
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2008

Optimizing Dynamic Logic Realizations For Partial Optimizing Dynamic Logic Realizations For Partial

Reconfiguration Of Field Programmable Gate Arrays Reconfiguration Of Field Programmable Gate Arrays

Matthew Parris
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Parris, Matthew, "Optimizing Dynamic Logic Realizations For Partial Reconfiguration Of Field
Programmable Gate Arrays" (2008). Electronic Theses and Dissertations, 2004-2019. 3494.
https://stars.library.ucf.edu/etd/3494

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F3494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3494?utm_source=stars.library.ucf.edu%2Fetd%2F3494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

OPTIMIZING DYNAMIC LOGIC REALIZATIONS
FOR PARTIAL RECONFIGURATION OF

FIELD PROGRAMMABLE GATE ARRAYS

by

MATTHEW G. PARRIS
B.S. University of Louisville, 2005

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2009

 ii

©2008 Matthew G. Parris

 iii

ABSTRACT

Many digital logic applications can take advantage of the reconfiguration capability of Field

Programmable Gate Arrays (FPGAs) to dynamically patch design flaws, recover from faults, or

time-multiplex between functions. Partial reconfiguration is the process by which a user modifies

one or more modules residing on the FPGA device independently of the others. Partial Reconfigu-

ration reduces the granularity of reconfiguration to be a set of columns or rectangular region of the

device. Decreasing the granularity of reconfiguration results in reduced configuration filesizes and,

thus, reduced configuration times. When compared to one bitstream of a non-partial reconfigura-

tion implementation, smaller modules resulting in smaller bitstream filesizes allow an FPGA to im-

plement many more hardware configurations with greater speed under similar storage requirements.

To realize the benefits of partial reconfiguration in a wider range of applications, this thesis

begins with a survey of FPGA fault-handling methods, which are compared using performance-

based metrics. Performance analysis of the Genetic Algorithm (GA) Offline Recovery method is

investigated and candidate solutions provided by the GA are partitioned by age to improve its effi-

ciency. Parameters of this aging technique are optimized to increase the occurrence rate of complete

repairs. Continuing the discussion of partial reconfiguration, the thesis develops a case-study appli-

cation that implements one partial reconfiguration module to demonstrate the functionality and

benefits of time multiplexing and reveal the improved efficiencies of the latest large-capacity FPGA

architectures. The number of active partial reconfiguration modules implemented on a single FPGA

device is increased from one to eight to implement a dynamic video-processing architecture for Dis-

crete Cosine Transform and Motion Estimation functions to demonstrate a 55-fold reduction in bit-

stream storage requirements thus improving partial reconfiguration capability.

 iv

To my wife, Kathryn

 v

ACKNOWLEDGMENTS

The author thanks the following for their significant contribution to this work:

Kathryn Parris for her enduring love and patience.

Beckie Lewis, Patrick Breen, Arnold Postell, Pat Simpkins, and Bill Parsons of
NASA Kennedy Space Center for supporting this endeavor through the Kennedy
Graduate Fellowship Program.

Carthik Sharma, Kening Zhang, Rashad Oreifej, Rawad Al-Haddad,
Raul Dookhoo, and Heng Tan for their camaraderie and expertise.

Dr. Lee and Dr. Wu for their encouragement as professors and dedication as
Committee Members.

Dr. DeMara for his impressive ability as a mentor in truly caring for his students
and inspiring them to greatness.

God for bestowing the gift of intelligence to know Him and benefit humanity.

 vi

TABLE OF CONTENTS

LIST OF FIGURES .. VIII
LIST OF TABLES ... IX
LIST OF ACRONYMS/ABBREVIATIONS ... X
CHAPTER 1 INTRODUCTION .. 1

1.1 Field Programmable Gate Arrays .. 1
1.2 Space Applications: Radiation-Induced Faults and Handling Techniques 3
1.3 Partial Reconfiguration Overview ... 5
1.4 Benefits of Partial Reconfiguration ... 8
1.5 Thesis Outline .. 10
1.6 Contribution of Thesis ... 11

