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Abstract. The multidimensional knapsack problem is a well-known constrained 
optimization problem with many real-world engineering applications. In order to solve this 
NP-hard problem, a new modified Imperialist Competitive Algorithm with Constrained 

Assimilation (ICAwICA) is presented. The proposed algorithm introduces the concept of 
colony independence – a free will to choose between classical ICA assimilation to empire’s 
imperialist or any other imperialist in the population. Furthermore, a constrained assimilation 
process has been implemented that combines classical ICA assimilation and revolution 
operators, while maintaining population diversity. This work investigates the performance 
of the proposed algorithm across 101 Multidimensional Knapsack Problem (MKP) 
benchmark instances. Experimental results show that the algorithm is able to obtain an 
optimal solution in all small instances and presents very competitive results for large MKP 

instances.  
 
Keywords: combinatorial optimization, multidimensional knapsack problem (MKP), 
imperialist competitive algorithm (ICA), meta-heuristics   

 

1. Introduction  

The Multidimensional Knapsack Problem (MKP) is a well-known constrained optimization problem, that has 

multiple real-world engineering applications, such as cutting stock [1], distributed computing resource allocation 

[2], cargo loading [3], satellite management [4], project selection [5] and capital budgeting [6]. The MKP is an 

extension of the 0-1 knapsack problem, where items have weight vectors in multiple dimensions. The goal is to 

maximize the total profit by putting items into knapsacks while satisfying weight capacity constraints across all 

dimensions. MKP is formulated in (1) [7].  

 

max 
∑ 𝑝𝑗𝑠𝑗

𝑛

𝑗=1

 
  

subject to: 
∑ 𝑤𝑖𝑗𝑠𝑗 ≤ 𝑊𝑖

𝑛

𝑗=1

      ∀𝑖 ∈ {1, … , 𝑚} 
(1) 

 𝑥𝑗  ∈ {0,1} ∀𝑗 ∈ {1, … , 𝑛}  

 
where every item 𝑗 in the list of 𝑛 items (𝑗 = 1 …  𝑛) has a profit 𝑝𝑗  and weight  𝑤𝑖𝑗 associated to an 𝑚-dimensional 

weight vector (𝑖 = 1 …  𝑚), that tries to satisfy a capacity constraint 𝑊𝑖 in that dimension. Variable 𝑠𝑗   indicates 

whether the item is selected and included in solution. Capacities, weights and profits are assumed to be positive.  

Being an NP-hard problem with practical applications, many different approaches have been proposed for solving 

MKP, which can be divided into two groups – exact, deterministic, single-solution based algorithms and stochastic 

population/meta-heuristic based algorithms, with this paper focusing on the latter approach. 

Comprehensive literature review of solving MKPs was provided by [8] and a more recent MKP overview by 

[9] summarizes algorithms used for solving MKP. This paper focuses on the state-of-the-art population and meta-

heuristic algorithms used for solving MKP instances, such as ant colony optimization ([10], [11]), various types 

of genetic algorithms ([12],[13],[14]), evolutionary algorithms ([15],[16], [17]), variations of particle swarm 

optimization algorithm ([18],[19]), binary harmony search [20], binary cuckoo search algorithm[21], whale 

optimization algorithm [22] and etc.  Most of the research in population-based algorithms focuses on small MKP 

instances with 𝑛 ≤ 100, while only few explore large instances with 𝑛 = 500 and above.  This paper tries to 
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cover both small and large instances of MKP for a complete study using an Imperialist Competitive Algorithm 

(ICA).  

The main contributions of this work are as follows: 

• Investigation of the Imperialist Competitive Algorithm (ICA) for the first time applied to large MKP. 

• Proposal of novel generic ICA implementation for solving constrained optimization problems. The 

proposed approach called ICA with Independence and Constrained Assimilation (ICAwICA) combines 

classical ICA assimilation and mutation operators by modified assimilation process with repair 
mechanism.  

• Computation results and comparisons of 101 commonly used MKP benchmarks, of which 30 are very 

small instances, with 𝑛 < 100 , 60 are small instances, with 𝑛 = 100  and 11 large benchmark 

instances with 𝑛 up to 2500.   

