous relaxation of P(u) (denoted P̄(u)). It takes as parameter a problem P , a node u
and is defined as follows:

oracle(P, u) =
{
−∞ if P̄(u) is infeasible
v(P̄(u)) otherwise

where v(P̄(u)) is the optimal value of P̄(u). Let x∗ be a best known solution and LB = cx∗ the objective value corresponding
to a lower bound of the optimal value v(P). For a given node u, if oracle (P, u) ≤ LB, then u is terminal. Algorithm 1
details the function resolution_searchwhich takes as a parameter a problem P and a lower bound LB of P . Algorithm 2
details the function obstaclewhich takes as a parameter a problem P , the current node uF , a lower bound LB of P and an
obstacle u− (which is actually an output), it returns a value boundwhich is either equal to

∑
j∈N1(u+) cj if a feasible solution

u+ is found or−∞ otherwise.

2.2. Implicit waning phase

In the function obstacle (Algorithm 2), the waning phase is achieved by reversing one by one the decisions taken
during the waxing phase starting from the second to last and by checking at each step whether the partial instantiation is a
terminal node or not.
In our experimentations, this approach turned out to slow down the execution time of the whole process. It seems that

the time expended in solving the LP-relaxation at each step is not worth the time saved in generating the obstacle.



100 S. Boussier et al. / Discrete Applied Mathematics 158 (2010) 97–109

Algorithm 1 Function resolution_search

Resolution_Search(P,LB)
{

F = ∅;
while((∗, ∗, . . . , ∗) 6∈ F) {
u− = (∗, ∗, . . . , ∗);
try = obstacle(P ,uF , LB, u−);
if(try > LB) LB = try;
add u− to F and updateF ;

}
}

Algorithm 2 Function obstacle

obstacle(P,u,LB,u−)
{

//Waxing phase
u+ = u;
if(bound = oracle(P, u+) > LB){

while(N∗(u+) 6= ∅) {
choose an index j ∈ N∗(u+) and a value α in {0, 1};
u+j = α;
if(bound = oracle(P, u+) ≤ LB) break;

}
if(bound > LB) LB = bound;

}
//Waning phase
u− = u+; J = N(u−);
while(J 6= ∅){

choose an index j ∈ J; set u−j = ∗; and J = J − {j};
if(oracle(P, u−) > LB) u−j = u

+

j ;
}
return bound;

}

We propose another method for identifying a minimal obstacle which we call implicit waning phase. In this method, we
try to identify a set of crucial variables directly during thewaxing phase.When a terminal node is reached, only the branching
decisions linked to the set of crucial variables are kept for constructing u−. This approach is done by taking into consideration
an implied relationship that might be deduced between nodes of the search tree. Considering two vectors u, v ∈ {0, 1, ∗}n,
we say that u implies v andwe note u⇒ v if the instantiation of the variables xj with j ∈ N(u) obliges the fixing of additional
variables xj with j ∈ N∗(u) giving the vector v (obviously u v v). Our implicit waning phase is justified by Proposition 1.

Proposition 1. Let u, v andw be vectors in {0, 1, ∗}n. If u⇒ v and v v w is a terminal node, then the node u− defined by

∀j ∈ N, u−j =
{
wj if j ∈ N − (N(v) ∩ N∗(u))
∗ if j ∈ N(v) ∩ N∗(u)

is a terminal node.

Proof. We are going to prove the proposition by induction on the cardinality of the set J = N∗(u) ∩ N(v). Let us suppose
that |J| is equal to one, J = {j0}, then the node v′ defined by v′j = uj for j ∈ N − {j0} and v

′

j0
= 1 − vj0 is a terminal node

since u⇒ v. Thus the node v′′ defined by

v′′j =

{
wj if j 6= j0
1− vj0 if j = j0

is also a terminal node. Moreover the terminal nodes w and v′′ clash since v v w hence vj0 = wj0 . Hence, the resolvent
of w and v′′ which is the node u′ = w∇v′′ is a terminal node. Now, let us suppose that the proposition is true for a set
J = N∗(u)∩N(v) of length k. We will prove that the proposition is still true if J is of length k+ 1. Let j0 ∈ N∗(u)∩N(v), the
node v′ defined by v′j = vj for j ∈ N − {j0} and v