CHAPTER 2 PREVIOUS WORK .. 14
2.1 Classification of Fault-Handling Techniques .. 14
2.2 A-priori Allocation ... 17

2.2.1 Spare Configurations .. 18
2.2.2 Spare Resources ... 21

2.3 Dynamic Processes .. 26
2.3.1 Offline Recovery Methods .. 26
2.3.2 Online Recovery Methods ... 30

2.4 Comparison of Methods .. 39
2.4.1 Overhead-related Metrics ... 39
2.4.2 Sustainability Metrics .. 42

2.5 Chapter Summary .. 44
CHAPTER 3 EVOLVABLE HARDWARE OPTIMIZATION STRATEGIES 46

3.1 Genetic Algorithms ... 46
3.2 Age-Layered Population Structure Overview .. 47
3.3 ALPS Implementation .. 49

3.3.1 Chromosome Representation .. 50
3.3.2 Initialize Population .. 51
3.3.3 Evaluate Fitness ... 52
3.3.4 Selection .. 53
3.3.5 Genetic Operators .. 54
3.3.6 Replacement ... 55
3.3.7 GA Parameter Summary .. 57

3.4 Experimental Setup ... 58
3.5 Experimental Results ... 59

3.5.1 ALPS Overview ... 59
3.5.2 Standard GA and ALPS Comparison .. 62
3.5.3 Age-Level Management Optimization ... 66

3.6 Chapter Summary .. 70
CHAPTER 4 PARTIAL RECONFIGURATION AND FPGA ARCHITECTURE ANALYSIS .. 72

4.1 Introduction .. 72
4.2 Early Access Partial Reconfiguration Design Flow .. 73

Step 1: Hardware Description Language (HDL) Design and Synthesis 73

 vii

Step 2: Set Design Constraints ... 74
Step 3: Static Module Implementation .. 75
Step 4: Reconfigurable Module Implementation ... 76
Step 5: Merge Implementations .. 76

4.3 Application Using Partial Reconfiguration ... 77
4.3.1 Case-study Application ... 77
4.3.2 Overview of Design using Partial Reconfiguration ... 78
4.3.3 FPGA Implementation .. 81

4.4 Virtex Family Comparison ... 82
Bitstream Size Comparison ... 83

4.5 Chapter Summary .. 85
CHAPTER 5 DYNAMIC PROCESSOR ALLOCATION STRATEGIES ... 86

5.1 Video Compression Overview ... 86
5.2 Scalable Architecture for DCT and Motion Estimation .. 88
5.3 Scalable Architecture Implementation .. 89
5.4 Scalable Architecture Hardware Arrangements .. 93
5.5 Chapter Summary .. 95