 

2. The Imperialist Competitive Algorithm 

The Imperialist Competitive Algorithm (ICA) was first introduced in 2007 [23] for solving continuous 

optimization problems and since been a growing field of interest for many researchers in various engineering 

disciplines – scheduling, assembly line balancing, facility layout optimization, computer engineering and other 

areas of industrial engineering [24].  

Like many other population algorithms, ICA starts its search by generating a random initial population 

where each individual of the population represents a country. Countries within ICA can be thought of as 

chromosomes in a genetic algorithm. The initial population is separated into multiple groups (so called empires). 

Strongest countries become imperialist within the empire and weakest - their colonies.  Each colony within 

empire moves closer to their imperialist in the form of assimilation operator. In order to provide diversity 
amongst countries, a revolution operator (mutation in GA) is implemented. If at any point a colony becomes 

stronger than its imperialist then the two countries are swapped, such that imperialist is the strongest country in 

the empire. The search follows an iterative process, where after each iteration the weakest colony within the 

weakest empire is assigned to one of the stronger empires – following the imperialist competition process. An 

empire is eliminated once it contains no more colonies. The search usually continues until the termination 

criteria are met. Ideally, the search is terminated once all empires are eliminated and only one, the best, empire 

remaining.  

Multiple variations of ICA have been previously proposed, for instance, both [25] and [26] implemented 

ICA with attraction and repulsion mechanism to assist the search with great success. Moreover, [27] explored 

variations of imperialist competition, where the strongest imperialist gets excluded and also proposed 

diversification operator to escape local optima. Furthermore, to improve search convergence, many ICA hybrids 

with other algorithms have been explored.  ICA hybrids, such as ICA with teaching-learning based optimization 
[27] for solving multi-stage supply chains, combination of ICA and simulated annealing algorithm for solving 

flexible job scheduling problem [28], as well as ICA with particle swarm optimization for power resource 

management [29].  

 

3. The Imperialist Competitive Algorithm with Independence and Constrained 

Assimilation  

The classical ICA does not implement any form of local search and therefore may get stuck in local optima before 

converging to global best solution [30]. Different approaches for solving this problem have been proposed in 

literature, such as simulated annealing-like processes in [31] for solving flexible job-shop problems, as well as 

applying local search for sub-populations of ICA [32]. Work in this paper proposes a modified ICA, where the 

local search process is performed in terms of both an Independence operator and a Constrained Assimilation 

(ICAwICA). The flowchart for both classical ICA and ICAwICA is shown in Fig. 1, with red indicating the 

changes.  

The proposed ICAwICA follows the classic ICA [23] principles for both empire initialization and empire 

competition, however, assimilation and revolution operators are replaced with a constrained assimilation and 

repair mechanism. Furthermore, in the classical ICA each of the colonies within an empire are moving closer to 

the imperialist within that empire, while in ICAwICA all colonies are given a free choice to move closer to any 

of the imperialists of other empires (independence), as long as it improves the country’s well-being (associated 

cost). Therefore, at each iteration, colony 𝑘 has a probability based on a uniform distribution (𝑟𝑎𝑛𝑑) of either 

moving closer to their own empire’s imperialist or to move closer to any other imperialist 𝑗, determined by 

𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 (0-1.0). Moreover, this process is repeated 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 times for each colony to explore more 

search space around its position in the form of local search. Pseudo code of the ICAwICA is shown in Fig. 2.  

 



 

 
Fig. 1. Flowchart of classical ICA [23] (to the left) and the proposed ICAwICA (on the right), with red indicating the changes. 

