
Imperialist Competitive Algorithm with Independence and Constrained

Assimilation for Solving 0-1 Multidimensional Knapsack Problem

Ivars Dzalbs, Tatiana Kalganova1, Ian Dear

1 Brunel University London, Kingston Lane, Uxbridge, UB8 2PX, UK
Tatiana.Kalganova@brunel.ac.uk

Abstract. The multidimensional knapsack problem is a well-known constrained
optimization problem with many real-world engineering applications. In order to solve this
NP-hard problem, a new modified Imperialist Competitive Algorithm with Constrained

Assimilation (ICAwICA) is presented. The proposed algorithm introduces the concept of
colony independence – a free will to choose between classical ICA assimilation to empire’s
imperialist or any other imperialist in the population. Furthermore, a constrained assimilation
process has been implemented that combines classical ICA assimilation and revolution
operators, while maintaining population diversity. This work investigates the performance
of the proposed algorithm across 101 Multidimensional Knapsack Problem (MKP)
benchmark instances. Experimental results show that the algorithm is able to obtain an
optimal solution in all small instances and presents very competitive results for large MKP

instances.

Keywords: combinatorial optimization, multidimensional knapsack problem (MKP),
imperialist competitive algorithm (ICA), meta-heuristics

1. Introduction

The Multidimensional Knapsack Problem (MKP) is a well-known constrained optimization problem, that has

multiple real-world engineering applications, such as cutting stock [1], distributed computing resource allocation

[2], cargo loading [3], satellite management [4], project selection [5] and capital budgeting [6]. The MKP is an

extension of the 0-1 knapsack problem, where items have weight vectors in multiple dimensions. The goal is to

maximize the total profit by putting items into knapsacks while satisfying weight capacity constraints across all

dimensions. MKP is formulated in (1) [7].

max
∑ 𝑝𝑗𝑠𝑗

𝑛

𝑗=1

subject to:
∑ 𝑤𝑖𝑗𝑠𝑗 ≤ 𝑊𝑖

𝑛

𝑗=1

 ∀𝑖 ∈ {1, … , 𝑚}
(1)

 𝑥𝑗 ∈ {0,1} ∀𝑗 ∈ {1, … , 𝑛}

where every item 𝑗 in the list of 𝑛 items (𝑗 = 1 … 𝑛) has a profit 𝑝𝑗 and weight 𝑤𝑖𝑗 associated to an 𝑚-dimensional

weight vector (𝑖 = 1 … 𝑚), that tries to satisfy a capacity constraint 𝑊𝑖 in that dimension. Variable 𝑠𝑗 indicates

whether the item is selected and included in solution. Capacities, weights and profits are assumed to be positive.

Being an NP-hard problem with practical applications, many different approaches have been proposed for solving

MKP, which can be divided into two groups – exact, deterministic, single-solution based algorithms and stochastic

population/meta-heuristic based algorithms, with this paper focusing on the latter approach.

Comprehensive literature review of solving MKPs was provided by [8] and a more recent MKP overview by

[9] summarizes algorithms used for solving MKP. This paper focuses on the state-of-the-art population and meta-

heuristic algorithms used for solving MKP instances, such as ant colony optimization ([10], [11]), various types

of genetic algorithms ([12],[13],[14]), evolutionary algorithms ([15],[16], [17]), variations of particle swarm

optimization algorithm ([18],[19]), binary harmony search [20], binary cuckoo search algorithm[21], whale

optimization algorithm [22] and etc. Most of the research in population-based algorithms focuses on small MKP

instances with 𝑛 ≤ 100, while only few explore large instances with 𝑛 = 500 and above. This paper tries to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/477907171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cover both small and large instances of MKP for a complete study using an Imperialist Competitive Algorithm

(ICA).

The main contributions of this work are as follows:

• Investigation of the Imperialist Competitive Algorithm (ICA) for the first time applied to large MKP.

• Proposal of novel generic ICA implementation for solving constrained optimization problems. The

proposed approach called ICA with Independence and Constrained Assimilation (ICAwICA) combines

classical ICA assimilation and mutation operators by modified assimilation process with repair
mechanism.

• Computation results and comparisons of 101 commonly used MKP benchmarks, of which 30 are very

small instances, with 𝑛 < 100 , 60 are small instances, with 𝑛 = 100 and 11 large benchmark

instances with 𝑛 up to 2500.

2. The Imperialist Competitive Algorithm

The Imperialist Competitive Algorithm (ICA) was first introduced in 2007 [23] for solving continuous

optimization problems and since been a growing field of interest for many researchers in various engineering

disciplines – scheduling, assembly line balancing, facility layout optimization, computer engineering and other

areas of industrial engineering [24].

Like many other population algorithms, ICA starts its search by generating a random initial population

where each individual of the population represents a country. Countries within ICA can be thought of as

chromosomes in a genetic algorithm. The initial population is separated into multiple groups (so called empires).

Strongest countries become imperialist within the empire and weakest - their colonies. Each colony within

empire moves closer to their imperialist in the form of assimilation operator. In order to provide diversity
amongst countries, a revolution operator (mutation in GA) is implemented. If at any point a colony becomes

stronger than its imperialist then the two countries are swapped, such that imperialist is the strongest country in

the empire. The search follows an iterative process, where after each iteration the weakest colony within the

weakest empire is assigned to one of the stronger empires – following the imperialist competition process. An

empire is eliminated once it contains no more colonies. The search usually continues until the termination

criteria are met. Ideally, the search is terminated once all empires are eliminated and only one, the best, empire

remaining.