CHAPTER 6 CONCLUSION .. 97
APPENDIX: FIGURE 1-1—PERMISSION TO REPRINT .. 102
LIST OF REFERENCES ... 104

 viii

LIST OF FIGURES

Figure 1-1: Top-down View of a Simple, Generic FPGA Architecture [Maxfield 2004] 2
Figure 1-2: SEU Occurrences in Xilinx XQR4062XL FPGAs in the MER LPSIF [Swift 2006] 5
Figure 1-3: Module-based Design Layout with Two Reconfigurable Modules... 7
Figure 2-1: Classification of FPGA Fault-Handling Methods .. 14
Figure 2-2: Classification of Active Fault-Handling Methods .. 16
Figure 2-3: Alternate Fine-grained Configurations for a Faulty 3x3 Partition .. 18
Figure 2-4: Triple Modular Redundancy with Standby Configurations [Zhang et al. 2006] 19
Figure 2-5: Coarse-grained Partitioning Schemes for an FPGA ... 21
Figure 2-6: PLB Repair Strategies using Sub-PLB spares .. 23
Figure 2-7: Fault scenarios with spare PLBs [Hanchek and Dutt 1998] .. 25
Figure 2-8: One Possible Minimax Fault-Handling Strategy for a 5x5 array .. 27
Figure 2-9: Single-Module Repair in TMR Arrangement .. 31
Figure 2-10: Roving STARs within an FPGA ... 33
Figure 2-11: 4x2 Array Configured for a PLB BIST .. 35
Figure 2-12: States of an Individual during its Lifetime [DeMara and Zhang 2005] 37
Figure 2-13: Procedural Flow for Competing Configurations [DeMara and Zhang 2005] 37
Figure 3-1: Standard Genetic Algorithm and ALPS Process Flow .. 49
Figure 3-2: Detailed View of the GA Chromosome .. 50
Figure 3-3: 3-bit Full Adder Implementation (┼ wire junctions are not connected) 58
Figure 3-4: Best Individuals of each Age-level during the Initial Generations 60
Figure 3-5: Best Individuals of each Age-level at each Generation ... 62
Figure 3-6: Best Individuals at each Generation (Averaged over 100 Runs) ... 63
Figure 3-7: Fitness of Population at each Generation (Averaged over 100 Runs) 64
Figure 3-8: Size of Population at each Generation (Averaged over 100 Runs) 65
Figure 3-9: Best Individuals at each Generation (Averaged over 100 Runs) ... 67
Figure 3-10: Fitness of Population at each Generation (Averaged over 100 Runs) 68
Figure 3-11: Distribution of Best Individuals from 100 Runs .. 69
Figure 4-1: Various Modules in an FPGA .. 72
Figure 4-2: Early Access Partial Reconfiguration Flow [Xilinx 2006] .. 73
Figure 4-3: MD5 Hash Algorithm Overview [Wikipedia Current] .. 77
Figure 4-4: Top-level View of Partial Reconfiguration Design ... 79
Figure 4-5: FPGA Implementation and Resource Utilization .. 81
Figure 5-1: Generic Image Compression Method .. 87
Figure 5-2: Location of 8 PEs on a V4SX35 device [Huang et al. 2008] .. 90

 ix

LIST OF TABLES

Table 2-I: Fault-Handling Characteristics and Considerations .. 17
Table 2-II: Summary of Overhead-related Metrics .. 42
Table 2-III: Summary of Sustainability Metrics .. 44
Table 3-I: Summary of GA Parameters .. 57
Table 4-I: Virtex-II Pro Bitstream and Area Sizes .. 83
Table 4-II: Virtex-4 Bitstream and Area Sizes ... 84
Table 5-I: Full Precision PE Implementation Results .. 91
Table 5-II: Size and Configuration Times of Bitstreams [Huang et al. 2008] .. 92
Table 5-III: Partial Reconfiguration Hardware Arrangements for 8 PE Locations 94

 x

LIST OF ACRONYMS/ABBREVIATIONS

AFTB Atomic Fault Tolerant Block

AG Area Group

ALPS Age-Layered Population Structure

ASIC Application Specific Integrated Circuit

BIST Built-in Self Test

BLE Basic Logic Element

BUT Block Under Test

CED Concurrent Error Detection

CGT Combinatorial Group Testing

CLB Configurable Logic Block

CPLD Complex Programmable Logic Device

CRR Competitive Runtime Reconfiguration

DCT Discrete Cosine Transform

DSP Digital Signal Processor

EAPR Early Access Partial Reconfiguration

EPROM Erasable Programmable Read-Only Memory

FABRIC Fault-Bypassing Roving Configuration

FIFO First In, First Out

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GND Electrical Ground

 xi

HDL Hardware Description Language

IOB Input Output Buffer

JPEG Joint Photographic Experts Group

I/O Input/Output

LOC Location

LPSIF Lander Pyro Switching Interface

LUT Look-up Table

MD5 Message-Digest Algorithm 5

ME Motion Estimation

MER Mars Exploration Rover

MGM Minimax Grid Matching

MUX Multiplexer

NASA National Aeronautics and Space Administration

NCD Native Circuit Description

ORA Output Response Analyzer

OTP One-time Programmable

PAR Place and Route

PE Processing Element

PLB Programmable Logic Block

PS/2 Personal System/2

RAM Random Access Memory

TBUF Tri-state Buffer

SEL Single Event Latchup

 xii

SEU Single Event Upset

SHA-1 Secure Hash Algorithm 1

SRAM Synchronous Random Access Memory

STAR Self-Testing Area

TMR Triple Modular Redundancy

TMRSB TMR with Standby

TPG Test-Pattern Generator

TREC Test and Reconfiguration Controller

VCC Electrical Positive Supply Voltage

VGA Video Graphics Array

WUT Wires Under Test

1

CHAPTER 1
INTRODUCTION

1.1 Field Programmable Gate Arrays

After the advent of the transistor, Application Specific Integrated Circuits (ASIC) emerged

