
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Evaluation of a Field Programmable Gate Array Circuit Evaluation of a Field Programmable Gate Array Circuit

Reconfiguration System Reconfiguration System

Jason L. Ives

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Digital Circuits Commons

Recommended Citation Recommended Citation
Ives, Jason L., "Evaluation of a Field Programmable Gate Array Circuit Reconfiguration System" (2006).
Theses and Dissertations. 3488.
https://scholar.afit.edu/etd/3488

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholar.afit.edu%2Fetd%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3488?utm_source=scholar.afit.edu%2Fetd%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Evaluation of a Field Programmable Gate Array

Circuit Reconfiguration System

THESIS

Jason L. Ives, Captain, USAF

AFIT/GE/ENG/06-26

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GE/ENG/06-26

Evaluation of a Field Programmable Gate Array

Circuit Reconfiguration System

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jason L. Ives, B.S.E.E.

Captain, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/06-26

Abstract

This research implements a circuit reconfiguration system (CRS) to reconfigure

a field programmable gate array (FPGA) in response to a faulty configurable logic

block (CLB). It is assumed the location of the fault is known and the CLB is moved

according to one of four replacement methods: column left, column right, row up,

and row down. Partial reconfiguration of the FPGA is done through the JTAG port

to produce the desired logic block movement. The time required to accomplish the

reconfiguration is measured for each method in both clear and congested areas of

the FPGA. The measured data indicates there is no consistently better replacement

method regardless of the circuit congestion or location within the FPGA. Thus, given

a specific location in the FPGA, there is no preferred replacement method that will

result in the lowest reconfiguration time.

iv

Acknowledgements

First, I would like to thank my wife for keeping me clothed and fed during my many

long days at AFIT and for supporting me 100% in everything I do. Second, I want

to thank my sons for understanding when I couldn’t devote as much time to them as

they wanted. They’ve made the greatest sacrifice of anyone involved in this endeavor

- they sacrificed time with their dad. I would also like to thank my colleague and

friend, LeRoy Willemsen, for his valuable insight and feedback on my work and for

helping me through the rough spots. Finally, I want to thank my thesis adviser, Dr.

Rusty Baldwin, for his unending enthusiasm, optimism and patience. I would have

been lost in the woods without his guidance.

Jason L. Ives

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

List of Abbreviations . xi

I. Introduction . 1
1.1 Overview . 1
1.2 Motivation and Goals 1
1.3 Organization . 2

II. Literature Review . 3
2.1 Fault Tolerant Computing 3

2.2 General Fault Tolerance 4
2.2.1 Fault Tolerant Strategies 4

2.2.2 Redundancy . 6

2.3 Field Programmable Gate Arrays 6

2.3.1 Advantages of FPGAs 10

2.3.2 Disadvantages of FPGAs 10

2.4 Fault Tolerance with Field Programmable Gate Arrays . 11

2.4.1 Yield Enhancement 12
2.4.2 Reconfiguration 15

2.4.3 Performance of Reconfiguration Schemes 17

2.5 Summary . 18

III. Research Methodology . 19

3.1 Problem Definition . 19
3.1.1 Goals and Hypothesis 19

3.1.2 Approach . 19

3.2 System Boundaries . 20

3.3 System Services . 21

3.4 Workload . 21
3.5 Performance Metrics . 22
3.6 Parameters . 22

vi

Page

3.6.1 System . 22

3.6.2 Workload . 23
3.7 Factors . 23
3.8 Evaluation Technique 24

3.9 Experimental Design . 24

3.10 Results Analysis . 25

3.11 Summary . 26

IV. Data Analysis . 27

4.1 Introduction . 27
4.2 Validation . 27
4.3 Initial Analysis . 28

4.3.1 Analysis by Location Type and Method 28

4.3.2 Comparison of Observations with Hypotheses . 33

4.4 Second Analysis . 35

4.4.1 Analysis of Clear Locations 35

4.4.2 Analysis of Congested Locations 36

4.4.3 Analysis by Specific Location 40

4.4.4 Comparison of Results of Second Analysis and
Hypotheses . 42

4.5 Summary . 45

V. Conclusions . 47
5.1 Introduction . 47
5.2 Problem Summary . 47

5.3 Conclusions of Research 47
5.4 Significance of Research 48

5.5 Recommendations for Future Research 49
5.5.1 Other FPGAs and Programming Interfaces . . . 49

5.5.2 Automation . 49
5.5.3 Bit File Manipulation 49

Appendix A. Experimental Configuration 50

Appendix B. Data . 56

Bibliography . 59

Vita . 63

Index . 63

Author Index . 63

vii

List of Figures
Figure Page

2.1 Redundancy Techniques . 7

2.2 Basic structure of an FPGA . 8

2.3 Basic structure of a CLB . 9

3.1 System Boundaries of the Circuit Reconfiguration System . . . 21

4.1 Plot of Measured Reconfiguration Times 27

4.2 Residuals versus Fitted Values 29

4.3 Normal Probability Plot of Residuals 29

4.4 Confidence Interval Plot of Reconfiguration Time versus Method 30

4.5 Confidence Interval Plot of Reconfiguration Time versus Method

Type . 30

4.6 Confidence Interval Plot of Reconfiguration Time versus Method

Type for Combined Location Types 31

4.7 Confidence Interval Plot of Reconfiguration Time versus Method,

Location Type . 32

4.8 Confidence Interval Plot of Reconfiguration Time versus Loca-

tion Type . 33

4.9 Confidence Interval Plot of Reconfiguration Time versus Loca-

tion Type . 34

4.10 Residuals versus Fitted Values for Clear Location Type 35

4.11 Normal Probability Plot of Residuals for Clear Location Type . 36

4.12 Confidence Interval Plot of Reconfiguration Time for Clear Lo-

cations and Column Left Method 37

4.13 Confidence Interval Plot of Reconfiguration Time for Clear Lo-

cations and Column Right Method 37

4.14 Confidence Interval Plot of Reconfiguration Time for Clear Lo-

cations and Row Up Method 38

viii

Figure Page

4.15 Confidence Interval Plot of Reconfiguration Time for Clear Lo-

cations and Row Down Method 38

4.16 Residuals versus Fitted Values for Congested Location Type . . 39

4.17 Normal Probability Plot of Residuals for Congested Location Type 39

4.18 Confidence Interval Plot of Reconfiguration Time for Congested

Locations and Column Left Method 40

4.19 Confidence Interval Plot of Reconfiguration Time for Congested

Locations and Column Right Method 41

4.20 Confidence Interval Plot of Reconfiguration Time for Congested

Locations and Row Up Method 41

4.21 Confidence Interval Plot of Reconfiguration Time for Congested

Locations and Row Down Method 42

4.22 Confidence Interval Plot of Reconfiguration Time versus Replace-

ment Method for Clear Locations 43

4.23 Confidence Interval Plot of Reconfiguration Time versus Replace-

ment Method for Congested Locations 43

4.24 Confidence Interval Plot of Reconfiguration Time versus Replace-

ment Method Type for Clear Locations 44

4.25 Confidence Interval Plot of Reconfiguration Time versus Replace-

ment Method Type for Congested Locations 44

A.1 Schematic of the LUT and State Logic in the Circuit Reconfigu-

ration System . 50

A.2 Post Configuration Processor of the Circuit Reconfiguration Sys-

tem . 51

A.3 Schematic of the Timer Circuit used to Measure the Circuit Re-

configuration System . 53

ix

List of Tables
Table Page

3.1 Factors and Levels for the Circuit Reconfiguration System . . . 23

3.2 Cross Reference of Location Names to FPGA Slice Numbers . . 25

B.1 Measured Reconfiguration Times for Location A1 56

B.2 Measured Reconfiguration Times for Location A2 56

B.3 Measured Reconfiguration Times for Location A3 57

B.4 Measured Reconfiguration Times for Location B1 57

B.5 Measured Reconfiguration Times for Location B2 57

B.6 Measured Reconfiguration Times for Location B3 58

x

List of Abbreviations
Abbreviation Page

FPGA Field Programmable Gate Array 1

CRS Circuit Reconfiguration System 1

IC Integrated Circuit . 3

MTBF Mean Time Between Failures 4

ALU Arithmetic Logic Unit . 5

ASIC Application Specific Integrated Circuits 6

CLB Configurable Logic Block 7

LUT Lookup Table . 8

SUT System Under Test . 20

CUT Component Under Test 20

JTAG Joint Test Action Group 24

TCK Test Clock . 24

ICAP Internal Configuration Access Port 49

xi

Evaluation of a Field Programmable Gate Array

Circuit Reconfiguration System

I. Introduction

1.1 Overview

In modern computer and electronic systems, the occurrence of faults is nearly

unavoidable at some point in the system’s lifetime. These faults can be caused by

many factors including defects at the device level.

Fault tolerant methods detect and reconfigure in the presence of system faults so

the system can function even if it’s at a reduced efficiency or capability. The ability of

a field programmable gate array (FPGA) to reconfigure makes it an effective device for

implementing fault tolerance through circuit reconfiguration. Fault tolerance applied

to an FPGA detects faults while the user’s circuit is operating and then replaces

faulty components of the circuit by reconfiguring the FPGA.

1.2 Motivation and Goals

The ability to operate in the presence of defects and faults will greatly benefit

digital systems. Currently, spacecraft largely rely on redundancy to ensure continued

operation. A fault and defect tolerant system able to reconfigure itself in response to

faults would, at the very least, reduce the dependence on redundant systems [LCR03],

perhaps freeing up area on the spacecraft for other systems. This research will also

benefit other Air Force aircraft and weapons systems where high reliability is required

or system maintenance is difficult or impossible.

The goal of this research is to develop a circuit reconfiguration system (CRS)

with four replacement methods to reconfigure an FPGA.

1

1.3 Organization

Chapter 1 provides an introduction to this research and explains the motivation

for the study. Chapter 2 presents background information on fault tolerance and

FPGAs as well as a review of the literature pertinent to fault tolerance using FPGAs.

Chapter 3 describes the research methodology employed in this study while Chapter

4 analyzes the measured data. Chapter 5 contains the conclusions of this study and

suggests areas for future research followed by an appendix describing the experimental

setup used.

2

II. Literature Review

2.1 Fault Tolerant Computing

In military and aerospace applications, fault tolerant systems increase reliability

and reduce maintenance. Even the most carefully designed and implemented system

has some probability of failure, however small it may be. The ability to detect or

mask faults and errors is critical to fault tolerance and can further increase system

reliability.

The goal of fault tolerance is to improve system dependability by enabling a sys-

tem to operate correctly in the presence of faults [Nel90]. Dependability, or reliability,

is characterized by the probability of a system being able to perform as specified over

a certain time period [AL81]. Dependable systems are of great importance in envi-

ronments requiring high reliability or where it is impractical or difficult to perform

maintenance, such as in space.

Fault tolerant computing techniques emerged in the early years of computer

development [Nei03]. Computers were built from large, bulky, and largely unreliable

components connected together with thick wires and solder joints. Among the thou-

sands of components and connections in the machine, it was inevitable that at least

one would prove faulty. Exacerbating the problem, some faults were intermittent

making them harder to locate. The system impact of the various faults also varied.

A transient fault could cause a serious performance degradation or halt the system

altogether while a permanent fault would curiously have little effect on the system.

Engineers realized it was futile to try to build a fault-free system and instead devised

ways for the system to operate in spite of the faults.

