75 research outputs found

    Yield modelling and yield enhancement for FPGAs using fault tolerance schemes

    No full text
    Published versio

    AR2T : implementing a truly SRAM-based FPGA on-line concurrent testing

    Get PDF
    The new partial and dynamic reconfigurable features offered by new generations of SRAM-based FPGAs may be used to improve the dependability of reconfigurable hardware platforms through the implementation of on-line concurrent testing / fault tolerance mechanisms. However, such mechanisms imply the existence of new test strategies that do not interfere with the current system functionality.The AR2T (Active Replication and Release for Testing) technique is a set of procedures that enables the implementation of a truly non-intrusive structural on-line concurrent testing approach, detecting and avoiding permanent faults and correcting errors due to transient faults. Experimental results prove the effectiveness of these solutions. In relation to a previous technique proposed by the authors as part of the DRAFT FPGA concurrent test methodology, AR2T extends the range of circuits that can be replicated, by introducing a small replication aid block

    Evaluation of a Field Programmable Gate Array Circuit Reconfiguration System

    Get PDF
    This research implements a circuit reconfiguration system (CRS) to reconfigure a field programmable gate array (FPGA) in response to a faulty configurable logic block (CLB). It is assumed that the location of the fault is known and the CLB is moved according to one of four replacement methods: column left, column right, row up, and row down. Partial reconfiguration of the FPGA is done through the Joint Test Action Group (JTAG) port to produce the desired logic block movement. The time required to accomplish the reconfiguration is measured for each method in both clear and congested areas of the FPGA. The measured data indicate that there is no consistently better replacement method, regardless of the circuit congestion or location within the FPGA. Thus, given a specific location in the FPGA, there is no preferred replacement method that will result in the lowest reconfiguration time

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc

    Sustainable Fault-handling Of Reconfigurable Logic Using Throughput-driven Assessment

    Get PDF
    A sustainable Evolvable Hardware (EH) system is developed for SRAM-based reconfigurable Field Programmable Gate Arrays (FPGAs) using outlier detection and group testing-based assessment principles. The fault diagnosis methods presented herein leverage throughput-driven, relative fitness assessment to maintain resource viability autonomously. Group testing-based techniques are developed for adaptive input-driven fault isolation in FPGAs, without the need for exhaustive testing or coding-based evaluation. The techniques maintain the device operational, and when possible generate validated outputs throughout the repair process. Adaptive fault isolation methods based on discrepancy-enabled pair-wise comparisons are developed. By observing the discrepancy characteristics of multiple Concurrent Error Detection (CED) configurations, a method for robust detection of faults is developed based on pairwise parallel evaluation using Discrepancy Mirror logic. The results from the analytical FPGA model are demonstrated via a self-healing, self-organizing evolvable hardware system. Reconfigurability of the SRAM-based FPGA is leveraged to identify logic resource faults which are successively excluded by group testing using alternate device configurations. This simplifies the system architect\u27s role to definition of functionality using a high-level Hardware Description Language (HDL) and system-level performance versus availability operating point. System availability, throughput, and mean time to isolate faults are monitored and maintained using an Observer-Controller model. Results are demonstrated using a Data Encryption Standard (DES) core that occupies approximately 305 FPGA slices on a Xilinx Virtex-II Pro FPGA. With a single simulated stuck-at-fault, the system identifies a completely validated replacement configuration within three to five positive tests. The approach demonstrates a readily-implemented yet robust organic hardware application framework featuring a high degree of autonomous self-control

    Optimizing Dynamic Logic Realizations For Partial Reconfiguration Of Field Programmable Gate Arrays

    Get PDF
    Many digital logic applications can take advantage of the reconfiguration capability of Field Programmable Gate Arrays (FPGAs) to dynamically patch design flaws, recover from faults, or time-multiplex between functions. Partial reconfiguration is the process by which a user modifies one or more modules residing on the FPGA device independently of the others. Partial Reconfiguration reduces the granularity of reconfiguration to be a set of columns or rectangular region of the device. Decreasing the granularity of reconfiguration results in reduced configuration filesizes and, thus, reduced configuration times. When compared to one bitstream of a non-partial reconfiguration implementation, smaller modules resulting in smaller bitstream filesizes allow an FPGA to implement many more hardware configurations with greater speed under similar storage requirements. To realize the benefits of partial reconfiguration in a wider range of applications, this thesis begins with a survey of FPGA fault-handling methods, which are compared using performance-based metrics. Performance analysis of the Genetic Algorithm (GA) Offline Recovery method is investigated and candidate solutions provided by the GA are partitioned by age to improve its efficiency. Parameters of this aging technique are optimized to increase the occurrence rate of complete repairs. Continuing the discussion of partial reconfiguration, the thesis develops a case-study application that implements one partial reconfiguration module to demonstrate the functionality and benefits of time multiplexing and reveal the improved efficiencies of the latest large-capacity FPGA architectures. The number of active partial reconfiguration modules implemented on a single FPGA device is increased from one to eight to implement a dynamic video-processing architecture for Discrete Cosine Transform and Motion Estimation functions to demonstrate a 55-fold reduction in bitstream storage requirements thus improving partial reconfiguration capability
    corecore