Multiple variations of ICA have been previously proposed, for instance, both [25] and [26] implemented

ICA with attraction and repulsion mechanism to assist the search with great success. Moreover, [27] explored

variations of imperialist competition, where the strongest imperialist gets excluded and also proposed

diversification operator to escape local optima. Furthermore, to improve search convergence, many ICA hybrids

with other algorithms have been explored. ICA hybrids, such as ICA with teaching-learning based optimization
[27] for solving multi-stage supply chains, combination of ICA and simulated annealing algorithm for solving

flexible job scheduling problem [28], as well as ICA with particle swarm optimization for power resource

management [29].

3. The Imperialist Competitive Algorithm with Independence and Constrained

Assimilation

The classical ICA does not implement any form of local search and therefore may get stuck in local optima before

converging to global best solution [30]. Different approaches for solving this problem have been proposed in

literature, such as simulated annealing-like processes in [31] for solving flexible job-shop problems, as well as

applying local search for sub-populations of ICA [32]. Work in this paper proposes a modified ICA, where the

local search process is performed in terms of both an Independence operator and a Constrained Assimilation

(ICAwICA). The flowchart for both classical ICA and ICAwICA is shown in Fig. 1, with red indicating the

changes.

The proposed ICAwICA follows the classic ICA [23] principles for both empire initialization and empire

competition, however, assimilation and revolution operators are replaced with a constrained assimilation and

repair mechanism. Furthermore, in the classical ICA each of the colonies within an empire are moving closer to

the imperialist within that empire, while in ICAwICA all colonies are given a free choice to move closer to any

of the imperialists of other empires (independence), as long as it improves the country’s well-being (associated

cost). Therefore, at each iteration, colony 𝑘 has a probability based on a uniform distribution (𝑟𝑎𝑛𝑑) of either

moving closer to their own empire’s imperialist or to move closer to any other imperialist 𝑗, determined by

𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 (0-1.0). Moreover, this process is repeated 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 times for each colony to explore more

search space around its position in the form of local search. Pseudo code of the ICAwICA is shown in Fig. 2.

Fig. 1. Flowchart of classical ICA [23] (to the left) and the proposed ICAwICA (on the right), with red indicating the changes.

3.1. Constrained Assimilation

Classical ICA was first developed for continuous maths problem with simple assimilation processes [23], ICA

has since been applied to multiple binary problems, such as feature selection [33][34], content-based-image

retrieval (CBIR) [35] and single dimensional 0-1 knapsack problems [36]. However, binary assimilation

approaches cannot always be extended to other discrete, non-binary problems. Furthermore, most ICA discrete

assimilation implementations follow simple genetic-algorithm-like crossover operations, where the

chromosomes are expected to be of equal size [37] [38]. The proposed Constrained Assimilation (CA) process

does not require equal chromosome/solution size and is extendable to other constrained discrete problems. CA

exploits the fact that two solutions cannot always be merged without violating constraints. Therefore, CA builds
a new incomplete solution from the two donor solutions/countries (colony and imperialist) according to the

assimilation rate and finishes the solution by a repair mechanism.
There are multiple ways to implement the solution repair mechanism - based on heuristics, existing solution

population, sequence based [39] etc. The simplest repair mechanism is - scanning through all possible entries

and trying to add them to the solution without violating constraints (used in this paper). Furthermore, this

incomplete solution repair enables diversity without an explicit revolution operator like classic ICA. Although

more computationally expensive than simple assimilation, this approach has potential for broad applications and

generalization, as it does not depend on two solutions having the same size nor problem-specific assimilation or

repair mechanism.

A CA example is provided in Fig. 3 where both colony and imperialist are assimilated, with bold integer

values corresponding to solution entries (item indices in MKP case) that are passed to the new country,

determined by assimilation rate. In this simple example, a 50% assimilation rate of 𝑁𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 is used to build

the new country. Due to constraints, not all solution entries can be added to the new country and hence the

solution is in an incomplete state. The repair process iterates over all possible solution entries and fills the gaps

while complying with constraints. As can be seen in Fig. 3, new entries (index 1 and index 3) were introduced to

the solution after repair that were not in any of the donor countries.
Let us consider in detail the assimilation process shown in Fig. 3. The colony solution is shown in blue and

the imperialist in yellow, with the newly generated country 𝑛𝑐.

Fig. 3. Imperialist and colony constrained assimilation process with solution repair. Entries to be passed onto new country
represented in bold. With integer values corresponding to solution entries (item indices in MKP case).

1. Initialize ICA parameters.
2. Create the popular randomly.
3. Initialize empires:
 for 𝑖 = 1 to 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Compute the cost function 𝐶𝑖;
Sort the computed cost 𝐶𝑖 in descending order for the entire population;
Select 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠 out of 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;

Normalize the cost of each imperialist 𝐶𝑛;
Calculate the normalized power of each imperialist 𝑃𝑛;
Assign remaining countries 𝑁𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 to the imperialists;

 end loop
do
 4. Assimilation and local search process for ICAwICA
 for k = 1 to 𝑁𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠
 for 𝑙 = 1 to 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟
 if 𝑟𝑎𝑛𝑑 < 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒

 for 𝑗 = 1 to 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠

 assimilate colony 𝑘 closer to 𝑗
 if cost for new position is less than original position
 keep assimilated position

 else
 discard and move back to original position

 endif
 end loop
 else
 assimilate colony 𝑘 closer to empire’s Imperialist
 endif
 end loop
 end loop
 for 𝑗 = 1 to 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠

if the cost of any colony is less than cost of imperialist
 exchange the position of the colony and imperialist;
endif
Pick the weakest colony (colonies) from the weakest empire and assign it to the
empire with highest probability to possess it;

 end loop
 5. Elimination process;
 If there is imperialist with no colonies

eliminate the imperialist;
 endif
while stopping condition not met;

 Fig. 2. The pseudo-code for new assimilation and local search method for ICAwICA

4. Experimental result

In this section the proposed algorithm performance is evaluated by extensive computational experiments on

classical MKP benchmark instances and compared to the current state-of-the-art algorithms.