As technology advanced, and certainly with the introduction of solid state de-

vices and integrated circuits (ICs), device reliability improved and interest in fault

tolerance declined. However, interest in fault tolerance is returning. Device size on

ICs has shrunk dramatically with a corresponding increase in faults. This is leading

to a renewed interest in fault tolerance techniques [NSF01].

3

2.2 General Fault Tolerance

In the domain of fault tolerance, failures, faults, and errors are distinct terms

even though in many contexts, they are used interchangeably. A fault is the physical

malfunction of a system caused by a defective component, physical damage, or design

error. A failure is the inability of a component, circuit, or element to perform its

function due to errors [Nel90]. An error is the realization of a fault evidenced by

incorrect data or output from the component. A fault does not necessarily cause an

error and failure may or may not occur as the result of an error. Improving the ability

of a system to tolerate a certain number of faults can be accomplished by preventing,

or at least masking, errors caused by the faults. The ability to prevent or mask errors

reduces failures and increases reliability.

A fault tolerant system isn’t necessarily highly reliable nor does a reliable system

necessarily incorporate fault tolerance [Nel90]. Fault tolerance is simply one aspect

of reliability. Many other factors contribute to overall system reliability. Defining

reliability can be an elusive task. If a system provides incorrect data but is performing

according to its design and specifications, it can’t be deemed unreliable. In fact, it will

reliably provide incorrect data unless its specifications or design are changed. The true

reliability of a system can’t be predicted precisely, but there are a number of widely

accepted measures of reliability, a common one being the Mean Time Between Failures

(MTBF), which is the average time a system operates before failing.

2.2.1 Fault Tolerant Strategies. To design a fault tolerant system, a fault

tolerance strategy must be formulated that includes one or more of the following

elements [Kwi97]:

• Masking: Correction of errors.

• Detection: Detection of errors.

• Containment: Prevention of error propagation through the system.

4

• Diagnosis: Location and identification of a faulty module or component re-

sponsible for an error.

• Repair/reconfiguration: Elimination or replacement of a faulty module.

• Recovery: Return of the system to acceptable operation.

The particular application is a driving force in the development of a fault tolerance

strategy and which elements are included. Some of the elements, such as masking and

detection, are complimentary and it would clearly be beneficial for both elements to

be used together.

Fault and error modeling occurs at several levels of abstraction within the sys-

tem [Nel90]. At higher levels, modeling and analysis become easier, but there is a

corresponding decrease in accuracy. At the lowest level, faults occur in devices and

are driven by the device manufacturing technology. At this level, physical defects such

as shorts or opens cause erroneous voltages, incorrect currents or mistimed switching.

This level of fault and error modeling can accurately determine the cause of errors,

but it also can make it difficult to pinpoint the defective device at a microscopic level.

The next level of abstraction is the logical level. At this level, a system is

modeled as various gates and memory elements [Nel90]. This level represents device

outputs as binary values at specific points in the circuit. Faults modeled at the logical

level include “stuck-at” faults and incorrect or missing inputs to gates. There is a

slight loss of accuracy at this level in that a fault is not pinpointed down to a specific

component but it allows the designer to evaluate the binary signals within the circuit

and more easily analyze circuit performance.

A third level of abstraction combines gates into a unit with a function such

as a register, arithmetic logic unit (ALU), or processor. Accuracy is traded for ease

of simulating module behavior. At this level, a module’s behavior is evaluated to

determine if a fault exists by examining state or truth tables.

5

2.2.2 Redundancy. Redundancy corrects errors caused by faults and pre-

vents propagation of errors to other parts of the system [Kwi97]. Redundancy is

the key ingredient in achieving fault tolerance [SP03, CC95]. Shown in Figure 2.1

are the four basic redundancy techniques for fault tolerance: redundant information,

computations, software and hardware [AL81].

• Information redundancy includes additional information, such as error detec-

tion and error correction codes, for handling faults [McF94]. Some commonly

used codes are parity codes, checksums, cyclic redundancy codes, and Hamming

codes.

• Computational (or time) redundancy repeats computations to detect and toler-

ate faults [Kwi97]. This is an especially effective technique in the presence

of transient faults. Two common methods are re-computation with shifted

operands and re-computing with swapped operands.

• Software redundancy uses additional lines of code or small programs to detect

and correct faults [McF94]. Result consistency and scaling is commonly checked

and system capability is evaluated.

• Hardware redundancy includes spare hardware resources used in place of faulty

modules [McF94]. There are three different types of hardware redundancy: pas-

sive, active, and hybrid. Passive techniques, such as N-modular redundancy and

majority voting, mask faults while active techniques detect and locate faults and

initiate system reconfiguration. Common active techniques include duplication

with comparison and standby sparing. Hybrid redundancy combines passive

and active techniques to detect and remove errors.

2.3 Field Programmable Gate Arrays

FPGAs were introduced in the early 1980s to bridge the gap between tradi-

tional programmable logic devices and application specific integrated circuits (ASIC)

[Max04]. An FPGA has a unique combination of traits which allow it to implement

6

Redundancy
Techniques

Information
Redundancy

Hardware
Redundancy

Computational
Redundancy

Detection

Software
Redundancy

Correction

Parity Check

Checksum

Error
Correction

Codes

Passive Active Hybrid

NMR

Majority
Voting

DWC

Standby
Spares

Recomputing
Result

Consistency
and Scaling

Figure 2.1: The four basic redundancy techniques are Information Redundancy,
Hardware Redundancy, Computational Redundancy, and Software Redundancy
[Pra05].

complex logic functions on a chip without the high cost or excessive design and fabri-

cation time of an ASIC [Hau98]. FPGAs are particularly useful for rapid prototyping.

A design can be implemented and evaluated quickly without the permanency of fab-

ricating the circuit in silicon. Furthermore, the design can be changed and the FPGA

can be reconfigured easily. Reconfigurability has led to the possibility of using FPGAs

for fault tolerance.

FPGAs generally have a structure similar to Figure 2.2: an array of configurable

logic blocks (CLBs) surrounded by horizontal and vertical routing channels [Tor02].

The edges of the array are populated with input/output blocks which provide access

to the I/O pins of the chip. The routing channels are wire segments of varying lengths

that connect logic blocks to I/O blocks as well as to other logic blocks. Intersection

points of the routing channels have switch matrices which are programmed to properly

route the wire segments. The I/O blocks are also programmable and can be configured

to be compatible with various I/O interface standards [Max04]. An FPGA has a

configuration memory to store a configuration bit file which determines how the CLBs

in the FPGA are used to implement a particular circuit. Each unique circuit has a

7

unique bit file. Rearranging the bits in the file changes how the CLBs are configured

resulting in a different circuit or a new placement of the same circuit.

Figure 2.2: The basic structure of an FPGA is an array of CLBs with channels of
routing resources between them. Switch matrices lie at the intersection points of the
routing lines to make the proper connections between CLBs and the I/O blocks on
the edges of the FPGA [Kha02].

A typical CLB, such as the one shown in Figure 2.3, consists of a 3- or 4-input

lookup table (LUT), a multiplexer, and a register [Max04]; however, the specific

configuration is device dependent. The LUT can be programmed to emulate any

n-input logic function where n is the number of LUT input lines. The multiplexer

selects between the output of the LUT and an input from outside the CLB. The

register latches the logic value of the CLB or an input from outside the CLB for

later use as a clocked output, q. The output y is the result of the logic operation

programmed into the LUT and can serve as an input to other combinational logic

in the array. Every CLB in the FPGA can be programmed to perform a different

8

3- or 4-
input LUT

Mux

Flip-Flop

a

b

c

d

e

clk

q

y

Figure 2.3: The basic structure of a CLB consists of a lookup table, a multiplexer,
and a register [Max04].

logic function. The combination of CLBs forms some digital circuit that performs a

desired function. This function could be a microprocessor, a digital signal processing

module, or some other digital circuit as long as there are enough CLBs available in

the FPGA [HKSW98].

Granularity of the CLB is an important design consideration for FPGAs. Gran-

ularity is the amount of logic contained in the CLB and it determines the complexity

of logic function that can be implemented in the CLB. A coarse-grained CLB contains

more logic gates than a fine-grained CLB. Consequently, a coarse-grained CLB can

implement more complex logic functions. The main advantage to using a fine-grained

CLB is that, generally, the logic elements in the CLB are used more efficiently. Us-

ing a coarse-grained CLB to implement simple logic functions isn’t as efficient as

using a fine-grained CLB because some portion of the resources in the coarse-grained

CLB won’t be used [REGSV93]. The main drawback to using finer grained CLBs

is the amount of interconnect resources required. As the granularity becomes finer,

the number of connections into the blocks decreases, reducing delay and area costs.

Coarse-grained CLBs generally reduce the number of blocks needed to implement a

design.

Configuring an FPGA is done through configuration cells which determine con-

nectivity between the device inputs and outputs and the CLBs and the connectivity

9

between CLBs. A configuration file is generated by a design tool based on schematics,

a hardware design language, or other design flow and programs the FPGA to per-

form the desired function. The configuration file consists of configuration data and

commands. Configuration data is the portion of the configuration file that defines

the state of the programmable logic elements in the FPGA. Configuration commands

specify how to use the configuration data [Max04]. Once created, a configuration file

is loaded onto the FPGA by way of a configuration port.

2.3.1 Advantages of FPGAs. The main advantage of FPGAs is their capa-

bility to be reprogrammed. SRAM-based FPGAs can be reprogrammed a large but

indeterminate number of times. Making design changes to a logic circuit implemented

on an FPGA is simply a matter of generating a new configuration file and loading

it onto the FPGA. The new circuit is then realized on the FPGA and ready for use.

This versatility makes the FPGA ideal for applications where flexibility and design

time is important.

Another advantage is that the complexity of the combinational logic function

implemented on an FPGA is scalable [May97]. The same FPGA can be used to

implement a range of circuits varying in the number of inputs, outputs, logic gates,

and interconnections.

A third advantage is that some FPGAs can be partially reconfigured. This

means part of the FPGA continues to operate while another area is programmed. The

two circuits must be kept separate, but this capability allows the user to configure

a new circuit, load it into the FPGA, and then switch operation over with minimal

delay.

2.3.2 Disadvantages of FPGAs. One of the main problems with using

FPGAs is signal propagation time. Unless carefully specified, interconnect length

within FPGAs can vary for each configuration resulting in unpredictable signal delays.

A circuit requires very careful placement and routing to ensure the signal propagation

10

characteristics are as expected and required. The architecture of an FPGA generally

causes the placement and routing of a logic circuit to be different and possibly sub-

optimal compared to how the circuit would be made in a traditional ASIC.

Another problem is chip area. FPGAs require more chip area than an ASIC to

implement the same logic circuit due to the enormous amount of interconnect required

to give the FPGA the flexibility to implement a wide array of different circuits. Over

90% of the chip area in most FPGAs is used for routing [CH02].

Finally, in terms of today’s computing speeds, programming an FPGA is rela-

tively slow. The larger the circuit and the more logic blocks and interconnects that

must be programmed, the more time it takes. The method of programming also im-

pacts programming time. Older FPGAs are programmed serially. The configuration

bit file is loaded to the FPGA one bit at a time. Newer FPGAs can be programmed in

parallel. Another way to decrease programming time is, as discussed above, through

partial reconfigurability. If only a portion of the circuit needs to be changed, it makes

sense to only reprogram that portion, which reduces programming time [May97]. In

addition, if two different circuits will fit on a single FPGA, “hot” switch-overs are

possible which also minimize the effect of programming delay.