′

j0
= 1− vj0 is a terminal node since u⇒ v. Similarly, the node v′′ defined

by v′′j = wj if j 6= j0 and v
′′

j0
= 1− vj0 is also a terminal node. The terminal nodesw and v

′′ clash since vj0 = wj0 . Hence, the
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resolvent of w and v′′ which is the node w′ = w∇v′′ is a terminal node. Now, we can apply the hypothesis of induction on
u, v′ andw′ where the node v′ is defined now by v′j = vj for j ∈ N − {j0} and v

′

j0
= ∗. This completes the proof that node u′

is a terminal node. �

This method provides obstacles at a lower computational cost compared to the original waning phase of Resolution
Search. However, its efficiency is related to the structure of the problem we attempt to solve since implied relationships
have to be deduced.We show in Section 2.3 that, for the special case of MKP, the implicit waning phase can be implemented
using the information brought by the reduced costs at the optimality of the LP-relaxation solution.

2.3. Implicit waning phase using reduced costs

Let us consider the upper bound UB = cx̄, where x̄ is the LP-relaxation solution. Let c̄ be the vector of reduced costs. If
we know a lower bound LB ∈ N of the problem, then each better solution xmust satisfy the following constraint [23,1,27]:∑

j∈N0(x̄)

|c̄j|xj +
∑
j∈N1(x̄)

|c̄j|(1− xj) ≤ bUBc − LB− 1 (4)

The constraint (4) (known as the reduced costs constraint) enables us to fix the non-basic variables xj so that |c̄j| >
bUBc − LB − 1 to their optimal value x̄j in the LP-relaxation solution. If we consider the right-hand side of this constraint
gap = bUBc−LB−1 as an available amount of reduced cost to fix non-basic variables to the opposite of their optimal value,
then each node u ∈ {0, 1, ∗}n must satisfy the following constraint:∑

j∈G (u)

|c̄j| ≤ bUBc − LB− 1 (5)

whereG (u) = {j ∈ N(x̄) | uj = 1−x̄j} is the set of indexes of the non-basic variables xj that are set to their opposite value inu.
At the start of function obstacle, we initialize u = uF and check whether u satisfies the reduced costs constraint

by updating the value gap (for each instantiation uj = 1 − x̄j, we set gap = gap − |c̄j|). If this is not the case, we return
u− = {uj | j ∈ G (u)} as the minimal node responsible for the infeasibility otherwise we fix the non-basic variables xj so
that uj = ∗ and |c̄j| > gap to their optimal value. Then, we continue the waxing phase by fixing free variables until we
reach a terminal node. Once a terminal node is reached, the obstacle u− is constructed by taking only the crucial variables
of this terminal node into consideration (i.e the variables which have not been fixed by the reduced costs constraint). The
branching strategy consists in choosing the non-basic free variable with the greatest reduced cost and to fix it to its optimal
value. In case all the free variables are basic variables, we set the most fractional free variable to the closest integer value.
The Algorithm 3 details the function obstacle embedding the implicit waning phase.

3. Hyperplane decomposition of the search space

In the proposed approach, the MKP is tackled by decomposing the problem into several subproblems where the number
of items to choose is fixed at a given integer value (hyperplane). First we introduce the search space decomposition then we
present a specific implementation of Resolution Search which permits to explore efficiently all these subproblems.

3.1. Hyperplane decomposition

Considering that LB is the objective value of the best know solution of the problem, we can define X = {x | Ax ≤ b, cx ≥
LB+ 1, x ∈ {0, 1}n} as the set of feasible solutions strictly better than LB and consider the following problems:

P+ : maximize {ex | x ∈ X̄} and P− : minimize {ex | x ∈ X̄}
where e is the vector of dimension nwith all its components equal to one and X̄ = {x | Ax ≤ b, cx ≥ LB+ 1, x ∈ [0, 1]n}. In
what follows, we note v(P) the optimal value of a given problem P . Let kmin =

⌈
v(P−)

⌉
and kmax =

⌊
v(P+)

⌋
, then we have

v(P) = max{v(Pk) | kmin ≤ k ≤ kmax}where
Pk : maximize {cx | x ∈ X, ex = k}.