4.1. Benchmark instances

Multidimensional knapsack problem instances were chosen because of their availability, ease of implementation

and the common use as benchmarks across the research community. ICAwICA was tested across 101 popular

benchmark instances, all available from the compiled library in [40].

The simplest benchmarks used in this paper are derived from the WEISH dataset, containing 30 problems

with the number of items ranging from 30 to 90 and with 5 knapsacks each. Furthermore, another common

MKP benchmark - OR-library, generated by Chu and Basley in [41], was selected. Each group of OR set

instances (9 in total) contains 30 problems with 3 different tightness ratios, set to 0.25 for first 10 instances, 0.5
for next 10 instances and 0.75 for last 10 instances. 60 problems were selected from the set - 30 with 100 items,

5 knapsacks and 30 with 100 items, 10 knapsacks. In order to explore the performance of the proposed

algorithm across range of datasets, large MKP instances, generated by Glover and Kochenberger (GK) [42] ,

were also selected. The GK dataset contains 11 instances with number of items ranging from 100 to 2500 with

15 to 100 knapsacks each and provides wide spectrum of complexity.

4.2. Experimental setup

The proposed ICAwICA algorithm was implemented in C++ using the Visual Studio 2019 (v142) compiler. The

computation was performed on a workstation with AMD Threadripper 2990WX processor (3.0 GHz, 64GB

ram), running Windows 10 Pro operation system.

Similar to classic ICA, ICAwICA also has multiple algorithmic hyper-parameters that were empirically set

and are as follows: total number of countries 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is set to 4096 for all instances with number of items

𝑛 < 500 and 512 for all instances with 𝑛 ≥ 500. Out of all countries, 40% are initialized as imperialists

𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠 . Local iterations 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 is set to 3. Assimilation rate β set to 0.5; coefficient associated with

average power of empire’s colonies 𝜉 set to 0.05; 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 set to 0.7 (70% probability of

independence).
Due to constrained computing resources, limited time and a large set of problem set, termination criteria of

stagnation were implemented, where the search terminates if no improvement has been made to the best solution

for ε number of iterations. For problem instances with 𝑛 < 500, ε is set to 0.1𝑛, and for MKP instances with h

𝑛 ≥ 500, 𝜀 = 𝑛. Due to the stochastic nature of the algorithm, 30 independent runs were computed for each

problem instance. Best and average profit as well as average time in seconds 𝑡𝑎𝑣𝑔(𝑠) required to reach such

profit were recorded for all 101 problem instances.

4.3. Sensitivity analysis of 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒂𝒏𝒄𝒆𝑹𝒂𝒕𝒆

The newly implemented mechanism of colony independence was tested by altering the 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒

parameter from 0 to 1, with 0.1 increments. OR10.100 problem set was chosen for the comparison. The average
error percentage across all 30 OR10.100 instances was calculated in (2) and the experimental results are

summarized in Table 1.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =
1

𝑛
∑

𝑜𝑖 − 𝑝𝑖

𝑜𝑖

𝑛

𝑖=1

∗ 100%

(2)

where 𝑜𝑖 is the optimal profit for the instance 𝑖, and 𝑝𝑖 – achieved best or average profit on said instance.

Table 1. Sensitivity analysis of Independence rate as an average error % for OR10.100 instances across 30 independent runs.

With 0 representing ICA with no independence operator. 𝑡𝑎𝑣𝑔(𝑠) representing the average time to converge to best solution.

Independence rate

 0 (no) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average error % 5.1944 0.0283 0.0153 0.0081 0.0061 0.0041 0.0039 0.0026 0.0027 0.0029 0.0031

𝑡𝑎𝑣𝑔(𝑠) 0.14 2.13 2.85 3.64 4.27 5.10 5.68 6.51 7.21 7.98 8.74

Table 1 shows a clear improvement in the introduction of the Independence operator within ICA. Compared

to ICA with no independence (independence rate of 0) and ICA with independence rate greater than 0, the

average error across all OR10.100 instances reduced by factor of 183 (5.1944% and 0.0283% respectively).

However, there is also a time penalty associated with doing the extra work of assimilating to all imperialists

compared to a single imperialist, with average time to reach final solution increasing from 0.14 seconds to 2-8

seconds. Best average error was achieved with the Independence rate at 0.7 and hence been adopted for use

throughout all further comparisons.

4.4. Comparisons to the state-of-the-art.

To evaluate performance of the proposed algorithm, 12 state-of-the art population-based/ heuristic
algorithms were compared across 101 common MKP instances. Benchmark instances are described
in Section 4.1 and experimental setup algorithmic hyperparameters with termination criteria in
Section 4.2.