2.4 Fault Tolerance with Field Programmable Gate Arrays

Fault tolerance using FPGAs should have the following goals [XSHL99]:

• Low overhead in terms of spare resources on the chip

• A simple, fast replacement algorithm

• The reconfigured circuit performs the same as the original circuit

The ability of an FPGA to reconfigure makes it an effective device for imple-

menting fault tolerance through circuit reconfiguration. The goal of fault tolerance

at this level is to detect faults while the circuit is operating and then replace the

faulty components of the circuit [ESSA00]. Faults can occur in the logic of the cir-

cuit or in the routing between the CLBs. Spare resources must be set aside for use

11

when reconfiguration becomes necessary. To provide spare logic, a spare component

must be defined at some level of granularity. Spare logic could mean a spare row of

CLBs, column of CLBs, individual CLBs, or other logic block as determined by the

replacement scheme.

In general, there are two similar approaches in current research on fault tolerance

using FPGAs. One uses off-line techniques to improve the production yield of FPGA

chips. The other approach takes advantage of the FPGA’s regular cell structure

to dynamically reconfigure a circuit on the chip [HTA94]. It’s possible that yield

enhancement techniques can be adapted for online reconfiguration and vice versa. In

fact, there are many similarities between the two approaches.

Tolerating faults in the interconnect routing is more difficult than faults in the

logic. Routing resources are limited and allocating spares isn’t possible in some cases.

A circuit implemented on an FPGA with a large number of CLBs using all of their

input and output pins will have very few left over sections of interconnect to use as

spares. In addition, the granularity of the CLBs, in part, determines the amount of

routing available in the FPGA. A typical FPGA contains a much larger percentage

of interconnect than CLBs making interconnect faults more likely.

2.4.1 Yield Enhancement. Improving the yield of FPGAs, and integrated

circuits in general, has become increasingly important as device sizes have shrunk.

The higher the density of devices on a chip, the higher the likelihood of a defect. Many

chips become unusable if there is but a single defective device among the millions of

devices on the chip.

Defects in an FPGA can occur in the devices making up the CLBs, the routing

segments, or both. There are various techniques to deal with either type [MHS+04].

The challenge in overcoming a routing defect is to maintain signal propagation delay

and integrity of the original circuit with a new routing scheme that uses different

resources and may include longer interconnecting routes than previously used.

12

The first step in yield enhancement is to test an un-programmed device to

locate defective components and populate a defect database [KDFJ89] which maps

the device avoiding defective areas. The device is then programmed by placing the

circuit according to the map. The process occurs at the time of manufacture and is

transparent to the user.

There are a number of ways of obtaining a usable chip depending on how the

FPGA architecture is constructed. One method arranges logic gates in the FPGA

into quadrangles called “courtyards.” Courtyards are arranged in a rectangular array

with the area between the courtyards called “streets” of interconnect [KDFJ89]. An

“ideal” layout is constructed which assumes an FPGA with no defects. The ideal

layout is applied to the arrangement of courtyards. If there are defective logic gates

within a courtyard as well as unused gates which are not defective, then those unused

gates replace the defective ones in the courtyard. If a courtyard contains enough spare

gates to replace all its defective gates, it is a repairable courtyard. If all the courtyards

on the chip are either defect free or repairable, the chip is deemed usable.

A variation of this technique sets aside a number of spare courtyards which are

only used to replace a courtyard that isn’t repairable. Given enough spare courtyards

to replace the non-repairable courtyards, the chip is usable.

A second method of improving yield is to use redundant rows. In this scheme,

a number of spare rows of logic blocks are reserved. If a logic block is determined

to be faulty, the entire row containing the block is shifted one row toward the spare.

Each row between the defective row and the spare rows is also shifted one row to

maintain the overall architecture. This scheme requires specialized selector circuits

to select the rows to use. The defective row is disabled in the final implementation of

the architecture [Hat93].

This technique can be easily adapted to use spare columns instead of rows. In

addition, dividing the chip into blocks allows the use of multiple spare rows because

13

each block can contain a spare row for use within that block thus increasing the overall

fault tolerance.

A major disadvantage of using spare rows (or columns) is the efficiency of the

scheme. A spare row replaces an entire row in the FPGA whether the row has a single

fault or the entire row is faulty. If only one block in the row is faulty, the rest of the

row contains functional logic blocks that go unused. This scheme also reduces the

level of fault tolerance achievable because once all the spare rows are used, there is

no additional capacity available.

A variation of the redundant approach is to associate each CLB with a switch

matrix [KI94]. At the end of each row of CLB/Matrix pairs, an extra pair is included.

If a defect is found in either the CLB or the switch matrix, the pair is declared

defective. The circuit is rerouted around the defective pair using bypass, connect left,

connect right, or disconnect routing resources assigned to each switch matrix.

Another method is called node-covering [HD98]. Each node or cell in the FPGA

has an associated cover cell which can be reconfigured to replace the node should it

become defective. Nodes in the array that are actively used in the circuit are called

primary nodes or cells. Primary cells cover other primary cells in a chained manner.

The last cell in a row (or column) is a spare and covers the last primary cell in the

row (or column). When a faulty cell is identified, it is replaced by its cover cell, which

is replaced by its own cover cell. This continues down the chain until the spare cell

is reached. Each cover cell must be able to produce the functionality of the cell it is

covering. In an FPGA, this is easily done because all cells are the same. A cover cell

must also be able to reproduce the routing of the cell it is covering with respect to the

rest of the array. This requires cover segments in the routing. Each cover cell must

include reserved segments associated with the cell it is covering so when the circuit is

reconfigured, the covering cell can implement the correct routing.

A similar method matches defective logic blocks to a set of unused logic blocks

in the circuit using a mini-max grid matching algorithm [EB97]. Once a complete set

14

of matching logic blocks is found that correctly implements the circuit functionality

and minimizes the distance between matched blocks, a shifting strategy updates the

circuit. Thus, a faulty block isn’t necessarily swapped with its matching unused block.

Instead, adjacent blocks between the matching blocks are shifted toward the unused

block to minimize the length of interconnections.

Timing driven schemes minimize increasing operation circuit delays due to re-

configuration of the circuit. One method uses distributed edge slack to provide the

best reconfiguration of the circuit using available resources [ML96]. Edge slack is the

amount the route delay can increase without violating circuit timing constraints. This

implies that a CLB can only be moved to certain other CLBs within its neighbor-

hood. A slack neighborhood graph is constructed which identifies the neighborhood

satisfying the edge slack constraint for each CLB. The circuit is reconfigured and the

resulting circuit has the minimum circuit timing degradation while avoiding faulty

logic blocks.

2.4.2 Reconfiguration. There are several reconfiguration techniques to deal

with faults. One strategy incorporates fault detection within the circuit itself to

indicate the presence and location of a fault at some level of granularity. Once a fault

is detected, the replacement scheme is invoked which reroutes logic and connections

to avoid the defective area. The faulty block is swapped out with a spare block. An

alternative is to swap the entire row or column containing the faulty block [DP94,

GASF03].

Another method partitions the circuit into a set of tiles. Each tile contains the

logic and interconnect needed to perform a desired logical function plus some amount

of unused resources. Multiple configurations of each tile are determined which do

not use certain resources. In this way, if one of the resources within the tile becomes

defective, a different configuration of the tile which implements the same logic function

can be used. The interface of a tile to the rest of the circuit is defined and fixed so

all configurations of that tile have the same interface. This permits swapping of

15

tiles without the overhead of reserved routing and interconnect [LMSP98a,LMSP98b,

LMSP99,LMSP00,Els03].

Network flow techniques dynamically determine the optimal reconfiguration

path for the FPGA when a fault occurs. Cells in the FPGA correspond to vertices on

a network flow graph. Each vertex has two unidirectional edges to each neighboring

cell forming North-South and East-West cell pairs. The algorithm finds a maximal

set of reconfiguration paths in the design by determining a maximal flow in the FPGA

flow graph [MD99].

A modification to the existing architecture of the switch blocks in the FPGA

along with the addition of spare tracks eliminates the need to calculate all possible

circuit configurations required by other methods. The switch blocks connecting the

CLBs route the interconnect segments as needed for the circuit. Each segment en-

tering a switch block can connect to another segment in one of three ways: a) the

segment goes straight through, b) the segment connects to a segment going north, or

c) the segment connects to a segment going south. The addition of spare interconnect

segments between the switch blocks as well as the switches to accommodate them

means a faulty segment can be replaced by a spare simply by changing the switch

configuration inside the switch block. This arrangement can also reroute to avoid a

faulty CLB [XSHL99].

The replacement schemes discussed so far require off-chip processing to replace

faulty blocks and reroute all the interconnections so the circuit functions properly

after reconfiguration. An alternative is to place the routing and reconfiguration in

the blocks themselves.

The use of embryonic arrays is one such technique. This method uses a biologically-

inspired algorithm for fault tolerance. A homogenous array of cells is formed from

the logic blocks of the FPGA. Each cell contains processing and control elements and

the configuration of every cell in the array. The coordinates of the cell in the array

determine its function which is found in a lookup table inside the cell. In this way,

16

every cell is capable of performing the function of every other cell. Faulty cells are

“killed” by eliminating the column containing the cell. The column becomes transpar-

ent to the rest of the array and a spare column takes its place. The coordinates of the

replacement cells are changed to correspond to the dead cells. The new cell function

is determined from the coordinates and the cell reconfigures itself [CT02,MGM+96].

Although the two approaches to fault tolerance have different goals, the methods

are complimentary. In some cases, the methods used for yield enhancement can be

just as applicable to dynamic fault tolerance. The biggest difference is the approach

taken to diagnose and repair faults. Yield enhancement techniques usually involve

some type of external testing and a permanent rerouting of the circuit on the chip

so the defect tolerance is transparent to the user. Dynamic reconfiguration is more

flexible and is implemented by the user. It provides a way for an operational system

to continue functioning in spite of faults present in the hardware.

2.4.3 Performance of Reconfiguration Schemes. Performance of reconfigu-

ration schemes is usually measured by the overhead incurred by the scheme. Provi-

sioning with spare resources means increased overhead as a percentage of all available

resources. The number of spares determines the level of fault tolerance. Ideally, an ar-

ray with n spares will tolerate n faults. However, interconnection and routing within

the FPGA limits the number of faults that can be tolerated [OT97].

Timing degradation is another performance measure for dynamically reconfig-

ured systems [HTA94, CC95]. When logic blocks are moved or replaced, the inter-

connect routing between the blocks must be changed accordingly. This could cause

an increase in the physical length of interconnect between blocks resulting in tim-

ing degradation. A circuit sensitive to timing differences would not benefit from a

reconfiguration method which induces large timing degradation.

A third, and possibly most important, performance metric is the reconfiguration

time. As stated earlier, in terms of today’s computing speeds, reconfiguration of an

FPGA is relatively slow. A reconfiguration scheme with a short configuration time

17

will generally be preferable to a slower scheme. This is certainly true for critical

systems that need to minimize downtime.

2.5 Summary

Fault tolerant computing has its roots in vacuum tube computers developed

in the 1940s. The techniques used by engineers to overcome defective components

enabled their computers to continue to function.

A distinction is made between failures, faults, and errors though they are closely

related. Fault tolerance is one way to improve system reliability, but it is not a

requirement for reliability. A key ingredient for achieving fault tolerance is redundancy

of information, time, hardware, or software.

FPGAs provide a convenient source of redundant hardware. FPGAs are con-

structed of a regular array of CLBs which can be programmed to implement a com-

binational or sequential logic circuit. Redundancy exists in the form of unused CLBs

in the array.