Solving the MKP by tackling separately each of the subproblems Pk for k = kmin, . . . , kmax appeared to be an interesting
approach [25–27]. Indeed, the additional constraint (ex = k) provides a tighter upper bound than the classical LP-relaxation,
thus it enables us to improve the pruning of the search tree and to get better variable fixing using the reduced costs
constraint.
For example, let us consider the instance with 10 constraints and 500 variables taken from the OR-Library [2]

(number 20) and suppose that we know a lower bound for this instance1. Table 1 shows the gains made by the hyperplane
decomposition combinedwith the reduced costs constraint. The left column corresponds to the upper bound of the classical
LP-relaxation with the corresponding number of fixed variables; and the right column shows the same data with the
hyperplane decomposition.

1 In this example, LB = 304214 is given by the greedy algorithm introduced in Section 3.2.
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Algorithm 3 Function obstaclewith implicit waning phase for the MKP

obstacle(P,u,LB,u−)
{
gap = bUBc − LB− 1;
for(j ∈ N(x̄))

if(uj = 1− x̄j) {gap = gap− c̄j; u−j = uj}
if(gap < 0) return 0;
u+ = u; u− = u;
if(bound = oracle(P, u+) > LB){

//Implicit waning phase
for(j ∈ N∗(u+) ∩ N(x̄))

if(|c̄j| > gap) u+j = x̄j;
//Waxing phase

while(N∗(u+) 6= ∅) {
if(it exists j such that xj is non-basic and j ∈ N∗(u+))

choose j in N∗(u+) such that |c̄j| is maximal and set α = x̄j;
else

choose the index j in N∗(u+) such that |x̄j − 0.5| is minimal and
set α = dx̄je if x̄j > 0.5 and α = bx̄jc otherwise;

u+j = α; u
−

j = α;
if(bound = oracle(P, u+) ≤ LB) break;

}
if(bound > LB) LB = bound;

}
return bound;

}

Table 1
Improving upper bound and variable fixing using ex = k and the reduced cost constraint.

LP-relaxation Hyperplane decomposition
Upper bound # fixed variables Hyperplane Upper bound # fixed variables

304555.03 30 e.x = 378 304546.29 37
e.x = 379 304553.62 30
e.x = 377 304516.12 67
e.x = 380 304539.29 43
e.x = 376 304427.94 173
e.x = 381 304502.74 88
e.x = 375 304313.84 302
e.x = 382 304425.70 168
e.x = 383 304312.81 314

As we will show in Section 4, this last constraint permits also to solve efficiently small subproblems with a brute force
algorithm.

3.2. Iterative resolution search

The structure of Resolution Search allows us to solve the original problem P by progressively exploring the search space
of each subproblem Pk. More precisely, letFk be the path-like family associated to Resolution Search for the subproblem Pk.
At each step of the search,Fk provides all the information about the state of the search: the terminal nodes recorded at this
stage and the next node uFk to explore. This makes it possible to execute some iterations of resolution search at a given Pk,
then continue to another Pk′ and come back to the subproblem Pk again without any loss of information. The Algorithm 4
describes this way of exploration starting with an initial lower bound LBwhich becomes an optimal solution of P at the end.
The starting lower bound can be generated by any heuristic or metaheuristic for the MKP. In our numerical experiments,
this lower bound is generated with a greedy algorithm from the LP-relaxation solution of P , denoted x̄, by fixing xj = 1 for
a maximum number of items jwith the greatest value x̄j.

4. Combining Resolution Search, Branch & Bound and simple Depth First Search enumeration

In the proposed algorithm, when subproblem P(u) is small enough in the waxing phase (less than a given parameter
spb_size, see Section 6), we solve it with a Branch & Bound algorithm inspired by the algorithm published in [27].
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Algorithm 4 Function iterative_resolution_search

iterative_resolution_search(P,LB)
{

Compute the bounds kmin and kmax;
Set K = {kmin, . . . , kmax};
for(k = kmin; k ≤ kmax; k++) Fk = ∅;
While (K 6= ∅) do {

Choose k ∈ K;
Choose Nb_Iter_k ≥ 1;
iter = 0;
while(iter < Nb_iter_k and (∗, ∗, . . . , ∗) /∈ Fk)) {

try = obstacle(Pk, uFk , LB, u−);
if(try > LB) LB = try;
add u− to Fk and updateFk;
if((∗, ∗, . . . , ∗) ∈ Fk) {K = K − {k}; break;}
iter++;

}
}

}

Unlike classical Branch & Bound procedures, this algorithm search the most unpromising parts of the search tree first. At
each node, it follows the policy described below:
1. Solve the LP-relaxation of the problem with the simplex algorithm.
2. Branch on the non-basic variable (xj) with the highest reduced cost (|c̄j|) and fix it to the opposite of its optimal value
(1− x̄j).