First, comparison was performed on simple WEISH instances, where most algorithms in the
literature can achieve optimum solution, therefore performance is measured in terms of the success
rate (how many times algorithm was able to achieve optimum) or in terms of the average error
percentage error (2) across all instances. For the comparison, the six best performing algorithms
were selected from the literature, which include Ant Colony Optimization with Dynamic impact
(ACOwD) described in [11], Improved Whale Optimization Algorithm (IWOA) [22], two variations of
binary differential search TE-BDS and TR-BDS proposed in [43], and two implementations of Particle
Swarm Optimization (PSO) with self-adaptive check and repair - SACRO-CBPSOTVAC and SACRO-
BPSOTVAC [19].

Fig. 4. The average error of the mean profit across all WEISH (1-30) instances. Average of 30 independent runs.

Results in Fig. 4 show that all compared algorithms can reach the optimal solution in most cases, however,

only 2 of them ICAwICA and ACOwD are able to do it consistently across 30 runs. ICAwICA achieved the

optimal solution at the first iteration every time and on average took 1.5 seconds.

Next, 60 OR-library instances were compared with state-of-the-art Two-phase tabu-evolutionary algorithm
(TPTEA) [15], Quantum Particle Swarm Optimization technique with local search and repair mechanism called

QPSO* [18] and SACRO-CBPSOTVAC, SACRO-BPSOTVAC [19]. Results in both Table 2 and Table 3 are

structured as follows. The first two columns show instance name and the absolute value of the optimal solution.

The absolute error is derived by subtracting the score achieved from the optimal value. Comparisons are made

for both average absolute error and best absolute error achieved within the 30 runs. The average time to achieve

solution 𝑡𝑎𝑣𝑔(𝑠) is added for reference. With bold representing the best error of zero.

ICAwICA was able to achieve the optimal solution for all 60 instances. In terms of best absolute error,

ICAwICA consistently outperformed both SACRO-CBPSOTVAC and SACRO-BPSOTVAC and performed

just as well, when compared to TPTEA and QPSO*. In terms of average absolute error, ICAwICA consistently

achieved an optimal solution in 20 out of 30 OR5.100 instances and 21 out of 30 OR10.100 instances,
outperforming SACRO-CBPSOTVAC and SACRO-BPSOTVAC, but falling behind both TPTEA and QPSO*.

It is worth noting that the average time to solution 𝑡𝑎𝑣𝑔(𝑠) almost doubles when solving instances with tightness

0.007

0.005

0.023

0.07

0.002

0

0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

SACRO-BPSOTVAC

SACRO-CBPSOTVAC

TR-BDS

TE-BDS

IWOA

ACOwD

ICAwCA (this work)

Average error of mean profit on WEISH1-30 instances

Table 2. Algorithm comparison results for small OR-library instances with n= 100 and m = 5. With bold corresponding to the
best absolute error. Average derived from 30 independent runs.

Problem Average absolute error Best absolute error ICAwICA (this work)

Instance Optimum

TPTEA
[15]

SACRO-
BPPSO-
TVAC
[19]

SACRO-
CBPPSO-

TVAC
[19]

QPSO*
[18]

TPTEA
[15]

SACRO-
BPPSO-
TVAC
[19]

SACRO-
CBPPSO-

TVAC
[19]

QPSO*
[18]

Avg Best
𝒕𝒂𝒗𝒈

(𝒔)

5.100.0 24381 0.0 85.0 79.3 0.0 0 38 38 0 0.0 0 4.1
5.100.1 24274 0.0 120.5 120.7 0.0 0 0 0 0 0.0 0 4.1
5.100.2 23551 0.0 40.8 41.3 0.0 0 13 13 0 0.0 0 4.3
5.100.3 23534 0.0 101.1 76.4 0.0 0 7 7 0 0.0 0 5.2
5.100.4 23991 0.0 58.5 66.7 0.0 0 0 25 0 0.0 0 4.5
5.100.5 24613 0.0 96.6 66.8 0.0 0 12 12 0 0.0 0 3.9
5.100.6 25591 0.0 150.9 140.0 0.0 0 0 0 0 0.0 0 3.9
5.100.7 23410 0.0 88.2 61.0 0.0 0 0 0 0 0.0 0 4.2
5.100.8 24216 0.0 52.5 67.5 0.0 0 12 0 0 0.0 0 5.0
5.100.9 24411 0.0 115.8 90.4 0.0 0 12 0 0 0.0 0 4.2

Average 24197 0.0 91.0 81.0 0.0 0 9 10 0 0.0 0 4.3

5.100.10 42757 0.0 96.1 90.8 0.0 0 52 52 0 0.0 0 7.2
5.100.11 42545 0.0 103.2 110.8 0.0 0 51 74 0 22.8 0 9.8
5.100.12 41968 0.0 64.0 63.2 0.0 0 9 9 0 0.8 0 8.7
5.100.13 45090 0.0 68.2 80.0 0.0 0 0 0 0 15.2 0 7.7
5.100.14 42218 0.0 68.6 44.9 0.0 0 0 0 0 0.0 0 6.1
5.100.15 42927 0.0 27.8 36.7 0.0 0 0 0 0 0.0 0 6.1
5.100.16 42009 0.0 105.0 137.6 0.0 0 0 0 0 0.0 0 6.1
5.100.17 45020 0.0 109.3 71.2 0.0 0 10 0 0 0.0 0 7.5
5.100.18 43441 0.0 140.1 151.0 0.0 0 0 60 0 6.9 0 8.8
5.100.19 44554 0.0 60.2 81.6 0.0 0 0 25 0 13.5 0 7.8