Several techniques have been proposed to take advantage of an FPGA’s inherent

redundancy and its reconfigurability. Most techniques replace faulty CLBs with spare

ones through reconfiguration of the circuit.

18

III. Research Methodology

3.1 Problem Definition

3.1.1 Goals and Hypothesis. The ability of an FPGA to reconfigure makes

it an effective device for implementing fault tolerance through circuit reconfiguration.

Fault tolerance at this level detects faults while the user’s circuit is operating and

then replaces the faulty components of the circuit.

The goals of this research are to implement a circuit reconfiguration system that

uses one of four replacement methods and to determine which of the methods has the

shortest reconfiguration time. It is expected reconfiguration time will be affected by

the replacement method used. A replacement method which takes advantage of the

inherent column architecture of the FPGA will likely have a lower reconfiguration

time due to the basic design and inter-operability of the components in the FPGA.

However, the direction of the replacement is not expected to have a significant effect

on the reconfiguration time. It is also expected that circuit congestion after a CLB

is moved will significantly impact the reconfiguration time with a congested circuit

having a longer reconfiguration time than a non-congested circuit.

Goal: Implement a CRS that uses row replacement and column replacement to

reconfigure an FPGA and measure the reconfiguration times for moving a row up and

down and a column left and right to determine which replacement method performs

best.

Hypotheses: Reconfiguration that uses the inherent features of the FPGA’s

architecture will likely have a lower reconfiguration time. Direction of the replacement

(up/down or left/right) is not expected to affect reconfiguration time, but the relative

circuit congestion is likely to have an impact on the reconfiguration time for a specific

replacement method.

3.1.2 Approach. To achieve the goal of this study, a functioning circuit is

implemented on an FPGA. The configuration bit file for the circuit is modified to

19

achieve a row-wise or column-wise replacement. The modified bit file is stored in

memory until needed by the CRS.

Once a fault is detected, the CRS is notified and the reconfiguration process

begins. The modified bit file reconfigures the FPGA according to the replacement

method. The reconfiguration time is measured from the moment a fault indication is

received at the CRS until FPGA reconfiguration is complete.

Four replacement methods are examined; row up, row down, column left and

column right. Upon notification of a fault, the row replacement method moves the

circuit up or down one row during the reconfiguration process of the FPGA. The

column replacement method functions in the same way except the circuit is moved

over one column. After reconfiguration, proper operation of the circuit is verified.

Detection of faults and defects in the FPGA fabric is provided by an external

system not specified here. It is assumed a fault has been detected (by some method)

and the location of the fault is known.

3.2 System Boundaries

The CRS is the system under test (SUT) and is shown in Figure 3.1. The system

consists of the FPGA and its various resources including the configuration memory,

CLBs, and routing resources, and the test circuit implemented in the FPGA.

The component under test (CUT) is the replacement method. The four methods

under study are column left, column right, row up and row down replacement. There

are other methods of replacement including individual CLB replacement and shifting

that are not considered.

Numerous FPGA architectures could be used with the CRS. However, the Xilinx

Spartan 3 FPGA is used in this study.

20

Circuit
Reconfiguration
System

Fault
Indication Time

SUT

-Configuration Memory
-CLBs
-Routing Resources
-Configuration Bit File
-Test Circuit

CUT

Replacement
Method

Figure 3.1: The system boundaries of the Circuit Reconfiguration System

3.3 System Services

The service provided by the CRS is the reconfiguration of the FPGA. The

outcome of the service is the implementation of a circuit on the FPGA. A positive

outcome occurs when the circuit continues to function as required. Conversely, a

negative outcome occurs when the circuit doesn’t function as intended. A failure may

be due to additional faults in which case the CRS will receive another fault notification

and start the reconfiguration process again. Another type of failure occurs when the

modified bit file cannot be implemented in the FPGA due to a lack of routing resources

or unused CLBs. Finally, a failure occurs if the FPGA has so many faults that there

aren’t enough CLBs or routes to implement the circuit.

3.4 Workload

The workload submitted to the system is simply a fault indication input to the

CRS. One fault at a time may be applied to the system. Another fault may not be

applied until the reconfiguration cycle initiated by the preceding fault is complete.

21

3.5 Performance Metrics

An important consideration when using FPGAs is the configuration time. The

time required to reconfigure a circuit is time the circuit is out of operation. Obviously,

it is desirable that configuration time be as short as possible.

The primary metric for this study is reconfiguration time. To evaluate the

effectiveness of the four replacement methods, the time to complete a reconfiguration

cycle using each method is measured.

3.6 Parameters

3.6.1 System.

• The replacement method is the chief system parameter. The replacement method

determines how the circuit is moved within the FPGA.

• The FPGA used in the system is another system parameter. The arrangement

of CLBs and routing resources in the FPGA plays a role in how effective the

replacement method is in terms of reconfiguration time and compatibility. For

some architectures, a row replacement method may not be possible. Conversely,

column replacement may not be well suited to other architectures.

• The length of the configuration bit stream is determined by the number of CLBs

in the FPGA. The longer the bit stream, the more CLBs and routing that need

to be configured and the longer the configuration time.

• The test circuit implemented in the FPGA can be nearly any circuit with a range

of complexities, capabilities, and sizes. For an initial configuration, the length

of the bit file and the configuration time are independent of the test circuit.

However, partial reconfiguration uses a difference bit file created by comparing

the original and modified bit files. The difference bit file is smaller than a bit file

used for a full configuration. Partial reconfiguration only configures the CLBs

necessary to implement the modifications resulting in a lower configuration time

compared to a full configuration.

22

• The relative congestion in the FPGA of the area to which a CLB is moved is

determined by, among other things, the size of the circuit implemented on the

FPGA and the number of unused CLBs. For this study, a clear area is defined

as one which has no occupied CLB within two rows or columns of the relocated

CLB while a congested area has at least one occupied CLB adjacent to the

relocated CLB.

3.6.2 Workload. The rate at which faults are input to the system is the sole

workload parameter. The input fault rate cannot be greater than the inverse of the

configuration time of the FPGA. Faults applied to the CRS at a rate greater than

the maximum will not cause another reconfiguration until the previous configuration

cycle is complete.

3.7 Factors

Since the primary goal of this research is to measure the reconfiguration time

using a specific replacement method, the factors for this study are the replacement

method used by the CRS and the circuit congestion (or location type) near the re-

located CLB. The factor levels are shown in Table 3.1. It is expected that in the

Spartan 3 FPGA the column replacement method will be faster than the row replace-

ment method because of the layout of the CLBs. However, it is not expected that

there will be a significant difference in the reconfiguration time of column left versus

column right and row up versus row down. The circuit congestion will likely impact

the reconfiguration time with a congested area having a higher reconfiguration time

than a clear area.

Table 3.1: Factors and levels for the CRS
Column Left Column Right Row Up Row Down

Clear Congested Clear Congested Clear Congested Clear Congested

23

3.8 Evaluation Technique

There are no analytical or simulation models available to evaluate this system.

Thus, the evaluation technique used for this study is direct measurement. Upon

initialization, a functioning circuit is placed in a fault free FPGA. The functioning

circuit is a 4-input LUT implemented in one CLB. A simulated fault is detected and

the CRS is notified of the fault and its location in the FPGA. The CRS causes a new

configuration bit file to be loaded onto the FPGA. The bit file is a modified version

of the bit file used to program the initial circuit. The modification causes the CLB

to be moved one column or one row. Reconfiguration of the FPGA is done through

the Joint Test Action Group (JTAG) port.

A timer circuit measures the reconfiguration time. The timer circuit is on a

separate FPGA so as to not be affected by the reconfiguration process. The timer

measures the number of system clock cycles the test clock (TCK) is active. The TCK

signal clocks the configuration bit stream through the JTAG port.

Validation of the measured results is accomplished using the expected config-

uration time through JTAG for the given FPGA. An estimate of the configuration

time can be found by dividing the size of the configuration bit file (in bits) by the

TCK frequency. This estimate is adjusted as necessary to account for differences in

the definition of the start and stop points of the configuration cycle.

3.9 Experimental Design

For this study, a full factorial design is used. The number of replications is based

on the expected variance of the data. It is expected that the measured reconfiguration

times will have a small variance. Ten replications is expected to be sufficient to

perform the statistical analysis. Since there are two factors with two and four levels

respectively, a full factorial design requires eight experiments. In addition, for each

level of circuit congestion, three different locations in the FPGA are chosen to perform

the measurements. For convenience, the clear locations are named A1, A2, and A3.

24

The congested locations are named B1, B2, and B3. Table 3.2 is a cross reference of the

location names to the slices in the FPGA that correspond to the location. The three

slices listed plus one unused slice comprise the CLB at a particular location. A total

of 24 experiments are conducted. The resolution of the measurements is determined

by the system clock used for the timer. The smallest increment between measured

values is one clock period. For a more detailed description of the experimental setup,

see Appendix A.

Table 3.2: Location names and the associated slice numbers in the FPGA corre-
sponding to the location.

A1 A2 A3 B1 B2 B3
X10Y30 X10Y12 X28Y40 X30Y18 X24Y20 X30Y14
X10Y31 X10Y13 X28Y41 X30Y19 X24Y21 X30Y15
X11Y30 X11Y12 X29Y40 X31Y18 X25Y20 X31Y14

3.10 Results Analysis

The 2-factor analysis of variance (ANOVA) method is used to determine the

statistical significance of the main and interaction effects with respect to the errors.

The effects, predicted responses, and ANOVA are at the 90% confidence level.

The analysis assumes the errors are statistically independent, normally dis-

tributed, and have a constant standard deviation. The independence and homoscedas-

ticity of the errors is verified by examination of the plot of predicted response versus

error. The assumption of normally distributed errors is verified using a normal prob-

ability plot.

Since the reconfiguration time is a lower better metric, the best performing

replacement method and location type is the one with the lowest reconfiguration

time.

25

3.11 Summary

This research determines the performance of the circuit reconfiguration system.

The system parameters of reconfiguration method and circuit congestion are used

in a full factorial experiment which measures the reconfiguration time of a Spartan

3 FPGA. The data is analyzed using the ANOVA technique to determine the best

method.

26

IV. Data Analysis

4.1 Introduction

The goals of this research are to implement a CRS that uses row and column

replacement methods to reconfigure an FPGA and determine which of the four re-

placement methods has the shortest reconfiguration time. It is believed that, given the

columnar design of the Spartan 3 FPGA architecture, a column replacement method

will have a shorter reconfiguration time than a row replacement method. It is also

speculated that the direction of the replacement will not affect the reconfiguration

time. Thus, the reconfiguration time for a column left replacement would be the

same as the time for a column right replacement. The same could be said for the

row up and row down methods. Finally, it is believed the relative circuit congestion

after a row or column movement would impact reconfiguration time with a clear area

having a lower time than a congested area.

Method

Ti
m

e
(s

)

Row DownRow UpCol RightCol Left

1.8

1.6

1.4

1.2

1.0

0.8

Row DownRow UpCol RightCol Left

Clear Congested

Individual Value Plot of Time vs Method

Panel variable: Location Type

Figure 4.1: Measured reconfiguration time by replacement method and location
type.

4.2 Validation

A plot of the raw data values is shown in Figure 4.1. There is a wide range

of values in the reconfiguration times. The groupings of the values for a particular

27

method are attributed to the three locations within the location type used during the

experiments. The magnitude of the reconfiguration time is not the focus of this study.