 

3.1. Constrained Assimilation 

Classical ICA was first developed for continuous maths problem with simple assimilation processes [23], ICA 

has since been applied to multiple binary problems, such as feature selection [33][34], content-based-image 

retrieval (CBIR) [35] and single dimensional 0-1 knapsack problems [36]. However, binary assimilation 

approaches cannot always be extended to other discrete, non-binary problems. Furthermore, most ICA discrete 

assimilation implementations follow simple genetic-algorithm-like crossover operations, where the 

chromosomes are expected to be of equal size [37] [38]. The proposed Constrained Assimilation (CA) process 

does not require equal chromosome/solution size and is extendable to other constrained discrete problems. CA 

exploits the fact that two solutions cannot always be merged without violating constraints. Therefore, CA builds 
a new incomplete solution from the two donor solutions/countries (colony and imperialist) according to the 

assimilation rate and finishes the solution by a repair mechanism. 
There are multiple ways to implement the solution repair mechanism - based on heuristics, existing solution 

population, sequence based [39] etc. The simplest repair mechanism is - scanning through all possible entries 

and trying to add them to the solution without violating constraints (used in this paper). Furthermore, this 

incomplete solution repair enables diversity without an explicit revolution operator like classic ICA. Although 

more computationally expensive than simple assimilation, this approach has potential for broad applications and 

generalization, as it does not depend on two solutions having the same size nor problem-specific assimilation or 

repair mechanism.    

A CA example is provided in Fig. 3 where both colony and imperialist are assimilated, with bold integer 

values corresponding to solution entries (item indices in MKP case) that are passed to the new country, 

determined by assimilation rate. In this simple example, a 50% assimilation rate of 𝑁𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒  is used to build 

the new country. Due to constraints, not all solution entries can be added to the new country and hence the 



solution is in an incomplete state. The repair process iterates over all possible solution entries and fills the gaps 

while complying with constraints. As can be seen in Fig. 3, new entries (index 1 and index 3) were introduced to 

the solution after repair that were not in any of the donor countries.   
Let us consider in detail the assimilation process shown in Fig. 3. The colony solution is shown in blue and 

the imperialist in yellow, with the newly generated country 𝑛𝑐.  

 

Fig. 3. Imperialist and colony constrained assimilation process with solution repair. Entries to be passed onto new country 
represented in bold. With integer values corresponding to solution entries (item indices in MKP case). 

1. Initialize ICA parameters.  
2. Create the popular randomly. 
3. Initialize empires: 
     for 𝑖 = 1 to 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

Compute the cost function 𝐶𝑖;  
Sort the computed cost 𝐶𝑖 in descending order for the entire population; 
Select 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠  out of 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

Normalize the cost of each imperialist 𝐶𝑛; 
Calculate the normalized power of each imperialist 𝑃𝑛; 
Assign remaining countries 𝑁𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 to the imperialists; 

    end loop 
do  
     4. Assimilation and local search process for ICAwICA  
        for k = 1 to 𝑁𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 
            for 𝑙 = 1 to 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 
                if 𝑟𝑎𝑛𝑑 <  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 

     for 𝑗 = 1 to 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠  

           assimilate colony 𝑘 closer to 𝑗 
           if cost for new position is less than original position 
 keep assimilated position 

             else 
  discard and move back to original position 

           endif  
      end loop  
               else 
 assimilate colony 𝑘 closer to empire’s Imperialist 
               endif 
          end loop 
       end loop 
       for 𝑗 = 1 to 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠  

if the cost of any colony is less than cost of imperialist 
         exchange the position of the colony and imperialist; 
endif 
Pick the weakest colony (colonies) from the weakest empire and assign it to the  
empire with highest probability to possess it; 

      end loop 
   5. Elimination process; 
         If there is imperialist with no colonies 

eliminate the imperialist; 
         endif 
while stopping condition not met; 
 
 Fig. 2. The pseudo-code for new assimilation and local search method for ICAwICA 



4. Experimental result 

In this section the proposed algorithm performance is evaluated by extensive computational experiments on 

classical MKP benchmark instances and compared to the current state-of-the-art algorithms. 

 

4.1.  Benchmark instances 

Multidimensional knapsack problem instances were chosen because of their availability, ease of implementation 

and the common use as benchmarks across the research community. ICAwICA was tested across 101 popular 

benchmark instances, all available from the compiled library in [40]. 