Average 43253 0.0 84.3 86.8 0.0 0 12 22 0 5.9 0 7.6

5.100.20 59822 0.0 45.6 30.1 0.0 0 0 0 0 0.0 0 6.5
5.100.21 62081 0.0 144.1 120.7 0.0 0 0 0 0 9.4 0 6.9
5.100.22 59802 0.0 105.5 108.7 0.0 0 0 48 0 7.6 0 8.7
5.100.23 60479 0.0 75.0 90.2 0.0 0 1 1 0 0.2 0 10.1
5.100.24 61091 0.0 94.6 85.4 0.0 0 36 12 0 0.0 0 6.4
5.100.25 58959 0.0 54.8 72.7 0.0 0 0 22 0 0.0 0 9.1
5.100.26 61538 0.0 100.8 68.9 0.0 0 0 0 0 0.0 0 8.0
5.100.27 61520 0.0 109.0 91.9 0.0 0 31 0 0 5.8 0 9.2
5.100.28 59453 0.0 151.8 157.9 0.0 0 0 0 0 0.0 0 8.1
5.100.29 59965 0.0 36.8 21.4 0.0 0 5 5 0 0.8 0 8.5

Average 60471 0.0 91.8 84.8 0.0 0 7 9 0 2.4 0 8.2

ratio of 0.5 and 0.75 compared to 0.25, this is due to the extra constraint checks CA has to perform when

creating a new solution.

Finally, large Glover and Kochenberger (GK) instances were solved and compared to eight heuristic

algorithms from the literature in terms of average error percent (2) gap against best known profit from the

literature. Compared algorithms include ACOwD, IWOA, TPTEA, harmony search based algorithm NBHS2

proposed in [20], evolutionary algorithm with logic gates LGEA [16], shuffled complex evolution algorithm

SCEcr [17], hyper-heuristic inspired CF-LAS [44] and BCSA – binary cuckoo search algorithm [21]. Table 4 is

colour coded from red (worst average error %) to the best average error percent, in green, for each problem

instance with dashes (-) representing scores that were not available. Compared to 8 other algorithms in the
literature, ICAwICA shows competitive results, coming in second place for gk01-gk09 and in top three for gk10

and in fourth place for the largest gk11 instance. The best achieved error percentage along with the average time

𝑡𝑎𝑣𝑔(𝑠) have been included for reference. The proposed algorithm performs well on medium to large MKP

instances, however, struggles on very large instances (gk11). Further investigation needs to be conducted to

improve performance on the most complex benchmarks.

Table 3. Algorithm comparison and computational results for small OR-library instances with n=100 and m = 10. With bold
corresponding to the best absolute error. Average derived from 30 independent runs.

Problem Average absolute error Best absolute error ICAwICA (this work)

Instance Optimum
TPTEA

[15]

SACRO-
BPPSO-
TVAC
[19]

SACRO-
CBPPSO-

TVAC
[19]

QPSO*
[18]

TPTEA
[15]

SACRO-
BPPSO-
TVAC
[19]

SACRO-
CBPPSO-

TVAC
[19]

QPSO*
[18]

Avg Best
𝒕𝒂𝒗𝒈

(𝒔)

10.100.0 23064 0.0 50.8 55.0 0.0 0 0 0 0 0.0 0 4.3
10.100.1 22801 0.0 150.0 168.0 0.0 0 0 0 0 0.0 0 4.3
10.100.2 22131 0.0 182.3 138.8 0.0 0 0 0 0 0.0 0 4.1
10.100.3 22772 0.0 152.4 163.3 0.0 0 0 0 0 0.0 0 4.7
10.100.4 22751 0.0 136.1 144.1 0.0 0 0 0 0 0.0 0 4.8
10.100.5 22777 0.0 154.1 165.0 0.0 0 0 38 0 4.3 0 4.9
10.100.6 21875 0.0 98.8 91.7 0.0 0 0 0 0 0.0 0 4.2
10.100.7 22635 0.0 176.8 187.2 0.0 0 0 0 0 0.0 0 4.2
10.100.8 22511 0.0 149.7 169.0 0.0 0 0 0 0 0.0 0 4.2
10.100.9 22702 0.0 234.6 223.0 0.0 0 0 0 0 0.0 0 3.8

Average 22602 0.0 148.6 150.5 0.0 0 0 4 0 0.4 0 4.3

10.100.10 41395 0.0 109.4 121.8 0.0 0 0 0 0 0.5 0 8.7
10.100.11 42344 0.0 122.7 119.1 0.0 0 0 0 0 1.9 0 8.3
10.100.12 42401 0.0 119.4 108.9 0.0 0 0 0 0 0.0 0 7.5
10.100.13 45624 0.0 202.0 198.7 0.0 0 0 0 0 1.7 0 8.2
10.100.14 41884 0.0 142.0 135.1 0.0 0 0 0 0 0.0 0 8.0
10.100.15 42995 0.0 118.4 158.7 0.0 0 0 0 0 0.0 0 7.1
10.100.16 43574 0.0 194.1 176.0 21.0 0 15 0 21 1.5 0 8.8
10.100.17 42970 0.0 102.9 94.7 0.0 0 0 0 0 0.0 0 6.8
10.100.18 42212 0.0 78.4 77.5 0.0 0 0 0 0 0.0 0 7.1
10.100.19 41207 0.0 150.8 165.2 0.0 0 0 0 0 1.4 0 7.7