to combine different types and numbers of transistors, allowing engineers to create complex digital

designs on a single silicon substrate. To avoid expensive non-recurring engineering costs associated

with custom ASIC designs, engineers could forgo the unrestrained flexibility of ASICs for quick

programmability of simple, fabricated devices called Complex Programmable Logic Devices

(CPLD). As a solution between these two extremes, Field Programmable Gate Arrays (FPGA) ap-

peared in the 1980’s to combine the complexity of ASICs with the programmability of CPLDs.

Since their inception, FPGAs have enabled designers to develop complex systems quickly, decreas-

ing the time-to-market and providing the public with the latest technologies more rapidly.

The hardware architecture of FPGAs originates from concepts found within CPLDs. As

seen in Figure 1-1, an array of Programmable Logic Blocks (PLB) and programmable interconnect

composes the architecture. PLBs contain logic and register resources to implement both sequential

and combinatorial circuits whereas programmable interconnect combines PLBs across the FPGA to

realize complex circuit designs. PLBs may implement logic functions with multiplexers (MUX) or

Look-Up Tables (LUT). LUTs may have three or four inputs connected to an 8x1 or 16x1 table

that utilizes the inputs as an address to select the logic stored at the appropriate location.

In addition to being LUT-based and MUX-based, FPGAs may be configured through anti-

fuses [Actel 2005] or Static Random Access Memory (SRAM) cells [Altera 2008]. Anti-fuse FPGAs

are One-Time Programmable (OTP) and, as such, configure logic and interconnect by sending a

high programming current to form links between routing and voltage levels. The logic and inter-

2

connect configuration of an SRAM FPGA is stored by SRAM cells, allowing unlimited configurabili-

ty. Whereas anti-fuse FPGAs provide more protection against design theft and some inherent pro-

tection from space-borne radiation, SRAM FPGAs allow end-users to change the configuration of a

design multiple times. This flexibility allows designers to test prototype designs on the FPGA prior

to production. In addition, users are able to update the configuration of a design during the opera-

tion life of the FPGA and even designate certain areas of the FPGA to house various modules de-

pending on the needs of the system.

FPGAs have found use among various applications including data processing, networks, au-

tomotive, and industrial. The reconfigurability of FPGAs decreases the time-to-market of these

hardware applications that would otherwise require its functionality to be hard-wired by a manufac-

turer. Additionally, the ability to reconfigure its functionality in the field mitigates unforeseen design

errors. Both of these characteristics make FPGAs an ideal target for spacecraft applications such as

Figure 1-1: Top-down View of a Simple, Generic FPGA Architecture [Maxfield 2004]

3

ground support equipment, Reusable Launch Vehicles, sensor networks, planetary rovers, and deep

space probes [Katz and Some 2003; Kizhner et al. 2007; Ratter 2004; Wells and Loo 2001].

1.2 Space Applications:
Radiation-Induced Faults and Handling Techniques

In-flight devices encounter harsh environments of mechanical/acoustical stress during

launch and high ionizing radiation and thermal stress while outside Earth’s atmosphere. FPGAs

must operate reliably for long mission durations with limited or no capabilities for diagno-

sis/replacement and little onboard capacity for spares. Mission sustainability realized by autonom-

ous repair of these reconfigurable devices is of particular interest to both in-flight applications and

ground support equipment for National Aeronautics and Space Administration (NASA) space mis-

sions [Yui et al. 2003].

