625 research outputs found

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Integration of Energy Storage into a Future Energy System with a High Penetration of Distributed Photovoltaic Generation

    Get PDF
    Energy storage units (ESU) are increasingly used in electrical distribution systems because they can perform many functions compared with traditional equipment. These include peak shaving, voltage regulation, frequency regulation, provision of spinning reserve, and aiding integration of renewable generation by mitigating the effects of intermittency. As is the case with other equipment on electric distribution systems, it is necessary to follow appropriate methodologies in order to ensure that ESU are installed in a cost-effective manner and their benefits are realized. However, the necessary methodologies for integration of ESU have not kept pace with developments in both ESU and distribution systems. This work develops methodologies to integrate ESU into distribution systems by selecting the necessary storage technologies, energy capacities, power ratings, converter topologies, control strategies, and design lifetimes of ESU. In doing so, the impact of new technologies and issues such as volt-VAR optimization (VVO), intermittency of photovoltaic (PV) inverters, and the smart PV inverter proposed by EPRI are considered. The salient contributions of this dissertation follow. A unified methodology is developed for storage technology selection, storage capacity selection, and scheduling of an ESU used for energy arbitrage. The methodology is applied to make technology recommendations and to reveal that there exists a cost-optimal design lifetime for such an ESU. A methodology is developed for capacity selection of an ESU providing both energy arbitrage and ancillary services under a stochastic pricing structure. The ESU designed is evaluated using ridge regression for price forecasting; Ridge regression applied to overcome numerical stability and overfitting issues associated with the large number of highly correlated predictors. Heuristics are developed to speed convergence of simulated annealing for placement of distributed ESU. Scaling and clustering methods are also applied to reduce computation time for placement of ESU (or any other shunt-connected device) on a distribution system. A probabilistic model for cloud-induced photovoltaic (PV) intermittency of a single PV installation is developed and applied to the design of ESU

    Decision-Making for Utility Scale Photovoltaic Systems: Probabilistic Risk Assessment Models for Corrosion of Structural Elements and a Material Selection Approach for Polymeric Components

    Get PDF
    abstract: The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems could reach up to 18.9% of their total capacity, emerging technologies and models are driving for greater efficiency to assure the reliability of a product under its actual application. The objectives of this dissertation consist of (1) reviewing the state of the art and practice of prognostics and health management for the Direct Current (DC) side of photovoltaic systems; (2) assessing the corrosion of the driven posts supporting PV structures in utility scale plants; and (3) assessing the probabilistic risk associated with the failure of polymeric materials that are used in tracker and fixed tilt systems. As photovoltaic systems age under relatively harsh and changing environmental conditions, several potential fault conditions can develop during the operational lifetime including corrosion of supporting structures and failures of polymeric materials. The ability to accurately predict the remaining useful life of photovoltaic systems is critical for plants ‘continuous operation. This research contributes to the body of knowledge of PV systems reliability by: (1) developing a meta-model of the expected service life of mounting structures; (2) creating decision frameworks and tools to support practitioners in mitigating risks; (3) and supporting material selection for fielded and future photovoltaic systems. The newly developed frameworks were validated by a global solar company.Dissertation/ThesisDoctoral Dissertation Civil and Environmental Engineering 201

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    Integration of renewable energy with urban design : based on the examples of the solar photovoltaics and micro wind turbines

    Get PDF
    Thesis (M.C.P.)--Massachusetts Institute of Technology, Dept. of Urban Studies and Planning, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 105-109).To deal with the challenge of climate change and energy security, renewable energy has been widely regarded as an increasingly important solution leading to a more sustainable future. Given the fact that more than half of all energy is consumed in cities today, designers and academics have sought to integrate renewable energy technologies at small scale into the urban environment. This thesis explores effective ways of combining renewable energy with urban development through analyzing the relationship between urban form and renewable energy production. It focuses on two renewable technologies: solar photovoltaics (PV) and micro-wind turbines, both to produce electricity, at the urban scale. The study starts with a detailed review of the characteristics of both technologies. It then analyzes the energy potential simulation methodologies and examines relevant urban-form indicators qualitatively and quantitatively. A comparison of renewable energy potential in four different neighborhoods in Jinan, China then follows to distill the key urban-form factors. With the simulation results in Jinan, the thesis then studies the implications of the key urban form factors and provides design principles that could improve renewable energy potential in future urban development. The research shows that urban form has quite significant impact on potential neighborhood renewable energy output under a given climate condition. PV would make a much larger contribution to total renewable potential than wind energy in cities with climates similar to Jinan's. Low-rise neighborhoods with high roof coverage provide the best conditions for solar PV integration; whereas the windward open area best accommodates the wind power generation. For future developments, urban renewable energy potential could be increased through existing or innovative urban forms, such as the low-rise courtyard prototype for solar integration and a combination of low-rise blocks and high rise towers that accommodates both sun and wind.by Heshuang Zeng.M.C.P

    Power Quality Issues in Distributed Generation

    Get PDF
    This book deals with several selected aspects of electric power quality issues typically faced during grid integration processes of contemporary renewable energy sources. In subsequent chapters of this book the reader will be familiarized with the issues related to voltage and current harmonics and inter-harmonics generation and elimination, harmonic emission of switch-mode rectifiers, reactive power flow control in power system with non-linear loads, modeling and simulation of power quality issues in power grid, advanced algorithms used for estimating harmonic components, and new methods of measurement and analysis of real time accessible power quality related data
    • …
    corecore