Average 42661 0.0 134.0 135.6 2.1 0 2 0 2.1 0.7 0 7.8

10.100.20 57375 0.0 74.9 63.1 0.0 0 0 0 0 0.0 0 7.0
10.100.21 58978 0.0 139.1 106.7 0.0 0 0 0 0 5.6 0 9.6
10.100.22 58391 0.0 129.8 107.4 0.0 0 0 0 0 9.8 0 9.0
10.100.23 61966 0.0 112.8 89.4 0.0 0 0 0 0 0.0 0 8.2
10.100.24 60803 0.0 32.2 36.7 0.0 0 0 0 0 0.0 0 7.9
10.100.25 61437 0.0 160.7 150.9 0.0 0 0 0 0 25.3 0 8.9
10.100.26 56377 0.0 63.7 74.8 0.0 0 0 0 0 0.0 0 7.7
10.100.27 59391 0.0 173.2 150.3 0.0 0 0 0 0 0.0 0 8.1
10.100.28 60205 0.0 165.8 176.0 0.0 0 0 0 0 0.0 0 7.8
10.100.29 60633 0.0 76.9 83.4 0.0 0 0 0 0 0.0 0 7.1

Average 59556 0.0 112.9 103.9 0.0 0 0 0 0 4.1 0 8.1

Table 4. Algorithm comparison across large Glover and Kochenberger (GK) knapsack instances. Expressed as average error
percentage gap % against best known profit. Colour coded from best gap (green) to worst gap (red) for any given dataset. With
dash (-) representing results that are not available.

Data
set

Problem
size

(n x m)

Best
known

ACOwD
[11]

NBHS2
[20]

IWOA
[22]

LGEA
[16]

TPTEA
[15]

SCEcr
[17]

CF-LAS
[44]

BCSA
[21]

ICAwICA (this work)

Average Best 𝒕𝒂𝒗𝒈(𝒔)

gk01 100x15 3766 0.14% 0.29% 0.68% 0.66% 0.00% 0.76% 0.31% 0.23% 0.00% 0.00% 16.8

gk02 100x25 3958 0.05% 0.30% - 0.55% 0.00% 1.06% 0.36% 0.27% 0.05% 0.03% 19.4

gk03 150x25 5656 0.26% 0.55% 0.85% 0.97% 0.06% 0.91% 0.37% 0.17% 0.12% 0.11% 62.5

gk04 150x50 5767 0.17% 0.45% 0.89% 1.02% 0.01% 1.48% 0.45% 0.15% 0.07% 0.05% 84.4

gk05 200x25 7561 0.21% 0.44% 0.94% 1.32% 0.01% 0.73% 0.24% 0.18% 0.09% 0.04% 145.7

gk06 200x50 7680 0.26% 0.52% 0.77% 1.05% 0.08% 1.14% 0.46% 3.54% 0.13% 0.12% 247.7

gk07 500x25 19221 0.20% 0.26% 1.09% 1.08% 0.04% 0.46% 0.13% 0.70% 0.11% 0.07% 280.3

gk08 500x50 18806 0.22% 0.56% 0.85% - 0.06% 0.67% 0.20% 0.77% 0.12% 0.08% 357.8

gk09 1500x25 58091 0.18% 0.27% 1.54% 1.08% 0.02% 1.78% 1.77% 0.98% 0.14% 0.09% 1611.0

gk10 1500x50 57295 0.20% 0.54% 0.80% 1.01% 0.04% 0.36% 0.10% - 0.18% 0.12% 2219.1

gk11 2500x100 95238 0.32% 0.64% 1.07% 1.13% 0.07% 0.30% 0.09% - 0.31% 0.24% 7200.6

5. Conclusions and future work

This work solves multidimensional NP-hard 0-1 knapsack problems using an Imperialist Competitive Algorithm

for the first time. Furthermore, a new Independence operator has been presented that allows each of the colonies

a free will to choose between moving closer to their own imperialist or another empire’s imperialist. Moreover,

a constraint assimilation process has been proposed that eliminates the need for a revolution operation in

classical ICA.

In order to test the proposed algorithm, an independence operator was investigated, it was concluded that

search performance improves when the operator is used. Next, algorithm was compared to multiple state-of-the-

art algorithms across 101 MKP instances. Algorithm was able to achieve an optimal solution in all small

instances and showed very competitive results in large GK instances.

The proposed algorithm can be improved in multiple ways. First, instead of simply iterating over all
possibilities, a more efficient selection process based on heuristics can be explored. Similarly, the proposed

independence operator is slow as it is required to assimilate to all imperialists, smarter selection of top

imperialists can be implemented. Furthermore, although this paper focuses on solving binary MKP instances,

the proposed algorithm is not limited to binary optimization and therefore applications to other constrained

discrete problems is something to be considered.

[1] R. E. G. P. C. Gilmore, “The Theory and Computation of Knapsack Functions,” Oper. Res., vol. 14, no. 6, pp.
1045–1074, 1966.

[2] H. P. B. Gavish, “Allocation of databases and processors in a distributed data processing,” in Management of
Distributed Data Processing, J. Akola, Ed. Amsterdam: North-Holland, 1982, pp. 215–231.

[3] W. Shish, “A branch & bound method for the multiconstraint zero-one knapsack problem,” J. Oper. Res. Soc., vol.
30, pp. 369–378, 1979.

[4] M. Vasquez and J. K. Hao, “A ‘logic-constrained’ knapsack formulation and a tabu algorithm for the daily
photograph scheduling of an earth observation satellite,” Comput. Optim. Appl., vol. 20, no. 2, pp. 137–157, 2001,
doi: 10.1023/A:1011203002719.

[5] C. C. Petersen, “Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D

Projects,” Manage. Sci., vol. 13, no. 9, pp. 609–772, 1967.
[6] D. N. N. H. Martin Weingartner, “Methods for the Solution of the Multidimensional 0/1 Knapsack Problem,” Oper.