The simplest benchmarks used in this paper are derived from the WEISH dataset, containing 30 problems 

with the number of items ranging from 30 to 90 and with 5 knapsacks each. Furthermore, another common 

MKP benchmark - OR-library, generated by Chu and Basley in [41], was selected. Each group of OR set 

instances (9 in total) contains 30 problems with 3 different tightness ratios, set to 0.25 for first 10 instances, 0.5 
for next 10 instances and 0.75 for last 10 instances. 60 problems were selected from the set - 30 with 100 items, 

5 knapsacks and 30 with 100 items, 10 knapsacks. In order to explore the performance of the proposed 

algorithm across range of datasets, large MKP instances, generated by Glover and Kochenberger (GK) [42] , 

were also selected. The GK dataset contains 11 instances with number of items ranging from 100 to 2500 with 

15 to 100 knapsacks each and provides wide spectrum of complexity. 

 

4.2.  Experimental setup 

The proposed ICAwICA algorithm was implemented in C++ using the Visual Studio 2019 (v142) compiler. The 

computation was performed on a workstation with AMD Threadripper 2990WX processor (3.0 GHz, 64GB 

ram), running Windows 10 Pro operation system.  

Similar to classic ICA, ICAwICA also has multiple algorithmic hyper-parameters that were empirically set 

and are as follows: total number of countries 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  is set to 4096 for all instances with number of items 

𝑛 < 500 and 512 for all instances with 𝑛 ≥ 500. Out of all countries, 40% are initialized as imperialists 

𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠 . Local iterations 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 is set to 3.  Assimilation rate β set to 0.5; coefficient associated with 

average power of empire’s colonies 𝜉  set to 0.05; 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 set to 0.7 (70% probability of 

independence).  
Due to constrained computing resources, limited time and a large set of problem set, termination criteria of 

stagnation were implemented, where the search terminates if no improvement has been made to the best solution 

for ε number of iterations. For problem instances with 𝑛 < 500, ε is set to 0.1𝑛, and for MKP instances with h 

𝑛 ≥ 500, 𝜀  =  𝑛.  Due to the stochastic nature of the algorithm, 30 independent runs were computed for each 

problem instance. Best and average profit as well as average time in seconds 𝑡𝑎𝑣𝑔(𝑠) required to reach such 

profit were recorded for all 101 problem instances. 

 
4.3.  Sensitivity analysis of 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒂𝒏𝒄𝒆𝑹𝒂𝒕𝒆  

The newly implemented mechanism of colony independence was tested by altering the 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 

parameter from 0 to 1, with 0.1 increments. OR10.100 problem set was chosen for the comparison. The average 
error percentage across all 30 OR10.100 instances was calculated in (2) and the experimental results are 

summarized in Table 1.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =  
1

𝑛
∑

𝑜𝑖 − 𝑝𝑖

𝑜𝑖

𝑛

𝑖=1

∗ 100% 

 

(2) 

where 𝑜𝑖 is the optimal profit for the instance 𝑖, and 𝑝𝑖 – achieved best or average profit on said instance. 

 

Table 1. Sensitivity analysis of Independence rate as an average error % for OR10.100 instances across 30 independent runs. 

With 0 representing ICA with no independence operator.  𝑡𝑎𝑣𝑔(𝑠)  representing the average time to converge to best solution. 

Independence rate 

 0 (no) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Average error % 5.1944 0.0283 0.0153 0.0081 0.0061 0.0041 0.0039 0.0026 0.0027 0.0029 0.0031 

𝑡𝑎𝑣𝑔(𝑠) 0.14 2.13 2.85 3.64 4.27 5.10 5.68 6.51 7.21 7.98 8.74 

 



Table 1 shows a clear improvement in the introduction of the Independence operator within ICA. Compared 

to ICA with no independence (independence rate of 0) and ICA with independence rate greater than 0, the 

average error across all OR10.100 instances reduced by factor of 183 (5.1944% and 0.0283% respectively). 

However, there is also a time penalty associated with doing the extra work of assimilating to all imperialists 

compared to a single imperialist, with average time to reach final solution increasing from 0.14 seconds to 2-8 

seconds. Best average error was achieved with the Independence rate at 0.7 and hence been adopted for use 

throughout all further comparisons.  