3. Update gap = bUBc − LB− 1 by gap = gap− |c̄j|.
4. Fix all the non-basic variables with a reduced cost greater than gap to their optimal value.

Instead of branching on the most fractional basic variable as it is usually done, the branching strategy consists of fixing
the non-basic variable with the higher reduced cost to the opposite of its optimal value. The aim is to focus more on pruning
the search tree than rapidly finding good solutions.
In this Branch&Bound algorithm,when the number of remaining free variables is less than a given parameterdfs_size,

the corresponding subproblem is solvedwith a brute forceDepth First Searchwhere the branching strategy consists in fixing
the first free variable to 0 then to 1. In this procedure, the variables are simply enumeratedwithout solving the LP-relaxation
at each node. However, in order to enforce the pruning of the search tree, additional constraints linked to the equality ex = k
are taken into consideration: letΩc(k) be the set of the indexes of the k variables with the greatest cost (cj), then the sum
of the costs of the variables inΩc(k)must be greater than or equal to the best known lower bound∑

j∈Ωc (k)

cj ≥ LB

and let Ωi(k) be the set of the indexes of the k variables with the lowest consumption (aij), then the total consumption by
the variables inΩi(k)must be lower than or equal to the capacity bi∑

j∈Ωi(k)

aij ≤ bi i = 1, 2, . . . ,m.

The only difference between this Branch & Bound algorithm and the one published in [27] is that a specific reduced costs
propagation has been deleted. This propagation consists in checking the validity of the current node with the reduced cost
constraints of all the parent nodes. In our case, since we only solve small subproblems, the number of nodes pruned using
this technique is not worth the time saved, hence we have removed this procedure.
Globally, the search tree is divided into three parts: the top branches (great reduced costs variables) are enumerated

with Resolution Search, the middle branches (middle reduced costs variables) are enumerated with Branch & Bound and
the lower branches (low reduced costs variables and basic variables) are enumerated with Depth First Search procedure
(see Fig. 1).

5. Example

In order to illustrate the procedure obstacle, we take the following problem (Pex) as an example:
(Pex)Maximize 10x1 + 10x2 + 8x3 + 8x4 + 7x5
subject to 5x1 + 2x2 + 10x3 + 1x4 + 3x5 ≤ 10

2x1 + 11x2 + 2x3 + 10x4 + x5 ≤ 11
x = (x1, x2, x3, x4, x5)T ∈ {0, 1}5.
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Fig. 1. Global view of the exploration process of an hyperplane.

Let us suppose that we are trying to solve the problem Pex2 which corresponds to P
ex with the additional constraint

(ex = 2). The resolution of the LP-relaxation of Pex2 gives us an optimal value (UB = 19.55), an optimal solution x̄ and
the reduced costs vector c̄ such that:

x = (1, 0.78, 0.22, 0, 0) and c̄ = (2, 0, 0,−1.78,−0.78).
Let us suppose that we know a lower bound LB = 16 of the problem, then the corresponding reduced cost constraint is
2(1− x1)+ 1.78x4 + 0.78x5 ≤ 2.

At the beginning of the procedure, the LP-relaxation of the problem is solved for each available hyperplane in order to
give us the information needed for the reduced cost constraint. Let gap be the value bUBc − LB− 1.
The first step, called the consistency phase, consists of checking the feasibility of uF . If a constraint is violated, the descent

phase stops and the corresponding partial instantiation is recorded as the terminal node u− in F . At the same time, the
reduced cost constraint (5) is checked and the gap value is updated: for each non-basic variable set to the opposite of its
optimal value (1 − x̄j), the absolute value of its reduced costs (|c̄j|) is subtracted from gap. If it happens that gap < 0 then
the current partial solution is a terminal node. In this case, u− is only composed of the variables set at the opposite of their
optimal value in uF . For example, suppose that uF

= (0, 0, 0, 1, ∗), then gap = gap−(|c̄1|+|c̄4|) = 2−(2+1.78) = −1.78.
Since gap < 0,uF is a terminal node and sinceuF

1 andu
F
4 are the only instantiations responsible for the constraint violation,

we set u− = (0, ∗, ∗, 1, ∗).
If uF is feasible, we proceed to the implicit waning phase: for each remaining non-basic free variable xj, if |c̄j| > gap we

set u+j = x̄j. The branching decisions taken in this phase are just a consequence of the instantiated variables in u
F . Then,

according to Proposition 1, they are not included in u−. In order to illustrate this process, suppose that obstacle starts
with uF

= (0, ∗, ∗, ∗, ∗), then gap = gap − |c̄1| = 0. Since, |c̄4| = 1.78 is greater than gap, x4 must be set to x̄4 = 0.
Consequently, uF

= (0, ∗, ∗, ∗, ∗) implies u+ = (0, ∗, ∗, 0, ∗) so u+4 will be set to ∗ in u
−.