Rather, it is to determine which replacement method is fastest.

The reconfiguration time is defined to be the length of time the JTAG TCK

clock is active. The TCK signal is used by the JTAG port to clock the configuration

bits into the FPGA. Thus, the size of the configuration bit file (in bits) divided by

the frequency of the TCK clock will give an estimate of the configuration time. The

clock rate of the TCK signal used in this study is 200 KHz [XAR03]. The average

file size of the configuration bit files is 230,682 bits. Thus, it is expected that the

measured values will be approximately 1.15 seconds. Reviewing the measured values

shown in Figure 4.1, the data is within a reasonable range of this estimate and is

therefore considered valid.

4.3 Initial Analysis

The initial analysis of the reconfiguration time versus the location type (clear

or congested) and the replacement method (column left, column right, row up, and

row down) treated the three locations for the clear location type as one location.

Similarly, the three locations for the congested location type were combined. Thus,

for each combination of location type and replacement method, there are 30 data

points.

4.3.1 Analysis by Location Type and Method. A two-factor analysis of vari-

ance was conducted to determine the main and interactive effects. From Figure 4.2,

it appears the errors are independent and have a constant standard deviation. How-

ever, Figure 4.3 does not indicate they are normally distributed. Since this violates

the normality assumption necessary for an ANOVA, the results of the ANOVA cannot

be used to draw any conclusions.

Figure 4.4 shows the 90% CIs for the mean reconfiguration times separated by

location type and replacement method. The Tukey method for multiple comparisons

28

Fitted Value

R
es

id
ua

l

1.451.401.351.301.251.201.151.10

0.50

0.25

0.00

-0.25

-0.50

Residuals Versus the Fitted Values
(response is Time (s))

Figure 4.2: Residuals versus fitted values for locations combined by type.

Residual

Pe
rc

en
t

0.80.60.40.20.0-0.2-0.4-0.6-0.8

99.9

99

95
90

80
70
60
50
40
30
20

10

5

1

0.1

Normal Probability Plot of the Residuals
(response is Time (s))

Figure 4.3: Normal probability of the residuals for locations combined by type.

29

Method

Ti
m

e
(s

)

Row DownRow UpCol RightCol Left

1.5

1.4

1.3

1.2

1.1

1.0

0.9
Row DownRow UpCol RightCol Left

Clear Congested

Interval Plot of Time vs Method
90% CI for the Mean

Panel variable: Location Type

Figure 4.4: 90% confidence intervals on the mean of reconfiguration time for clear
and congested areas by replacement method.

Method Type

Ti
m

e
(s

)

RowColumn

1.4

1.3

1.2

1.1

1.0
RowColumn

Clear Congested

Interval Plot of Time vs Method Type
90% CI for the Mean

Panel variable: Location Type

Figure 4.5: 90% confidence intervals on the mean of reconfiguration time for clear
and congested areas by replacement method type.

30

Method Type

Ti
m

e
(s

)

RowColumn

1.35

1.30

1.25

1.20

1.15

Interval Plot of Time vs Method Type
90% CI for the Mean

Figure 4.6: 90% confidence intervals on the mean of reconfiguration time by re-
placement method for both location types combined.

was used to do pair-wise, simultaneous comparisons of the CIs of reconfiguration times

for each location type. From the comparison results, the following observations at the

90% confidence level are made with respect to the reconfiguration times:

• For a clear location type, there is no statistical difference between the column

right and row up methods or the column right and row down methods.

• For a clear location type, there is a statistical difference between the row up

and row down methods.

• For a clear location type, there is a statistical difference between the column

left and column right methods and the column left and row up methods.

• For a clear location type, the column left and row down methods are not

statistically different.

• Based on these observations for a clear location type, it is not possible to

determine which method is fastest or slowest.

• For a congested location type, the column left, column right, and row down

methods are statistically different.

31

• For a congested location type, the row up method is statistically different from

the row down and column right methods.

• There is no statistical difference between the column left and row up methods

for a congested location type.

• For a congested location type, the column right method is the slowest replace-

ment method while the row down method is the fastest.

Figure 4.5 shows the 90% CIs for the two column methods combined and the two

row methods combined while Figure 4.6 displays the 90% CIs for the two replacement

methods with both location types combined. From Figure 4.5, it can be observed that

for both clear and congested areas, the combined row methods are faster than the

column methods. Figure 4.6 indicates that when both location types are combined,

the row methods are faster than the column methods.

Ti
m

e
(s

)

Method

Location Type

Ro
w Do

wn

Ro
w Up

Co
l R

igh
t

Co
l L

eft
Co

ng
es

ted
Cle

ar

Co
ng

es
ted

Cle
ar

Co
ng

es
ted

Cle
ar

Co
ng

es
ted

Cle
ar

1.5

1.4

1.3

1.2

1.1

1.0

0.9

Interval Plot of Time vs Method, Location Type
90% CI for the Mean

Figure 4.7: 90% confidence intervals on the mean of reconfiguration time by re-
placement method and location type.

Another way to view this data is shown in Figure 4.7 which groups the 90%

CIs for each location type by a particular replacement method. For the column left

and row down methods, the CIs by location type do not overlap at all meaning clear

and congested locations have statistically different reconfiguration times for these two

32

methods. The CIs by location type for the column right and row up methods overlap

with the mean of one included in the CI of the other indicating that reconfiguration

times for clear and congested locations are not statistically different.

Using the Tukey method for multiple comparisons of CIs it can be determined

with 90% confidence that the row down replacement method in a congested location

has the fastest reconfiguration time. In addition, since the column left and row

down replacement methods in a clear location are not statistically different, it isn’t

possible to determine which combination of method and location type has the slowest

reconfiguration time.

Location Type

Ti
m

e
(s

)

CongestedClear

1.4

1.3

1.2

1.1

1.0
CongestedClear

Column Row

Interval Plot of Time vs Location Type
90% CI for the Mean

Panel variable: Method Type

Figure 4.8: 90% confidence intervals on the mean of reconfiguration time by location
type for each method type.

Figure 4.8 shows the 90% CIs when the two column methods and the two row

methods are grouped by method type while Figure 4.9 shows the 90% CIs of the

reconfiguration times for the two location types for all replacement methods com-

bined. Both figures indicate that reconfiguration in a congested area is faster than

reconfiguration in a clear area.

4.3.2 Comparison of Observations with Hypotheses. A review of these obser-

vations leads to several inconsistencies with respect to the previously stated hypothe-

33

Location Type

Ti
m

e
(s

)

CongestedClear

1.35

1.30

1.25

1.20

1.15

Interval Plot of Time vs Location Type
90% CI for the Mean

Figure 4.9: 90% confidence intervals on the mean of reconfiguration time by location
type for all methods combined.

ses. First, when the four replacement methods are considered separately (Figure 4.4),

it clearly is not the case that the column replacement methods are faster than the

row replacement methods for a congested location and no conclusion can be drawn

for a clear location. When two replacement methods are grouped by method type

(Figure 4.5), the row replacement methods are faster for both clear and congested

areas. Additionally, when the two location types are grouped (Figure 4.6), the row

methods are faster than the column methods.

Second, the direction of the replacement was statistically significant in all cases

(Figure 4.4), but interestingly, the faster directions for the clear locations (right and

up) are opposite the faster directions for the congested locations (left and down).

Finally, the data indicates that reconfiguration in a congested area is actually

faster than in a clear area when the replacement methods are grouped by type (Fig-

ure 4.8). The same is true when all replacement methods are combined (Figure 4.9).

When the four replacement methods are considered separately (Figure 4.7), reconfig-

uration in a congested area is faster for the column left and row down methods. The

overlap of CIs for the column right and row up methods prevents a determination of

34

which location type has faster reconfiguration times. Thus, it cannot be determined

if the location type affects the reconfiguration time for either of these two methods.

4.4 Second Analysis

The inconsistency with which the data can be used to clearly portray one re-

placement method as the best in terms of reconfiguration time could be due to the

grouping of the three locations into one location type. Based on the invalid ANOVA

assumptions discussed in the first analysis and these inconsistencies, a second analysis

splits the data into two sets by the location type. The data is further separated by the

specific location yielding three locations for each type with ten data points at each

location. Separate ANOVAs were conducted for each location type with the factors

being the replacement method and the specific location.

Fitted Value

R
es

id
ua

l

1.61.51.41.31.21.11.0

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

Residuals Versus the Fitted Values
(response is Time (s))

Figure 4.10: Residuals versus fitted values for clear locations.

4.4.1 Analysis of Clear Locations. From Figure 4.10, the independence and

homoscedasticity of the residuals is verified for the clear locations. However, as was

the case with the first analysis, errors are not normally distributed, as shown in Figure

4.11. Once again, the assumption of normally distributed errors necessary to perform

35

Residual

Pe
rc

en
t

0.80.60.40.20.0-0.2-0.4-0.6-0.8

99.9

99

95
90

80
70
60
50
40
30
20

10

5

1

0.1

Normal Probability Plot of the Residuals
(response is Time (s))

Figure 4.11: Normal probability of the residuals for clear locations.

an ANOVA is violated and the ANOVA results cannot be used. However, an analysis

of the 90% confidence intervals on the reconfiguration time was conducted. As in the

first analysis, the Tukey method for multiple comparisons was used where appropriate

to do simultaneous comparisons of the CIs for each replacement method.

Figures 4.12, 4.13, 4.14, and 4.15 show the 90% confidence intervals for the

mean reconfiguration times by replacement method for each clear location. The main

observation from these plots is that for each replacement method, there is a statistical

difference at the 90% confidence level between the reconfiguration times at the three

specific locations. Another thing worth noting is the size of the confidence intervals.

The CIs are very small indicating a very small variance in the measured values.

4.4.2 Analysis of Congested Locations. Figure 4.16 shows the residuals ver-

sus fitted values for the congested locations and Figure 4.17 shows the normal proba-

bility of the residuals. As before, the residuals appear independent and homoscedastic,

but they are not normally distributed invalidating the ANOVA results. Figures 4.18,

4.19, 4.20, and 4.21 show the 90% confidence intervals for the mean reconfiguration

times by replacement method for each congested location. After applying the Tukey

36

Location

Ti
m

e
(s

)

A3A2A1

1.6

1.5

1.4

1.3

1.2

90% CI for the Mean
Interval Plot of Time vs Location (Column Left)

Figure 4.12: 90% confidence intervals on the mean of reconfiguration time for clear
locations using the column left replacement method.

Location

Ti
m

e
(s

)

A3A2A1

1.8

1.6

1.4

1.2

1.0

0.8

90% CI for the Mean
Interval Plot of Time vs Location (Column Right)

Figure 4.13: 90% confidence intervals on the mean of reconfiguration time for clear
locations using the column right replacement method.

37

Location

Ti
m

e
(s

)

A3A2A1

1.4

1.3

1.2

1.1

1.0

0.9

90% CI for the Mean
Interval Plot of Time vs Location (Row Up)

Figure 4.14: 90% confidence intervals on the mean of reconfiguration time for clear
locations using the row up replacement method.

Location

Ti
m

e
(s

)

A3A2A1

1.6

1.5

1.4

1.3

1.2

90% CI for the Mean
Interval Plot of Time vs Location (Row Down)

Figure 4.15: 90% confidence intervals on the mean of reconfiguration time for clear
locations using the row down replacement method.

38

Fitted Value

R
es

id
ua

l

1.41.31.21.11.00.9

0.2

0.1

0.0

-0.1

-0.2

Residuals Versus the Fitted Values
(response is Time (s))

Figure 4.16: Residuals versus fitted values for congested locations.