4.4. Comparisons to the state-of-the-art.   

To evaluate performance of the proposed algorithm, 12 state-of-the art population-based/ heuristic 
algorithms were compared across 101 common MKP instances. Benchmark instances are described 
in Section 4.1 and experimental setup algorithmic hyperparameters with termination criteria in 
Section 4.2.  

First, comparison was performed on simple WEISH instances, where most algorithms in the 
literature can achieve optimum solution, therefore performance is measured in terms of the success 
rate (how many times algorithm was able to achieve optimum) or in terms of the average error 
percentage error (2) across all instances. For the comparison, the six best performing algorithms 
were selected from the literature, which include Ant Colony Optimization with Dynamic impact 
(ACOwD) described in [11], Improved Whale Optimization Algorithm (IWOA) [22], two variations of 
binary differential search TE-BDS and TR-BDS proposed in [43], and two implementations of Particle 
Swarm Optimization (PSO) with self-adaptive check and repair - SACRO-CBPSOTVAC and SACRO-
BPSOTVAC [19]. 

 

 

Fig. 4. The average error of the mean profit across all WEISH (1-30) instances. Average of 30 independent runs. 

Results in Fig. 4 show that all compared algorithms can reach the optimal solution in most cases, however, 

only 2 of them ICAwICA and ACOwD are able to do it consistently across 30 runs. ICAwICA achieved the 

optimal solution at the first iteration every time and on average took 1.5 seconds.  

Next, 60 OR-library instances were compared with state-of-the-art Two-phase tabu-evolutionary algorithm 
(TPTEA) [15], Quantum Particle Swarm Optimization technique with local search and repair mechanism called 

QPSO* [18] and SACRO-CBPSOTVAC, SACRO-BPSOTVAC [19]. Results in both Table 2 and Table 3 are 

structured as follows. The first two columns show instance name and the absolute value of the optimal solution. 

The absolute error is derived by subtracting the score achieved from the optimal value. Comparisons are made 

for both average absolute error and best absolute error achieved within the 30 runs. The average time to achieve 

solution 𝑡𝑎𝑣𝑔(𝑠) is added for reference. With bold representing the best error of zero.   

ICAwICA was able to achieve the optimal solution for all 60 instances. In terms of best absolute error, 

ICAwICA consistently outperformed both SACRO-CBPSOTVAC and SACRO-BPSOTVAC and performed 

just as well, when compared to TPTEA and QPSO*. In terms of average absolute error, ICAwICA consistently 

achieved an optimal solution in 20 out of 30 OR5.100 instances and 21 out of 30 OR10.100 instances, 
outperforming SACRO-CBPSOTVAC and SACRO-BPSOTVAC, but falling behind both TPTEA and QPSO*. 

It is worth noting that the average time to solution 𝑡𝑎𝑣𝑔(𝑠) almost doubles when solving instances with tightness  
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Table 2. Algorithm comparison results for small OR-library instances with n= 100 and m = 5. With bold corresponding to the 
best absolute error. Average derived from 30 independent runs.  

Problem  Average absolute error Best absolute error ICAwICA (this work) 

Instance Optimum 

TPTEA 
[15] 

SACRO- 
BPPSO- 
TVAC 
[19] 

SACRO- 
CBPPSO- 

TVAC 
[19] 

QPSO* 
[18] 

TPTEA 
[15] 

SACRO- 
BPPSO- 
TVAC 
[19] 

SACRO- 
CBPPSO- 

TVAC 
[19] 

QPSO* 
[18] 

Avg Best 
𝒕𝒂𝒗𝒈 

(𝒔) 

5.100.0 24381 0.0 85.0 79.3 0.0 0 38 38 0 0.0 0 4.1 
5.100.1 24274 0.0 120.5 120.7 0.0 0 0 0 0 0.0 0 4.1 
5.100.2 23551 0.0 40.8 41.3 0.0 0 13 13 0 0.0 0 4.3 
5.100.3 23534 0.0 101.1 76.4 0.0 0 7 7 0 0.0 0 5.2 
5.100.4 23991 0.0 58.5 66.7 0.0 0 0 25 0 0.0 0 4.5 
5.100.5 24613 0.0 96.6 66.8 0.0 0 12 12 0 0.0 0 3.9 
5.100.6 25591 0.0 150.9 140.0 0.0 0 0 0 0 0.0 0 3.9 
5.100.7 23410 0.0 88.2 61.0 0.0 0 0 0 0 0.0 0 4.2 
5.100.8 24216 0.0 52.5 67.5 0.0 0 12 0 0 0.0 0 5.0 
5.100.9 24411 0.0 115.8 90.4 0.0 0 12 0 0 0.0 0 4.2 