Res., vol. 15, no. 1, pp. 83–103, 1967.
[7] T. Setzer and S. M. Blanc, “Empirical orthogonal constraint generation for Multidimensional 0/1 Knapsack

Problems,” Eur. J. Oper. Res., vol. 282, no. 1, pp. 58–70, 2020, doi: 10.1016/j.ejor.2019.09.016.
[8] A. Fréville, “The multidimensional 0-1 knapsack problem: An overview,” Eur. J. Oper. Res., vol. 155, no. 1, pp. 1–

21, 2004, doi: 10.1016/S0377-2217(03)00274-1.
[9] M. J. Varnamkhasti, “Overview of the Algorithms for Solving the Multidimensional Knapsack Problems,” Adv.

Sudies Biol., vol. 4, no. 1, pp. 37–47, 2012.
[10] M. Kong, P. Tian, and Y. Kao, “A new ant colony optimization algorithm for the multidimensional Knapsack

problem,” Comput. Oper. Res., vol. 35, no. 8, pp. 2672–2683, 2008, doi: 10.1016/j.cor.2006.12.029.
[11] J. Skackauskas, T. Kalganova, I. Dear, and M. Janakram, “Dynamic Impact for Ant Colony Optimization

algorithm,” Feb. 2020.
[12] A. Rezoug, M. Bader-El-Den, and D. Boughaci, “Knowledge-based Genetic Algorithm for the 0-1

Multidimensional Knapsack Problem,” 2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc., no. 2, pp. 2030–2037,
2017, doi: 10.1109/CEC.2017.7969550.

[13] A. Rezoug, M. Bader-El-Den, and D. Boughaci, “Guided genetic algorithm for the multidimensional knapsack
problem,” Memetic Comput., vol. 10, no. 1, pp. 29–42, 2018, doi: 10.1007/s12293-017-0232-7.

[14] I. K. Gupta, “A hybrid GA-GSA algorithm to solve multidimensional knapsack problem,” Proc. 4th IEEE Int. Conf.
Recent Adv. Inf. Technol. RAIT 2018, pp. 1–6, 2018, doi: 10.1109/RAIT.2018.8389069.

[15] X. Lai, J. K. Hao, F. Glover, and Z. Lü, “A two-phase tabu-evolutionary algorithm for the 0–1 multidimensional
knapsack problem,” Inf. Sci. (Ny)., vol. 436–437, pp. 282–301, 2018, doi: 10.1016/j.ins.2018.01.026.

[16] A. A. Ferjani and N. Liouane, “Logic gate-based evolutionary algorithm for the multidimensional knapsack
problem,” 2017 Int. Conf. Control. Autom. Diagnosis, ICCAD 2017, pp. 164–168, 2017, doi:
10.1109/CADIAG.2017.8075650.

[17] M. Daniel Valadao Baroni and F. M. Varejao, “A shuffled complex evolution algorithm for the multidimensional
knapsack problem using core concept,” 2016 IEEE Congr. Evol. Comput. CEC 2016, pp. 2718–2723, 2016, doi:
10.1109/CEC.2016.7744131.

[18] B. Haddar, M. Khemakhem, S. Hanafi, and C. Wilbaut, “A hybrid quantum particle swarm optimization for the
Multidimensional Knapsack Problem,” Eng. Appl. Artif. Intell., vol. 55, pp. 1–13, 2016, doi:
10.1016/j.engappai.2016.05.006.

[19] M. Chih, “Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional
knapsack problem,” Appl. Soft Comput. J., vol. 26, pp. 378–389, 2015, doi: 10.1016/j.asoc.2014.10.030.

[20] X. Kong, L. Gao, H. Ouyang, and S. Li, “Solving large-scale multidimensional knapsack problems with a new
binary harmony search algorithm,” Comput. Oper. Res., vol. 63, pp. 7–22, 2015, doi: 10.1016/j.cor.2015.04.018.

[21] K. K. Bhattacharjee and S. P. Sarmah, “Modified swarm intelligence based techniques for the knapsack problem,”

Appl. Intell., vol. 46, no. 1, pp. 158–179, 2017, doi: 10.1007/s10489-016-0822-y.
[22] M. Abdel-Basset, D. El-Shahat, and A. K. Sangaiah, “A modified nature inspired meta-heuristic whale optimization

algorithm for solving 0–1 knapsack problem,” Int. J. Mach. Learn. Cybern., vol. 10, no. 3, pp. 495–514, 2019, doi:
10.1007/s13042-017-0731-3.

[23] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: An algorithm for optimization inspired by

imperialistic competition,” 2007 IEEE Congr. Evol. Comput. CEC 2007, pp. 4661–4667, 2007, doi:
10.1109/CEC.2007.4425083.

[24] S. Hosseini and A. Al Khaled, “A survey on the Imperialist Competitive Algorithm metaheuristic: Implementation
in engineering domain and directions for future research,” Appl. Soft Comput. J., vol. 24, pp. 1078–1094, 2014, doi:
10.1016/j.asoc.2014.08.024.

[25] L. D. Afonso, V. C. Mariani, and L. Dos Santos Coelho, “Modified imperialist competitive algorithm based on
attraction and repulsion concepts for reliability-redundancy optimization,” Expert Syst. Appl., vol. 40, no. 9, pp.
3794–3802, 2013, doi: 10.1016/j.eswa.2012.12.093.