Residual

Pe
rc

en
t

0.40.30.20.10.0-0.1-0.2-0.3-0.4

99.9

99

95
90

80
70
60
50
40
30
20

10

5

1

0.1

Normal Probability Plot of the Residuals
(response is Time (s))

Figure 4.17: Normal probability of the residuals for congested locations.

39

method to compare the CIs for each replacement method, all measured reconfigura-

tion times for a particular replacement method were found to be statistically different

from each other.

Location

Ti
m

e
(s

)

B3B2B1

1.30

1.25

1.20

1.15

1.10

90% CI for the Mean
Interval Plot of Time vs Location (Column Left)

Figure 4.18: 90% confidence intervals on the mean of reconfiguration time for con-
gested locations using the column left replacement method.

4.4.3 Analysis by Specific Location. The preceding two analyses of the

reconfiguration times according to the location type indicate that grouping the three

locations into one location type, as was done in the initial analysis, was incorrect.

This grouping assumed that the specific location would not affect the reconfiguration

time and that only the location type mattered. This is clearly not the case.

Figures 4.22 and 4.23 show the data grouped by location. The CIs for each

replacement method at a particular location were compared using the Tukey method.

From these pair-wise comparisons and the two figures, it was determined that there

is no consistently fastest replacement method for a particular location type. For

locations A1 and A3, the fastest method is column right and row up, respectively.

However, for location A2, the column right and row up methods are not statistically

different at the 90% confidence level. Similarly, the column left and row down methods

are fastest for locations B1 and B3, respectively, while there is no statistical difference

40

Location

Ti
m

e
(s

)

B3B2B1

1.425

1.400

1.375

1.350

1.325

1.300

1.275

1.250

90% CI for the Mean
Interval Plot of Time vs Location (Column Right)

Figure 4.19: 90% confidence intervals on the mean of reconfiguration time for con-
gested locations using the column right replacement method.

Location

Ti
m

e
(s

)

B3B2B1

1.4

1.3

1.2

1.1

1.0

0.9

90% CI for the Mean
Interval Plot of Time vs Location (Row Up)

Figure 4.20: 90% confidence intervals on the mean of reconfiguration time for con-
gested locations using the row up replacement method.

41

Location

Ti
m

e
(s

)

B3B2B1

1.10

1.05

1.00

0.95

0.90

0.85

0.80

0.75

90% CI for the Mean
Interval Plot of Time vs Location (Row Down)

Figure 4.21: 90% confidence intervals on the mean of reconfiguration time for con-
gested locations using the row down replacement method.

between the row up and row down methods at location B2 making it impossible to

conclude which is faster.

Figures 4.24 and 4.25 show the data with the replacement methods combined by

method type. As before, there is no consistently faster method type for a particular

location type. However, at four of the six locations tested, the row method proved

faster than the column method.

4.4.4 Comparison of Results of Second Analysis and Hypotheses. As was

the case in the first analysis, some inconsistencies with respect to the hypotheses were

noted while examining Figures 4.22 and 4.23. First, it was possible to determine the

fastest replacement method only for locations A1, A3, B1, and B3. Interestingly,

each of the four replacement methods was the fastest for one of these locations. The

fastest method could not be determined for locations A2 and B2 except to say that

at location B2, the fastest method was not a column method. When the replacement

methods are grouped by type (Figures 4.24 and 4.25), the row method was faster than

the column method for most locations, but it was not consistent among all locations.

42

Method

Ti
m

e
(s

)

Ro
w D

ow
n

Ro
w U

p

Co
l R

igh
t

Co
l L

ef
t

1.8

1.6

1.4

1.2

1.0

0.8

Ro
w D

ow
n

Ro
w

Up

Co
l R

igh
t

Co
l L

ef
t

Ro
w

Do
wn

Ro
w U

p

Co
l R

igh
t

Co
l L

ef
t

A1 A2 A3

Interval Plot of Time vs Method
90% CI for the Mean

Panel variable: Location

Figure 4.22: 90% confidence intervals on the mean of reconfiguration time by re-
placement method for clear locations.

Method

Ti
m

e
(s

)

Ro
w D

ow
n

Ro
w U

p

Co
l R

igh
t

Co
l L

ef
t

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

Ro
w D

ow
n

Ro
w

Up

Co
l R

igh
t

Co
l L

ef
t

Ro
w

Do
wn

Ro
w U

p

Co
l R

igh
t

Co
l L

ef
t

B1 B2 B3

Interval Plot of Time vs Method
90% CI for the Mean

Panel variable: Location

Figure 4.23: 90% confidence intervals on the mean of reconfiguration time by re-
placement method for congested locations.

43

Ti
m

e
(s

)

Location
Method Type

A3A2A1
RowColumnRowColumnRowColumn

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

90% CI for the Mean
Interval Plot of Time vs Location, Method Type

Figure 4.24: 90% confidence intervals on the mean of reconfiguration time by re-
placement method type for clear locations.

Ti
m

e
(s

)

Location
Method Type

B3B2B1
RowColumnRowColumnRowColumn

1.4

1.3

1.2

1.1

1.0

0.9

0.8

90% CI for the Mean
Interval Plot of Time vs Location, Method Type

Figure 4.25: 90% confidence intervals on the mean of reconfiguration time by re-
placement method type for congested locations.

44

Second, comparing the reconfiguration times by direction at each location (Fig-

ures 4.22 and 4.23) shows that at location B2 the row up and row down methods

are not statistically different and at location B3 the column left and column right

methods are not statistically different. Similarly, at location A2, the row up and row

down methods have no statistical difference at the 90% confidence level. At all other

locations, there is considerable variation in the reconfiguration times according to the

direction of the replacement.

The second hypothesis was that the direction of the replacement method would

have no impact on the reconfiguration time. As shown in Figure 4.22 for the three

clear locations, the reconfiguration times differ greatly between left and right for

the column method. The same is true between up and down for the row method

with the exception being location A2. However, even at A2, there is a statistical

difference between row up and row down at the 90% confidence level. The same

general observations can be made for the congested locations shown in Figure 4.23.

There is a statistically significant difference between left and right and up and down

with the exceptions being the row method at location B2 and the column method

at location B3. In these two instances, the confidence intervals overlap and also

encompass the means.

Since the data was split by location type for this analysis and there were no

comparisons between clear and congested locations, the third hypothesis is rendered

a moot point.

4.5 Summary

This chapter presented the measured data for the CRS. Two separate analyses

were accomplished to determine the effects of the two factors. The first analysis

lumped the three individual clear locations together into one location type. The

same was done with the three congested locations. The data was then analyzed to

show the effects of location type and the different replacement methods. The initial

analysis showed that it was necessary to separate the locations and examine the data

45

according to the location type. In the second analysis, the effects of the specific

location and the replacement method were determined within each location type. In

the following chapter, the conclusions drawn from these analyses are presented along

with suggestions for future research.

46

V. Conclusions

5.1 Introduction

This chapter presents the conclusions drawn from this research and the analysis

presented in Chapter 4. The significance of this study as well as recommendations for

future research are also discussed.

5.2 Problem Summary

One method of achieving fault tolerance in a system is to reconfigure the faulty

circuit to overcome deficiencies. The reconfigurability of an FPGA makes it a logi-

cal choice for this fault tolerant approach. A circuit reconfiguration system can take

a fault indication as an input and reconfigure the FPGA using one of four replace-

ment methods: column left, column right, row up, or row down. To minimize system

impact, it is necessary to determine which method is fastest for a given circuit envi-

ronment to include the circuit congestion and the FPGA architecture.

5.3 Conclusions of Research

The first hypothesis of this study is that a column replacement method will have

a faster reconfiguration time than a row replacement method due to the columnar ar-

chitecture of the Spartan 3 FPGA. Based on the two analyses that were performed,

this hypothesis cannot be affirmed. There were certain cases where column replace-

ment was faster than row replacement, but this was not true in every case, with some

cases being indeterminate.

The second hypothesis is that the direction of the replacement will have no

impact on the reconfiguration time. As with the first hypothesis, this could not

be determined consistently for all locations and location types. In fact, in most

instances, there was a statistically significant difference in reconfiguration times based

on direction. Thus, this hypothesis cannot be proven.

The last hypothesis is that a congested area will have a higher reconfiguration

time than a clear area. This also proved to be false as no consistent determination

47

could be made for all four replacement methods. The column left and row down

methods contradicted the hypothesis while the column right and row up methods

were indeterminate. When the replacement methods were combined by method type,

the congested areas had lower reconfiguration times. Congested areas also had lower

reconfiguration times when all replacement methods were combined.

The overall conclusion of this research is that the replacement method and direc-

tion as well as the circuit congestion have no predictable impact on the reconfiguration

time at any particular location on the FPGA. It is possible that there are other ar-

chitectural factors which were not used in this study that affect the reconfiguration

time. However, the factors used for this research do not statistically demonstrate one

replacement method is consistently better than another at any particular location on

the Spartan 3 chip.

5.4 Significance of Research

This is the first study of the effects of replacement method and circuit conges-

tion on reconfiguration time of an FPGA. Previous research on fault tolerance using

FPGAs focused mainly on algorithm development to achieve reconfiguration through

the efficient use of spare CLBs and routing resources in the FPGA. There has been

no attempt to determine the best reconfiguration in terms of reconfiguration time.

The primary significance of this research lies in the area of reconfiguration al-

gorithm development. For a fault tolerant system using reconfiguration of an FPGA,

an algorithm to control the circuit reconfiguration is free to use whatever replacement

method is available without considering circuit congestion, column or row movement,

or replacement direction. The most convenient or efficient method in terms of FPGA

resources or algorithm function can be used without introducing significant overhead

in terms of reconfiguration time.

48

5.5 Recommendations for Future Research

5.5.1 Other FPGAs and Programming Interfaces. An obvious variation of

this study involves performing the same measurements as this research but on different

FPGAs. This study used a Xilinx Spartan 3 FPGA. Using some other FPGA with a

different architecture than the Spartan 3 may prove the hypotheses true due to some

unknown factor not studied here.

This study used the JTAG interface to program the FPGA. While this is not the

fastest or most efficient way to reconfigure, it was acceptable since this research was

not focused on the magnitude of the reconfiguration time but on the comparison of the

reconfiguration time for the four methods studied. Using the Xilinx Virtex 2 FPGA

would allow use of an internal configuration access port (ICAP). The configuration

bit file could be stored on the FPGA in block memory. Upon receiving a reconfig-

uration command, the bit file would be applied to the ICAP for reprogramming the

FPGA [FHA03]. This would be a more efficient and faster method of accomplishing

reconfiguration and reduces the overhead external to the FPGA.

5.5.2 Automation. A method for automating the control functions of the

CRS would be a logical next step. In this study, generation of the configuration bit

files and control of the reconfiguration process were done off-line. Ideally, upon no-

tification of a fault and its location by some fault detection mechanism, the control

circuit would dynamically generate the proper configuration bit file and initiate the

reconfiguration of the FPGA. The ability to generate the configuration bit files dy-

namically would eliminate pre-fault generation and storage of all possible variations

of bit files necessary to reconfigure the FPGA in response to a fault in any CLB.

5.5.3 Bit File Manipulation. Another area for future study is the manip-

ulation of the original configuration bit file to cause the movement of a CLB when

reconfiguration becomes necessary. Knowing which bits to change in the configuration

bit file could facilitate process automation as discussed above.