Average 24197 0.0 91.0 81.0 0.0 0 9 10 0 0.0 0 4.3 

5.100.10 42757 0.0 96.1 90.8 0.0 0 52 52 0 0.0 0 7.2 
5.100.11 42545 0.0 103.2 110.8 0.0 0 51 74 0 22.8 0 9.8 
5.100.12 41968 0.0 64.0 63.2 0.0 0 9 9 0 0.8 0 8.7 
5.100.13 45090 0.0 68.2 80.0 0.0 0 0 0 0 15.2 0 7.7 
5.100.14 42218 0.0 68.6 44.9 0.0 0 0 0 0 0.0 0 6.1 
5.100.15 42927 0.0 27.8 36.7 0.0 0 0 0 0 0.0 0 6.1 
5.100.16 42009 0.0 105.0 137.6 0.0 0 0 0 0 0.0 0 6.1 
5.100.17 45020 0.0 109.3 71.2 0.0 0 10 0 0 0.0 0 7.5 
5.100.18 43441 0.0 140.1 151.0 0.0 0 0 60 0 6.9 0 8.8 
5.100.19 44554 0.0 60.2 81.6 0.0 0 0 25 0 13.5 0 7.8 

Average 43253 0.0 84.3 86.8 0.0 0 12 22 0 5.9 0 7.6 

5.100.20 59822 0.0 45.6 30.1 0.0 0 0 0 0 0.0 0 6.5 
5.100.21 62081 0.0 144.1 120.7 0.0 0 0 0 0 9.4 0 6.9 
5.100.22 59802 0.0 105.5 108.7 0.0 0 0 48 0 7.6 0 8.7 
5.100.23 60479 0.0 75.0 90.2 0.0 0 1 1 0 0.2 0 10.1 
5.100.24 61091 0.0 94.6 85.4 0.0 0 36 12 0 0.0 0 6.4 
5.100.25 58959 0.0 54.8 72.7 0.0 0 0 22 0 0.0 0 9.1 
5.100.26 61538 0.0 100.8 68.9 0.0 0 0 0 0 0.0 0 8.0 
5.100.27 61520 0.0 109.0 91.9 0.0 0 31 0 0 5.8 0 9.2 
5.100.28 59453 0.0 151.8 157.9 0.0 0 0 0 0 0.0 0 8.1 
5.100.29 59965 0.0 36.8 21.4 0.0 0 5 5 0 0.8 0 8.5 

Average 60471 0.0 91.8 84.8 0.0 0 7 9 0 2.4 0 8.2 
 

 

ratio of 0.5 and 0.75 compared to 0.25, this is due to the extra constraint checks CA has to perform when 

creating a new solution.  

Finally, large Glover and Kochenberger (GK) instances were solved and compared to eight heuristic 

algorithms from the literature in terms of average error percent (2)  gap against best known profit from the 

literature. Compared algorithms include ACOwD, IWOA, TPTEA, harmony search based algorithm NBHS2 

proposed in [20], evolutionary algorithm with logic gates LGEA [16], shuffled complex evolution algorithm 

SCEcr [17], hyper-heuristic inspired CF-LAS [44] and BCSA – binary cuckoo search algorithm [21]. Table 4 is 

colour coded from red (worst average error %) to the best average error percent, in green, for each problem 

instance with dashes (-) representing scores that were not available. Compared to 8 other algorithms in the 
literature, ICAwICA shows competitive results, coming in second place for gk01-gk09 and in top three for gk10 

and in fourth place for the largest gk11 instance. The best achieved error percentage along with the average time  

𝑡𝑎𝑣𝑔(𝑠) have been included for reference. The proposed algorithm performs well on medium to large MKP 

instances, however, struggles on very large instances (gk11). Further investigation needs to be conducted to 

improve performance on the most complex benchmarks.   