[26] A. Rabiee, M. Sadeghi, and J. Aghaei, “Modified imperialist competitive algorithm for environmental constrained
energy management of microgrids,” J. Clean. Prod., vol. 202, pp. 273–292, 2018, doi:
10.1016/j.jclepro.2018.08.129.

[27] H. Kia, S. H. Ghodsypour, and H. Davoudpour, “A hybrid imperialist competitive algorithm for solving economic
lot and delivery scheduling problem in a four-stage supply chain,” Adv. Mech. Eng., vol. 9, no. 2, pp. 1–20, 2017,
doi: 10.1177/1687814016686893.

[28] H. Kia et al., “A hybrid imperialist competitive algorithm for solving economic lot and delivery scheduling problem
in a four-stage supply chain,” Appl. Soft Comput. J., vol. 30, no. December, pp. 11–14, 2016, doi:

10.1109/IEEM.2014.7058602.
[29] M. Mehdinejad, B. Mohammadi-Ivatloo, R. Dadashzadeh-Bonab, and K. Zare, “Solution of optimal reactive power

dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms,” Int. J.
Electr. Power Energy Syst., vol. 83, pp. 104–116, 2016, doi: 10.1016/j.ijepes.2016.03.039.

[30] M. Li, D. Lei, and H. Xiong, “An imperialist competitive algorithm with the diversified operators for many-
objective scheduling in flexible job shop,” IEEE Access, vol. 7, pp. 29553–29562, 2019, doi:
10.1109/ACCESS.2019.2895348.

[31] S. Karimi, Z. Ardalan, B. Naderi, and M. Mohammadi, “Scheduling flexible job-shops with transportation times:

Mathematical models and a hybrid imperialist competitive algorithm,” Appl. Math. Model., vol. 41, pp. 667–682,
2017, doi: 10.1016/j.apm.2016.09.022.

[32] J. L. Lin, H. C. Chuan, Y. H. Tsai, and C. W. Cho, “Improving imperialist competitive algorithm with local search
for global optimization,” Proc. - Asia Model. Symp. 2013 7th Asia Int. Conf. Math. Model. Comput. Simulation,
AMS 2013, pp. 61–64, 2013, doi: 10.1109/AMS.2013.14.

[33] S. J.MousaviRad, F. Akhlaghian Tab, and K. Mollazade, “Application of Imperialist Competitive Algorithm for
Feature Selection: A Case Study on Bulk Rice Classification,” Int. J. Comput. Appl., vol. 40, no. 16, pp. 41–48,
2012, doi: 10.5120/5068-7485.

[34] D. S. Huang, K. Han, and A. Hussain, “Improved Binary Imperialist Competition Algorithm for Feature Selection

from Gene Expression Data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 9773, p. V, 2016, doi: 10.1007/978-3-319-42297-8.

[35] M. Mirhosseini and H. Nezamabadi-pour, “BICA: a binary imperialist competitive algorithm and its application in
CBIR systems,” Int. J. Mach. Learn. Cybern., vol. 9, no. 12, pp. 2043–2057, 2018, doi: 10.1007/s13042-017-0686-
4.

[36] S. Nozarian, H. Soltanpoor, and M. Vafaei, “A Binary Model on the Basis of Imperialist Competitive Algorithm in
Order to Solve the Problem of Knapsack 1-0,” Proc. third Int. Conf. Serv. Emerg. Mark. 2012, vol. 34, no. Icsem,
pp. 67–71, 2012.

[37] S. Xu, Y. Wang, and A. Huang, “Application of imperialist competitive algorithm on solving the traveling salesman
problem,” Algorithms, vol. 7, no. 2, pp. 229–242, 2014, doi: 10.3390/a7020229.

[38] S. H. Mirhoseini, S. M. Hosseini, M. Ghanbari, and M. Ahmadi, “A new improved adaptive imperialist competitive
algorithm to solve the reconfiguration problem of distribution systems for loss reduction and voltage profile
improvement,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 128–143, 2014, doi: 10.1016/j.ijepes.2013.08.028.

[39] S. S. Ray, S. Bandyopadhyay, and S. K. Pal, “Genetic operators for combinatorial optimization in TSP and
microarray gene ordering,” Appl. Intell., vol. 26, no. 3, pp. 183–195, 2007, doi: 10.1007/s10489-006-0018-y.

[40] J. H. Drake, “Benchmark instances for the Multidimensional Knapsack Problem,” 20215. [Online]. Available:

https://www.researchgate.net/publication/271198281_Benchmark_instances_for_the_Multidimensional_Knapsack_
Problem.

[41] P. C. Chu and J. E. Beasley, “A Genetic Algorithm for the Multidimensional Knapsack Problem,” J. Heuristics, vol.
4, no. 1, pp. 63–86, 1998, doi: 10.1023/A:1009642405419.

[42] G. A. K. Glover, Fred, “Critical event tabu search for multidimensional knapsack problems,” Meta-Heuristics.
[43] J. Liu, C. Wu, J. Cao, X. Wang, and K. L. Teo, “A Binary differential search algorithm for the 0–1

multidimensional knapsack problem,” Appl. Math. Model., vol. 40, no. 23–24, pp. 9788–9805, 2016, doi:
10.1016/j.apm.2016.06.002.

[44] J. H. Drake, E. Özcan, and E. K. Burke, “A case study of controlling crossover in a selection hyper-heuristic
framework using the multidimensional Knapsack problem,” Evol. Comput., vol. 24, no. 1, pp. 113–141, 2016, doi:
10.1162/EVCO_a_00145.