49

Appendix A. Experimental Configuration

The experimental configuration required two FPGA development boards. One was

programmed with the circuit being reconfigured while the other was programmed with

the timer circuit used to measure the reconfiguration time.

The circuit being reconfigured consists of a 4-input LUT controlled by a state

logic module as shown in Figure A.1. The circuit also contains a post configuration

processing module. The LUT and its post configuration processing module use three

of the four available slices in a CLB. During the reconfiguration process, the location

of the LUT is moved left or right one column or up or down one row.

Figure A.1: Schematic of the 4-input LUT and the associated state logic in the
CRS

The inputs to the LUT are from the state logic module. The state logic module

determines whether to hold the LUT at its last state before reconfiguration or to

accept external inputs for continued circuit operation. After reconfiguration, the

LUT inputs are held in their previous states until the continue signal is asserted. At

that point, the LUT inputs are determined through normal circuit functions.

The post configuration processor is shown in Figure A.2. It is used to simulate

external circuit function by providing changing inputs to the LUT after reconfigura-

tion. The outputs of the post configuration processor are provided to the state logic

module where the LUT input is chosen.

50

Figure A.2: The post configuration processor of the CRS simulates an external
circuit by providing inputs to the LUT after reconfiguration

Configuration and reconfiguration is carried out through the JTAG port on the

development board. A base circuit was laid out using the FPGA editor tool in Xilinx

Project Navigator. The base configuration bit file was generated from this layout.

The LUT was then moved according to the replacement method being tested and a

partial bit file was generated to reconfigure the FPGA accordingly. Measurements

were performed by first configuring the FPGA with the base configuration bit file and

then reconfiguring it with the partial bit file corresponding to the proper movement

of the LUT.

The VHDL code to implement the circuit which is being moved by the CRS is

shown below.

-- Description: This module implements a state initialization for a

-- 4 input LUT after reconfiguration. The state is held until a

-- "continue" signal is received at which time the reconfigured

-- circuit resumes normal operation.

-- Author: Jason Ives

-- Date: November 21, 2005

51

entity state_logic is

Port (post_in_0 : in std_logic;

post_in_1 : in std_logic;

post_in_2 : in std_logic;

post_in_3 : in std_logic;

clock : in std_logic;

continue : in std_logic;

in_0_out : out std_logic;

in_1_out : out std_logic;

in_2_out : out std_logic;

in_3_out : out std_logic);

end state_logic;

architecture Behavioral of state_logic is

signal output_0 : std_logic;

signal output_1 : std_logic;

signal output_2 : std_logic;

signal output_3 : std_logic;

begin

process

begin

wait until clock’event and clock = ’1’;

if continue = ’1’ then

output_0 <= post_in_0;

output_1 <= post_in_1;

output_2 <= post_in_2;

output_3 <= post_in_3;

else

output_0 <= ’0’;

output_1 <= ’1’;

52

output_2 <= ’1’;

output_3 <= ’0’;

end if;

end process;

in_0_out <= output_0;

in_1_out <= output_1;

in_2_out <= output_2;

in_3_out <= output_3;

end Behavioral;

Because reconfiguration is accomplished through the JTAG port, the JTAG test

clock, TCK, is used to measure the reconfiguration time. The TCK signal controls

the JTAG configuration process and is used to clock the configuration bits into the

configuration registers of the FPGA. Thus, the size of the configuration bit stream

determines how long the TCK signal is active during reconfiguration. The timer

circuit simply measures the time the TCK signal is active.

Figure A.3: Schematic of the timer circuit used to measure the reconfiguration time
of the CRS

The timer circuit, shown in Figure A.3 counts the 50 MHz system clock to

measure the reconfiguration time. The 8-bit hex count is converted to seconds for

analysis. The 32-bit counter module in the timer circuit is a standard logic block

available in most VHDL synthesis libraries. The VHDL code used to implement the

53

enable counter module is shown here because it is used to start and stop the 32-bit

counter. Thus, its function defines the reconfiguration time in terms of the TCK

signal.

-- Description: This module generates a counter enable signal

-- for the 32 bit counter based on the TCK level.

-- CE is high if TCK is high or if there is less than

-- 50ms between high-low-high transitions.

-- Author: Jason Ives

-- Date: December 12, 2005

entity enable_counter is

Port (clock : in std_logic;

TCK : in std_logic;

CE : out std_logic);

end enable_counter;

architecture Behavioral of enable_counter is

begin

process (TCK, clock)

variable count: integer range 0 to 6000000;

begin

if TCK = ’1’ then

count := 0;

CE <= ’1’;

elsif clock’EVENT and clock = ’1’ and TCK = ’0’ then

count := count + 1;

end if;

if count >= 5000000 then

CE <= ’0’;

end if;

end process;

54

end Behavioral;

As can be seen in the code segment, the CE signal stays high for 100 ms (5,000,000

clock cycles) after the end of the TCK signal in order to properly capture the entire

time the TCK clock is active. This extra 100 ms was subtracted from the measured

time before the data was analyzed.

Various manufacturer’s data sheets, application notes and user’s guides were

referenced to arrive at the experimental setup [DS005,Xil05a,Xil04b,Xil04a,Xil05b,

Xil03,Xil].

55

Appendix B. Data

This appendix contains the measured data from the experiments.

Table B.1: Measured reconfiguration time in seconds for location A1.
Location Type Column Left Column Right Row Up Row Down

A1 Clear 1.24636805 0.76017080 1.39971985 1.24320360
A1 Clear 1.24581110 0.76094965 1.39897785 1.23552005
A1 Clear 1.24877890 0.76158465 1.39920090 1.23537725
A1 Clear 1.24964040 0.76002830 1.39831295 1.23613720
A1 Clear 1.24796065 0.76243050 1.39780570 1.23411275
A1 Clear 1.26277345 0.76025410 1.39802665 1.23628230
A1 Clear 1.24575640 0.78590480 1.39880665 1.23667730
A1 Clear 1.26117040 0.76150540 1.39984740 1.23503050
A1 Clear 1.24581950 0.76319045 1.42475295 1.23703840
A1 Clear 1.24648325 0.75927490 1.39563905 1.23813770

Table B.2: Measured reconfiguration time in seconds for location A2.
Location Type Column Left Column Right Row Up Row Down

A2 Clear 1.57183035 1.23344700 1.24018245 1.26046215
A2 Clear 1.57402110 1.23849330 1.23855845 1.26060400
A2 Clear 1.57297760 1.23722320 1.23335145 1.26262310
A2 Clear 1.59423330 1.23534295 1.23735940 1.26223260
A2 Clear 1.57696900 1.23612305 1.23810460 1.26193770
A2 Clear 1.57608170 1.24109275 1.23709890 1.26235110
A2 Clear 1.57240005 1.23757815 1.24172860 1.25932975
A2 Clear 1.57702395 1.23560100 1.23789465 1.26173720
A2 Clear 1.57875675 1.23795535 1.23427620 1.26116870
A2 Clear 1.57166580 1.24232165 1.23606340 1.26061145

56

Table B.3: Measured reconfiguration time in seconds for location A3.
Location Type Column Left Column Right Row Up Row Down

A3 Clear 1.55940295 1.73394740 0.92148460 1.59483525
A3 Clear 1.55885685 1.73361475 0.92304335 1.59677040
A3 Clear 1.55745905 1.73288750 0.92289510 1.59291450
A3 Clear 1.55937180 1.73358445 0.92299425 1.59421160
A3 Clear 1.56080745 1.73419210 0.92221470 1.59646045
A3 Clear 1.55910860 1.73670675 0.93180405 1.59256785
A3 Clear 1.55850830 1.73401065 0.91962645 1.60825400
A3 Clear 1.56444585 1.73346315 0.92055240 1.59568410
A3 Clear 1.56017480 1.73470950 0.92094490 1.59978695
A3 Clear 1.55938505 1.73708675 0.92130665 1.60267025

Table B.4: Measured reconfiguration time in seconds for location B1.
Location Type Column Left Column Right Row Up Row Down

B1 Congested 1.08541075 1.24491515 1.42208240 1.09885605
B1 Congested 1.08530395 1.24937320 1.41999810 1.09663065
B1 Congested 1.08435690 1.25683520 1.42307575 1.09455895
B1 Congested 1.08487940 1.24544245 1.42597455 1.09614405
B1 Congested 1.08712280 1.24536880 1.42429500 1.09647675
B1 Congested 1.08456830 1.24678670 1.41851990 1.09660740
B1 Congested 1.08514385 1.24565420 1.42129145 1.09731210
B1 Congested 1.08561960 1.25495190 1.41862885 1.09467845
B1 Congested 1.08487830 1.25518535 1.42154175 1.09623050
B1 Congested 1.08516245 1.24528505 1.43049115 1.09437020

Table B.5: Measured reconfiguration time in seconds for location B2.
Location Type Column Left Column Right Row Up Row Down

B2 Congested 1.24729425 1.40874055 1.08523645 1.08386435
B2 Congested 1.24897170 1.40993540 1.08751360 1.08601805
B2 Congested 1.24560145 1.40830985 1.08460850 1.08582840
B2 Congested 1.24348500 1.41089040 1.08319600 1.08684330
B2 Congested 1.24803445 1.40777555 1.08351315 1.08463975
B2 Congested 1.24610135 1.40929320 1.08474040 1.08477880
B2 Congested 1.24817685 1.40877120 1.08269175 1.08310460
B2 Congested 1.24759085 1.40823565 1.08738355 1.08521595
B2 Congested 1.24691425 1.41033870 1.08461880 1.08619340
B2 Congested 1.24432985 1.40732780 1.08622620 1.08308185

57

Table B.6: Measured reconfiguration time in seconds for location B3.
Location Type Column Left Column Right Row Up Row Down

B3 Congested 1.26828126 1.27202474 0.94569462 0.78001304
B3 Congested 1.28955354 1.26315608 0.95081762 0.76676186
B3 Congested 1.27211944 1.26641872 0.95132944 0.76907878
B3 Congested 1.27598262 1.27912006 0.94634830 0.79129678
B3 Congested 1.27429994 1.31334406 0.96040870 0.77403574
B3 Congested 1.26880652 1.26016820 0.97178832 0.79209702
B3 Congested 1.26688860 1.26602624 0.94416720 0.76389944
B3 Congested 1.26676400 1.26156258 0.96818026 0.76852242
B3 Congested 1.26984670 1.26812550 0.94407888 0.76755902
B3 Congested 1.29897952 1.27332106 0.94476348 0.77474790

58

Bibliography

AL81. T. Anderson and P. Lee. Fault Tolerance Principles and Practice. Prentice
Hall, 1981.

CC95. R. Cuddapah and M. Corba. Reconfigurable logic for fault tolerance. In
W. Moore and W. Luk, editors, Field-Programmable Logic and Applica-
tions, 1995. Proceedings. 5th International Workshop on, number 975 in
Lecture Notes in Computer Science, pages 380–388, 1995.

CH02. Katherine Compton and Scott Hauck. Reconfigurable computing: a sur-
vey of systems and software. ACM Comput. Surv., 34(2):171–210, 2002.

CT02. R.O. Canham and A.M. Tyrrell. A multilayered immune system for hard-
ware fault tolerance within an embryonic array. In Proceedings of the 1st
International Conference on Artificial Immune Systems (ICARIS), pages
3–11, 2002.

DP94. S. Durand and C. Piguet. FPGAs with self-repair capabilities. In FPGAs,
1994. Proceedings. ACM International Workshop on, 1994.