 
Table 3. Algorithm comparison and computational results for small OR-library instances with n=100 and m = 10. With bold 
corresponding to the best absolute error. Average derived from 30 independent runs. 

Problem  Average absolute error Best absolute error ICAwICA (this work) 

Instance Optimum 
TPTEA 

[15] 

SACRO- 
BPPSO- 
TVAC 
[19] 

SACRO- 
CBPPSO- 

TVAC 
[19] 

QPSO* 
[18] 

TPTEA 
[15] 

SACRO- 
BPPSO- 
TVAC 
[19] 

SACRO- 
CBPPSO- 

TVAC 
[19] 

QPSO* 
[18] 

Avg Best 
𝒕𝒂𝒗𝒈 

(𝒔) 

10.100.0 23064 0.0 50.8 55.0 0.0 0 0 0 0 0.0 0 4.3 
10.100.1 22801 0.0 150.0 168.0 0.0 0 0 0 0 0.0 0 4.3 
10.100.2 22131 0.0 182.3 138.8 0.0 0 0 0 0 0.0 0 4.1 
10.100.3 22772 0.0 152.4 163.3 0.0 0 0 0 0 0.0 0 4.7 
10.100.4 22751 0.0 136.1 144.1 0.0 0 0 0 0 0.0 0 4.8 
10.100.5 22777 0.0 154.1 165.0 0.0 0 0 38 0 4.3 0 4.9 
10.100.6 21875 0.0 98.8 91.7 0.0 0 0 0 0 0.0 0 4.2 
10.100.7 22635 0.0 176.8 187.2 0.0 0 0 0 0 0.0 0 4.2 
10.100.8 22511 0.0 149.7 169.0 0.0 0 0 0 0 0.0 0 4.2 
10.100.9 22702 0.0 234.6 223.0 0.0 0 0 0 0 0.0 0 3.8 

Average 22602 0.0 148.6 150.5 0.0 0 0 4 0 0.4 0 4.3 

10.100.10 41395 0.0 109.4 121.8 0.0 0 0 0 0 0.5 0 8.7 
10.100.11 42344 0.0 122.7 119.1 0.0 0 0 0 0 1.9 0 8.3 
10.100.12 42401 0.0 119.4 108.9 0.0 0 0 0 0 0.0 0 7.5 
10.100.13 45624 0.0 202.0 198.7 0.0 0 0 0 0 1.7 0 8.2 
10.100.14 41884 0.0 142.0 135.1 0.0 0 0 0 0 0.0 0 8.0 
10.100.15 42995 0.0 118.4 158.7 0.0 0 0 0 0 0.0 0 7.1 
10.100.16 43574 0.0 194.1 176.0 21.0 0 15 0 21 1.5 0 8.8 
10.100.17 42970 0.0 102.9 94.7 0.0 0 0 0 0 0.0 0 6.8 
10.100.18 42212 0.0 78.4 77.5 0.0 0 0 0 0 0.0 0 7.1 
10.100.19 41207 0.0 150.8 165.2 0.0 0 0 0 0 1.4 0 7.7 

Average 42661 0.0 134.0 135.6 2.1 0 2 0 2.1 0.7 0 7.8 

10.100.20 57375 0.0 74.9 63.1 0.0 0 0 0 0 0.0 0 7.0 
10.100.21 58978 0.0 139.1 106.7 0.0 0 0 0 0 5.6 0 9.6 
10.100.22 58391 0.0 129.8 107.4 0.0 0 0 0 0 9.8 0 9.0 
10.100.23 61966 0.0 112.8 89.4 0.0 0 0 0 0 0.0 0 8.2 
10.100.24 60803 0.0 32.2 36.7 0.0 0 0 0 0 0.0 0 7.9 
10.100.25 61437 0.0 160.7 150.9 0.0 0 0 0 0 25.3 0 8.9 
10.100.26 56377 0.0 63.7 74.8 0.0 0 0 0 0 0.0 0 7.7 
10.100.27 59391 0.0 173.2 150.3 0.0 0 0 0 0 0.0 0 8.1 
10.100.28 60205 0.0 165.8 176.0 0.0 0 0 0 0 0.0 0 7.8 
10.100.29 60633 0.0 76.9 83.4 0.0 0 0 0 0 0.0 0 7.1 