In the next phase, the algorithm begins with the waxing phase which consists in assigning values to free variables
according to the following strategy: (1) if there exists at least one non-basic free variable, choose the free variable with
the greatest absolute reduced cost value and fix it to its optimal value x̄j; (2) if the set of free variables is only composed
of basic variables, fix the most fractional variable to the closest integer value. If we consider the previous example, u+ =
(0, ∗, ∗, 0, ∗) after the implicit waning phase. Since x5 is the non-basic free variable with the greatest absolute reduced costs
value (|c̄5| = 0.78), it is fixed to its optimal value x̄5 (u+5 = 0).
Once the number of remaining free variables is less than or equal to spb_size, the waxing phase stops and the

corresponding subproblem is solved with the Branch & Bound algorithm. This subproblem includes the free variables with
the lowest reduced cost and the basic variables. Obviously, since the Branch & Bound algorithm explores the whole subtree
corresponding to these variables, the obstacle u− does not contain any branching choices made during this phase. Only the
branching choices taken during the consistency phase and/or the waxing phase are considered. In the above example, let us
suppose that spb_size= 2, the enumeration of the remaining variables x2 and x3 gives the following terminal nodes:

u∗ = (0, 0, 0, 0, 0), cu∗ ≤ LB,
u∗ = (0, 0, 1, 0, 0), cu∗ ≤ LB,
u∗ = (0, 1, 0, 0, 0), cu∗ ≤ LB,
u∗ = (0, 1, 1, 0, 0), Au∗ 6≤ b : infeasible.

Since no terminal node improves the best known solution, the obstacle u− = (0, ∗, ∗, ∗, 0) is added to F . Note that
spb_size can be updated dynamically, depending on whether we want to favor the Resolution Search part or the Branch
& Bound part.
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6. Experimental results

In this section, we first detail the settings of the parameters NB_iter_k, spb_size and dfs_size, then we describe
the results obtained on the well-known hard instances of Chu and Beasley.

6.1. Parameter settings

Three parameters must be taken into account in this algorithm: the parameter NB_iter_k (Section 3.2) which
corresponds to the number of Resolution Search iterations for each hyperplane, the parameter spb_size (Section 4) which
corresponds to the size of the subproblems solved with the Branch & Bound algorithm and the parameter dfs_size
(Section 4) which corresponds to the size of the subproblems solved with the Depth First Search algorithm.
In order to enforce the search diversification, we set NB_iter_k = 1. In this case, only one iteration of Resolution Search

is executed successively for each hyperplane. In our preliminary experiments it was found that this setting found good
solutions rapidly.
The value of spb_size has a great impact on our hybrid method because it determines the proportion of search space

enumerated by Resolution Search and the one enumerated by the Branch & Bound algorithm. Experimentally, it appeared
that a small value of spb_size obtains good solutions quickly but requires more CPU time to prove the optimality of the
best solution found. On the other hand, a large value spb_size can give too much importance to the Branch & Bound and if
we do not know a good solution, it will take time to solve each of the subproblems. In order to balance the advantages and
the disadvantages of each extreme, we update spb_size dynamically, starting with a low value (in order to give priority to
Resolution Search for finding good solutions) and then increasing this value (in order to give more priority to the Branch &
Bound algorithm when a good solution is known). In our experimentations, spb_size is incremented every 100 iterations
from 20 to 60 and is set to 20 again if a better solution is found.
The parameter dfs_size also has an impact on the global behavior of the algorithm. Its value determines the size of the

subproblems solved with the Depth First Search algorithm. Since this algorithm does not compute a bound at each explored
node of the search tree, it is not efficient if the subproblem to solve is too large. On another hand, it is very efficient if the
problem to solve is small enough since it does not ’’waste’’ its time executing all the simplex computations required by a
classical Branch & Bound algorithm. Experimentally, we observed that the algorithm performed well with dfs_size= 20.