DS005. Spartan-3 FPGA family: Complete data sheet, 2005.

EB97. John M. Emmert and Dinesh Bhatia. Partial reconfiguration of FPGA
mapped designs with applications to fault tolerance and yield enhance-
ment. In FPL ’97: Proceedings of the 7th International Workshop on
Field-Programmable Logic and Applications, pages 141–150, London, UK,
1997. Springer-Verlag.

Els03. Khaled Elshafey. Embedding fault tolerance via reconfiguration in con-
figurable systems. In ICM 2003, Proceedings of the, pages 370–373, De-
cember 2003.

ESSA00. J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici. Dynamic fault
tolerance in FPGAs via partial reconfiguration. In Field-Programmable
Custom Computing Machines, 2000 IEEE Symposium on, pages 165–174,
2000.

FHA03. R.J. Fong, S.J. Harper, and P.M. Athanas. A versatile framework for
FPGA field updates: an application of partial self-reconfiguration. In
Rapid Systems Prototyping, 2003. Proceedings. 14th IEEE International
Workshop on, pages 117–123, 2003.

GASF03. M.G. Gericota, G.R. Alves, M.L. Silva, and J.M. Ferreira. Run-time
management of logic resources on reconfigurable systems. In Design,
Automation and Test in Europe Conference and Exhibition, 2003, pages
974–979, 2003.

59

Hat93. Sakurai-T. Nogami K. Sawada K. Takahashi M. Ichida M. Uchida M.
Yoshii I. Kawahara Y. Hibi T. Saeki Y. Muroga H. Tanaka A. Kanzaki K.
Hatori, F. Introducing redundancy in field programmable gate arrays. In
Custom Integrated Circuits Conference, 1993., Proceedings of the IEEE
1993, pages 7.1.1–7.1.4, 1993.

Hau98. S. Hauck. The roles of FPGAs in reprogrammable systems. Proceedings
of the IEEE, 86(4):615–638, 1998.

HD98. F. Hanchek and S. Dutt. Methodologies for tolerating cell and intercon-
nect faults in FPGAs. Computers, IEEE Transactions on, 47(1):15–33,
1998.

HKSW98. James R. Heath, Philip J. Kuekes, Gregory S. Snider, and R. Stanley
Williams. A defect-tolerant computer architecture: Opportunities for
nanotechnology. Science, 280:1716–1721, 1998.

HTA94. N.J. Howard, A.M. Tyrrell, and N.M. Allinson. The yield enhancement
of field-programmable gate arrays. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(1):115–123, 1994.

KDFJ89. V. Kumar, A. Dahbura, F. Fischer, and P. Juola. An approach for the
yield enhancement of programmable gate arrays. In Computer-Aided De-
sign, 1989. ICCAD-89. Digest of Technical Papers., 1989 IEEE Interna-
tional Conference on, pages 226–229, 1989.

Kha02. Jamil Khatib. Introduction to programmable logic devices.
http://www.geocities.com/jamilkhatib75/fpga/fpga intro.html, 2002.

KI94. J.L. Kelly and P.A. Ivey. Defect tolerant SRAM based FPGAs. In FP-
GAs, 1994. Proceedings. ACM International Workshop on, pages 479–
482, 1994.

Kwi97. K. Kwiat. Dynamically reconfigurable FPGA based multiprocessing and
fault tolerance. Technical Report RL-TR-96-279, Rome Labs, 1997.

LCR03. F. Lima, L. Carro, and R. Reis. Designing fault tolerant systems into
SRAM-based FPGAs. In Design Automation Conference, 2003. Proceed-
ings, pages 650–655, 2003.

LMSP98a. J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Low overhead fault-
tolerant FPGA systems. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 6(2):212–221, 1998.

LMSP98b. John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Effi-
ciently supporting fault-tolerance in FPGAs. In FPGA ’98: Proceedings
of the 1998 ACM/SIGDA Sixth International Symposium on Field Pro-
grammable Gate Arrays, pages 105–115, New York, NY, USA, 1998. ACM
Press.

60

LMSP99. J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Algorithms for effi-
cient runtime fault recovery on diverse FPGA architectures. In Defect and
Fault Tolerance in VLSI Systems, 1999. DFT ’99. International Sympo-
sium on, pages 386–394, 1999.

LMSP00. J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Enhanced FPGA
reliability through efficient run-time fault reconfiguration. Reliability,
IEEE Transactions on, 49(3):296–304, 2000.

Max04. C. Maxfield. The Design Warriors Guide to FPGAs. Elsevier, 2004.

May97. C. Mayer. A reconfigurable superscalar architecture. Master’s thesis, Air
Force Institute of Technology, 1997.

McF94. C. McFarland. Computer subsystem.
http://www.tsgc.utexas.edu/archive/subsystems/, 1994.

MD99. N.R. Mahapatra and S. Dutt. Efficient network-flow based techniques for
dynamic fault reconfiguration in FPGAs. In Fault-Tolerant Computing,
1999. Digest of Papers. Twenty-Ninth Annual International Symposium
on, pages 122–129, 1999.

MGM+96. D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, S. Du-
rand, P. Marchal, and P. Nussbaum. Embryonics: A new family of
coarse-grained field-programmable gate array with self-repair and self-
reproducing properties. In Circuits and Systems, 1996. ISCAS ’96., ’Con-
necting the World’., 1996 IEEE International Symposium on, volume 4,
pages 25–28 vol.4, 1996.

MHS+04. Subhasish Mitra, W.-J. Huang, N.R. Saxena, S.-Y. Yu, and E.J. Mc-
Cluskey. Reconfigurable architecture for autonomous self-repair. Design
& Test of Computers, IEEE, 21(3):228–240, 2004.

ML96. A. Mathur and C.L. Liu. Timing driven placement reconfiguration for
fault tolerance and yield enhancement in FPGAs. In European Design and
Test Conference, 1996. ED&TC 96. Proceedings, pages 165–169, 1996.

Nei03. Mohamad R. Neilforoshan. Fault tolerant computing in computer design.
Journal of Computing in Small Colleges, 18(4):213–220, 2003.

Nel90. Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. IEEE
Computer, pages 20–25, 1990.

NSF01. K. Nikolic, A. Sadek, and M. Forshaw. Architectures for reliable comput-
ing with unreliable nanodevices. In Nanotechnology, 2001. Proceedings of
the 2001 1st IEEE Conference on, pages 254–259, 2001.

OT97. C. Ortega and A. Tyrrell. Biologically inspired reconfigurable hardware
for dependable applications. In Hardware Systems for Dependable Appli-
cations, 1997. IEE Colloquium on, pages 3/1–3/4, 1997.

61

Pra05. D.K. Pradhan. Fundamental concepts of redundancy for fault tolerance.
http://www.cs.bris.ac.uk/Teaching/Resources/COMS30125/lecture 3.ppt,
September 2005.

REGSV93. J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of
field-programmable gate arrays. Proceedings of the IEEE, 81(7):1013–
1029, 1993.

SP03. A.P. Shanthi and R. Parthasarathi. Exploring FPGA structures for evolv-
ing fault tolerant hardware. In Evolvable Hardware, 2003. Proceedings.
NASA/DoD Conference on, pages 174–181, Jul 2003.

Tor02. Jim Torresen. Reconfigurable logic applied for designing adaptive hard-
ware systems. In Book of abstracts of the International Conference on
Advances in Infrastructure for Electronic Business, Education, Science,
and Medicine on the Internet, 2002.

XAR03. Xilinx answer record 9803, March 2003.

Xil. Xilinx. Libraries Guide.

Xil03. Xilinx. Configuration quick start guidlines, 2003.

Xil04a. Xilinx. Spartan-3 advanced configuration architecture, 2004.

Xil04b. Xilinx. Two flows for partial reconfiguration: Module based or difference
based, 2004.

Xil05a. Xilinx. Spartan-3 Starter Kit Board User Guide, 2005.

Xil05b. Xilinx. Using the ISE design tools for Spartan-3 generation FPGAs, 2005.

XSHL99. Jian Xu, Paifa Si, Weikang Huang, and F. Lombardi. A novel fault
tolerant approach for SRAM-based FPGAs. In Dependable Computing,
1999. Proceedings. 1999 Pacific Rim International Symposium on, pages
40–44, 1999.

62

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2006 Master’s Thesis Sept 2004 — Mar 2006

Evaluation of a Field Programmable Gate Array
Circuit Reconfiguration System

Jason L. Ives, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/06-26

Air Force Research Laboratory/Space Electronics and Protection Branch
Mr. Ken Hunt
3550 Aberdeen Ave SE, Bldg 891
Kirtland AFB, NM 87117-5776
(505) 846-4959

AFRL/VSSE

Approval for public release; distribution is unlimited.

This research implements a circuit reconfiguration system (CRS) to reconfigure a field programmable gate array (FPGA)
in response to a faulty configurable logic block (CLB). It is assumed the location of the fault is known and the CLB is
moved according to one of four replacement methods: column left, column right, row up, and row down. Partial
reconfiguration of the FPGA is done through the JTAG port to produce the desired logic block movement. The time
required to accomplish the reconfiguration is measured for each method in both clear and congested areas of the FPGA.
The measured data indicates there is no consistently better replacement method regardless of the circuit congestion or
location within the FPGA. Thus, given a specific location in the FPGA, there is no preferred replacement method that
will result in the lowest reconfiguration time.

field programmable gate array, fault tolerance, reconfiguration

U U U UU 76

Dr. Rusty O. Baldwin (ENG)

(937) 255–6565, ext 4445

	Evaluation of a Field Programmable Gate Array Circuit Reconfiguration System
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	1.1 Overview
	1.2 Motivation and Goals
	1.3 Organization

	II. Literature Review
	2.1 Fault Tolerant Computing
	2.2 General Fault Tolerance
	2.2.1 Fault Tolerant Strategies
	2.2.2 Redundancy

	2.3 Field Programmable Gate Arrays
	2.3.1 Advantages of FPGAs
	2.3.2 Disadvantages of FPGAs

	2.4 Fault Tolerance with Field Programmable Gate Arrays
	2.4.1 Yield Enhancement
	2.4.2 Reconfiguration
	2.4.3 Performance of Reconfiguration Schemes

	2.5 Summary

	III. Research Methodology
	3.1 Problem Definition
	3.1.1 Goals and Hypothesis
	3.1.2 Approach

	3.2 System Boundaries
	3.3 System Services
	3.4 Workload
	3.5 Performance Metrics
	3.6 Parameters
	3.6.1 System
	3.6.2 Workload

	3.7 Factors
	3.8 Evaluation Technique
	3.9 Experimental Design
	3.10 Results Analysis
	3.11 Summary

	IV. Data Analysis
	4.1 Introduction
	4.2 Validation
	4.3 Initial Analysis
	4.3.1 Analysis by Location Type and Method
	4.3.2 Comparison of Observations with Hypotheses

	4.4 Second Analysis
	4.4.1 Analysis of Clear Locations
	4.4.2 Analysis of Congested Locations
	4.4.3 Analysis by Specific Location
	4.4.4 Comparison of Results of Second Analysis and Hypotheses

	4.5 Summary

	V. Conclusions
	5.1 Introduction
	5.2 Problem Summary
	5.3 Conclusions of Research
	5.4 Significance of Research
	5.5 Recommendations for Future Research
	5.5.1 Other FPGAs and Programming Interfaces
	5.5.2 Automation
	5.5.3 Bit File Manipulation

	Appendix A. Experimental Configuration
	Appendix B. Data
	Bibliography