Average 59556 0.0 112.9 103.9 0.0 0 0 0 0 4.1 0 8.1 

 
 

 

Table 4. Algorithm comparison across large Glover and Kochenberger (GK) knapsack instances. Expressed as average error 
percentage gap % against best known profit. Colour coded from best gap (green) to worst gap (red) for any given dataset. With 
dash (-) representing results that are not available. 

Data 
set 

Problem 
size  

(n x m) 

Best 
known 

ACOwD 
[11] 

NBHS2 
[20] 

IWOA 
[22] 

LGEA 
[16] 

TPTEA 
[15] 

SCEcr 
[17] 

CF-LAS 
[44] 

BCSA 
[21] 

ICAwICA (this work) 

Average Best 𝒕𝒂𝒗𝒈(𝒔) 

gk01 100x15 3766 0.14% 0.29% 0.68% 0.66% 0.00% 0.76% 0.31% 0.23% 0.00% 0.00% 16.8 

gk02 100x25 3958 0.05% 0.30% - 0.55% 0.00% 1.06% 0.36% 0.27% 0.05% 0.03% 19.4 

gk03 150x25 5656 0.26% 0.55% 0.85% 0.97% 0.06% 0.91% 0.37% 0.17% 0.12% 0.11% 62.5 

gk04 150x50 5767 0.17% 0.45% 0.89% 1.02% 0.01% 1.48% 0.45% 0.15% 0.07% 0.05% 84.4 

gk05 200x25 7561 0.21% 0.44% 0.94% 1.32% 0.01% 0.73% 0.24% 0.18% 0.09% 0.04% 145.7 

gk06 200x50 7680 0.26% 0.52% 0.77% 1.05% 0.08% 1.14% 0.46% 3.54% 0.13% 0.12% 247.7 

gk07 500x25 19221 0.20% 0.26% 1.09% 1.08% 0.04% 0.46% 0.13% 0.70% 0.11% 0.07% 280.3 

gk08 500x50 18806 0.22% 0.56% 0.85% - 0.06% 0.67% 0.20% 0.77% 0.12% 0.08% 357.8 

gk09 1500x25 58091 0.18% 0.27% 1.54% 1.08% 0.02% 1.78% 1.77% 0.98% 0.14% 0.09% 1611.0 

gk10 1500x50 57295 0.20% 0.54% 0.80% 1.01% 0.04% 0.36% 0.10% - 0.18% 0.12% 2219.1 

gk11 2500x100 95238 0.32% 0.64% 1.07% 1.13% 0.07% 0.30% 0.09% - 0.31% 0.24% 7200.6 

 



5. Conclusions and future work 

This work solves multidimensional NP-hard 0-1 knapsack problems using an Imperialist Competitive Algorithm 

for the first time. Furthermore, a new Independence operator has been presented that allows each of the colonies 

a free will to choose between moving closer to their own imperialist or another empire’s imperialist. Moreover, 

a constraint assimilation process has been proposed that eliminates the need for a revolution operation in 

classical ICA. 

In order to test the proposed algorithm, an independence operator was investigated, it was concluded that 

search performance improves when the operator is used. Next, algorithm was compared to multiple state-of-the-

art algorithms across 101 MKP instances.  Algorithm was able to achieve an optimal solution in all small 

instances and showed very competitive results in large GK instances.  

The proposed algorithm can be improved in multiple ways. First, instead of simply iterating over all 
possibilities, a more efficient selection process based on heuristics can be explored. Similarly, the proposed 

independence operator is slow as it is required to assimilate to all imperialists, smarter selection of top 

imperialists can be implemented. Furthermore, although this paper focuses on solving binary MKP instances, 

the proposed algorithm is not limited to binary optimization and therefore applications to other constrained 

discrete problems is something to be considered.  
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