6.2. Results on Chu and Beasley’s benchmarks

We have evaluated our algorithm on the well-known set of MKP instances proposed by Chu and Beasley available on
the OR-Library website [2]. These instances were generated using the procedure described in [9]. The website contains a
collection of 270 problems with n = 100, 250 and 500 variables and m = 5, 10 and 30 constraints. Thirty problems were
generated for each n–m combination. The name of each problem is cbm.n_r, where m is the number of constraints, n the
number of variables and r the number of the instance. Our algorithm has been tested on a Dell Precision 690 2 Dual Core
3 GHz with 2 GB RAM. The results are compared to those produced by the commercial solver CPLEX 11 and our previous
algorithm [27]. Computational results obtained on the cb10.250 and the cb5.500 instances are presented in Tables 2 and 3.
The description of the columns is the following:

• Instance is the name of the instance.
• Objective is the best objective value found by our algorithm (with * if we proved that it is the exact optimal value).
• Obj. (s) is the time in seconds spent for obtaining the best objective value found.
• Proof (s) is the time in seconds spent for proving that the best objective value found is the optimal value of the problem
or - if the proof has not been found.

The column RS + B&B corresponds to the results obtained with the combination of Resolution Search and Branch &
Bound algorithms, the column B&B corresponds to the results obtained with the Branch & Bound published in [27] and the
column CPLEX gives the results obtained by CPLEX 11 (ERROR if CPLEX exceeds the capacity of RAM memory). The results
obtained with the 10 constraint, 250 variable instances are presented in Table 2 and those obtained with the 5 constraint,
500 variable instances are presented in Table 3. These two Tables clearly show the contribution of the proposed method in
terms of computational results. On the one hand, the optimal values are rapidly found and on the other hand, the proof times
are better for all the instances when compared to the previously published Branch & Bound algorithm [27] and CPLEX 11.
In addition, we evaluated our algorithm on the cb10.500 and the cb30.250 instances whose optimal values are unknown.
The obtained results are presented in Tables 4 and 5. The description of the columns is the following:

• Instance is the name of the instance.
• Best known is the value of the best known solution found either by Chu and Beasley [4] (CB) or Vasquez and Vimont [26]
(VV) or Wilbaut and Hanafi [29] (WH).
• Objective is the best objective value found by our algorithm (with * if we proved that it is the exact optimal value).
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Table 2
Results for the 10 constraint, 250 variable instances of the OR-Library.

Instance Objective RS + B&B B&B [27] CPLEX
Obj. (s) Proof (s) Proof (s) Proof (s)

cb10.250_0 59187* 0 1995 3075 14074
cb10.250_1 58781* 195 906 26346 1356
cb10.250_2 58097* 1 477 905 4099
cb10.250_3 61000* 1143 3858 5448 36286
cb10.250_4 58092* 442 12449 17273 ERROR
cb10.250_5 58824* 3 448 659 4382
cb10.250_6 58704* 0 388 631 2188
cb10.250_7 58936* 2055 34976 52397 ERROR
cb10.250_8 59387* 201 1434 2656 6153
cb10.250_9 59208* 0 2667 4141 12825
cb10.250_10 110913* 336 2155 2971 7792
cb10.250_11 108717* 378 2112 4479 12206
cb10.250_12 108932* 2 1284 2029 12396
cb10.250_13 110086* 54 5743 9054 ERROR
cb10.250_14 108485* 0 951 1383 4677
cb10.250_15 110845* 56 2478 3572 16528
cb10.250_16 106077* 20 3078 4720 10481
cb10.250_17 106686* 489 2017 3322 11023
cb10.250_18 109829* 10 1758 2890 11565
cb10.250_19 106723* 14 484 830 2993
cb10.250_20 151809* 211 350 583 2619
cb10.250_21 148772* 0 935 1370 6918
cb10.250_22 151909* 0 175 496 1380
cb10.250_23 151324* 190 337 3293 1385
cb10.250_24 151966* 319 487 559 3332
cb10.250_25 152109* 1 193 490 1589
cb10.250_26 153131* 4 30 143 183
cb10.250_27 153578* 0 1967 5081 11905
cb10.250_28 149160* 65 217 765 817
cb10.250_29 149704* 0 247 495 869

Table 3
Results for the 5 constraint, 500 variable instances of the OR-Library.

Instance Objective RS + B&B B&B [27] CPLEX
Obj. (s) Proof (s) Proof (s) Proof (s)

cb5.500_0 120148* 40 73 891 3962
cb5.500_1 117879* 6 10 692 255
cb5.500_2 121131* 3 23 745 2644
cb5.500_3 120804* 9 31 422 3106
cb5.500_4 122319* 3 18 373 859
cb5.500_5 122024* 30 44 624 2139
cb5.500_6 119127* 2 34 570 5233
cb5.500_7 120568* 4 18 538 897
cb5.500_8 121586* 32 51 785 3210
cb5.500_9 120717* 0 29 1864 2494
cb5.500_10 218428* 35 42 561 737
cb5.500_11 221202* 0 7 1437 200
cb5.500_12 217542* 148 155 1094 1919
cb5.500_13 223560* 0 54 811 1592
cb5.500_14 218966* 5 7 325 113
cb5.500_15 220530* 14 26 545 894
cb5.500_16 219989* 6 14 397 342
cb5.500_17 218215* 0 12 543 346
cb5.500_18 216976* 0 24 466 757
cb5.500_19 219719* 4 44 649 1148
cb5.500_20 295828* 0 3 513 21
cb5.500_21 308086* 13 29 451 248
cb5.500_22 299796* 0 6 524 72
cb5.500_23 306480* 5 14 415 468
cb5.500_24 300342* 0 18 408 87
cb5.500_25 302571* 6 10 424 374
cb5.500_26 301339* 3 4 312 90
cb5.500_27 306454* 2 4 373 167
cb5.500_28 302828* 2 12 485 80
cb5.500_29 299910* 39 62 375 334
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Table 4
Results for the 10 constraint, 500 variable instances of the OR-Library.

Instance Best known Objective Obj. (h) Proof (h) Gap

cb10.500_0 117811 (VV) 117821* 24.5 567.2 10
cb10.500_1 119232 (VV) 119249* 68.4 272.9 17
cb10.500_2 119215 (VV) 119215* 18.6 768.3 0
cb10.500_3 118801 (WH) 118829* 47.4 89.6 4
cb10.500_4 116514 (WH) 116530* 86.1 2530.3 16
cb10.500_5 119504 (VV) 119504* 2.3 188 0
cb10.500_6 119827 (VV) 119827* 2.7 128 0
cb10.500_7 118333 (WH) 118344* 161.7 179.6 11
cb10.500_8 117815 (VV) 117815* 86.3 219.9 0
cb10.500_9 119251 (VV) 119251* 3.1 354.9 0
cb10.500_10 217377 (VV) 217377* ≤0.1 515.8 0
cb10.500_11 219077 (VV) 219077* 0.5 437.6 0
cb10.500_12 217847 (VV) 217847* ≤0.1 5.5 0
cb10.500_13 216868 (VV) 216868* ≤0.1 104.4 0
cb10.500_14 213859 (VV) 213873* 59.4 1382.1 14
cb10.500_15 215086 (VV) 215086* ≤0.1 43.9 0
cb10.500_16 217940 (VV) 217940* 13.4 36.1 0
cb10.500_17 219990 (VV) 219990* 150.8 348.8 0
cb10.500_18 214375 (VV) 214382* 12.7 57.8 7
cb10.500_19 220899 (VV) 220899* 0.2 21.3 0
cb10.500_20 304387 (VV) 304387* 6.6 8.2 0
cb10.500_21 302379 (VV) 302379* ≤0.1 8.4 0
cb10.500_22 302416 (VV) 302417* 67.2 105.5 1
cb10.500_23 300784 (VV) 300784* 0.9 3.8 0
cb10.500_24 304374 (VV) 304374* 0.1 16.8 0
cb10.500_25 301836 (VV) 301836* 29.7 30.9 0
cb10.500_26 304952 (VV) 304952* ≤0.1 18.5 0
cb10.500_27 296478 (VV) 296478* 1.1 9.3 0
cb10.500_28 301359 (VV) 301359* 8.1 39.1 0
cb10.500_29 307089 (VV) 307089* 1.2 4.4 0

• Obj. (h) is the time in hours spent for obtaining the best objective value found.
• Proof (h) is the time in hours spent for proving that the best objective value found is the optimal value of the problem or
- if the proof has not been found.
• Gap is the gap between the best objective value found by our algorithm and the best known objective value (Gap=
Objective− Best known).

The results on the cb10.500 and cb30.250 instances show that our algorithm is not really suitable for these instances
since the times are huge for most of them. However they illustrate several qualities of the proposed method: (1) in spite of
the large CPU times, our algorithm never ran out of memory and (2) the computational time required for finding the optimal
solutions is quite low for the most part of the instances. The best known solutions of 8 of the cb10.500 instances and 27 of
the cb30.250 instances have been improved. All the cb10.500 instances and 7 of the cb30.250 instances have been optimally
solved. We also tried to execute CPLEX 11 on these instances and it appeared that it ran out of memory after at most 3 hours
of computational time.

7. Conclusion

We proposed an exact algorithm for the 0–1 Multidimensional Knapsack Problem which combines Resolution Search,
a Branch & Bound and a Depth First Search algorithm that exploit efficiently both the reduced costs and the fixed number
of item constraints. This approach uses Resolution Search to guide the search toward promising parts of the search space
and employs the Branch & Bound and the Depth First Search algorithms to solve small subproblems efficiently. We showed
that the structure of Resolution Search enables us to explore iteratively different subproblems while keeping completeness.
The proposed iterative Resolution Search algorithm enhances the diversification and improves the ability of the algorithm
to obtain good solutions rapidly. Moreover, we introduced an alternative method for identifying the terminal nodes which
we call implicit waning phase. This method can replace the original waning phase of Resolution Search and may improve
its efficiency if some implied relationships are deduced between nodes of the search tree. The computational experiments
made on several MKP instances show the contribution of the proposed method. Our algorithm is faster than exact existing
approaches and a commercial solver formediumsize instances of theOR-Library (the 10 constraint, 250 variable instances
and the 5 constraint, 500 variable instances) and it enabled us to find new optimal solutions for large-scale instances (some
of the 30 constraint, 250 variable instances and all the 10 constraint, 500 variable instances). Moreover, 35 of the best known
solutions for these instances have been improved. These results can be useful for researchers in the field of metaheuristics
who would like to evaluate their algorithms.
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Table 5
Results for the 30 constraint, 250 variable instances of the OR-Library.

Instance Best known Objective Obj. (h) Proof (h) Gap

cb30.250_0 56693 (CB) 56842 39.7 – 149
cb30.250_1 58318 (CB) 58418 30.9 – 100
cb30.250_2 56553 (CB) 56614 36.6 – 88
cb30.250_3 56863 (CB) 56930 ≤0.1 — 67
cb30.250_4 56629 (CB) 56629 21.7 — 0
cb30.250_5 57119 (CB) 57205 9.8 – 86
cb30.250_6 56292 (CB) 56348 53.9 – 56
cb30.250_7 56403 (CB) 56457 0.2 – 54
cb30.250_8 57442 (CB) 57447 84.7 – 5
cb30.250_9 56447 (CB) 56447 ≤0.1 – 0
cb30.250_10 107689 (CB) 107755 4.1 – 66
cb30.250_11 108338 (CB) 108392 0.7 – 54
cb30.250_12 106385 (CB) 106442 0.3 – 57
cb30.250_13 106796 (CB) 106876 86.9 – 80
cb30.250_14 107396 (CB) 107414 3.3 – 18
cb30.250_15 107246 (CB) 107271 4.9 – 25
cb30.250_16 106308 (CB) 106372 20.3 – 64
cb30.250_17 103993 (CB) 104032 0.1 – 39
cb30.250_18 106835 (CB) 106856 1.2 – 21
cb30.250_19 105751 (CB) 105780 3.6 – 29
cb30.250_20 150083 (CB) 150163* 17.5 33.2 80
cb30.250_21 149907 (CB) 149958* 0.9 14.5 51
cb30.250_22 152993 (CB) 153007* 6 17.8 14
cb30.250_23 153169 (CB) 153234* ≤0.1 14.8 65
cb30.250_24 150287 (CB) 150287* ≤0.1 19.4 0
cb30.250_25 148544 (CB) 148574 ≤0.1 – 30
cb30.250_26 147471 (CB) 147477* 2.4 23.8 6
cb30.250_27 152841 (CB) 152912* ≤0.1 50 71
cb30.250_28 149568 (CB) 149570 16.8 – 2
cb30.250_29 149572 (CB) 149668 0.9 – 96
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