When in the space environment, FPGAs are subject to cosmic rays and high-energy protons,

which can cause malfunctions to occur in systems located on FPGAs. These malfunctions may be a

result of Single-Event Upsets (SEU) or Single-Event Latch-ups (SEL) [Wirthlin et al. 2003]. SEUs are

transient in nature, inverting bits stored in memory cells or registers, whereas SELs are permanent

by inducing high operating current into logic or routing resources. Whereas all FPGAs containing

memory cells or registers are vulnerable to SEUs, anti-fuse FPGAs are particularly resilient since

they do not depend upon SRAM cells to store its configuration.

Reconfigurable SRAM FPGAs, on the other hand, store its configuration in SRAM cells,

which increases the risk to SEUs. Additionally, decreasing operating voltages and transistor gate

widths further increases the risk to SEUs. Before the availability of radiation-hardened SRAM

FPGAs, designers of satellites and rovers had no serious alternative to the OTP anti-fuse FPGA. If

4

the inherent fault tolerant capability of anti-fuse FPGAs was not sufficient, designers were restricted

to employing Passive Fault-Handling Methods such as Triple Modular Redundancy (TMR). Due to the

reconfigurable nature of SRAM FPGAs, radiation-hardened SRAM FPGAs have enabled designers

to consider other fault-handling methods such as the Active Fault-Handling Methods described in Sec-

tions 2.2 and 2.3.

Fault Avoidance strives to prevent malfunctions from occurring. This approach increases the

probability that the system is functioning correctly throughout its operational life, thereby increasing

the system’s reliability. Implementing Fault Avoidance tactics such as increasing radiation shielding

can protect a system from Single Event Effects. If those methods fail, however, Fault-Handling me-

thodologies can respond to or recover lost functionality. Whereas some fault-handling schemes

maintain system operation, other fault-handling schemes require removing the system offline to re-

cover from a fault, thereby decreasing the system’s availability. This limited decrease in availability,

however, can increase overall reliability for extended missions.

Scrubbing is a fault-handling technique commonly used to reprogram affected FPGA configu-

ration memory cells with viable configuration data. Scrubbing depends upon reading back the con-

figuration memory cells and detecting faults by comparing them to the original configuration. Upon

isolating a fault, the FPGA can recover the correct bitstream through reconfiguration. The Mars Ex-

ploration Rovers (MER) landing system successfully implemented this method to mitigate SEUs oc-

curring within the Lander Pyro Switching Interface (LPSIF) during the 200-day transit to Mars [Rat-

ter 2004]. As seen in Figure 1-2, about 10 errors had occurred halfway through the transit and ap-

proximately 25 errors can be predicted for the entire transit. For a critical system such as the landing

pyrotechnics, scrubbing ensured mission success.

5

Whereas Scrubbing handles SEUs in the configuration memory, additional fault-handling

methods are necessary to address both transient faults in non-configuration memory elements, such

as flip-flops and the registers they compose, and other permanent faults in the remaining compo-

nents of the FPGA. Sections 2.2, 2.3, and 2.4 classify such fault-handling methods and describe

them in detail.

1.3 Partial Reconfiguration Overview

All SRAM FPGAs require a full-device reconfiguration upon power-up. Initialization in-

volves programming the FPGA with a configuration bitstream file, which resets and configures all

logic, interconnect, and Input/Output (I/O) resources. After initialization, partial reconfiguration is the

capability to modify a fraction of the resources by programming the FPGA with a partial bitstream

file. As discussed in detail within CHAPTER 4 and CHAPTER 5, a full bitstream may be as large as

1,712,614 bytes whereas a partial bitstream may be 2% of this size at 28,306 bytes. This multiple

order-of-magnitude reduction in configuration file size can realize several benefits such as reduced

Figure 1-2: SEU Occurrences in Xilinx XQR4062XL FPGAs in the MER LPSIF [Swift 2006]

6

reconfiguration time, reduced storage requirements, and dynamic allocation of functionality as de-

scribed in detail below in Section 1.4. For use with a fault-handling method such as scrubbing, an

additional advantage of partial reconfiguration includes allowing normal operation of resources not

affected by the partial reconfiguration [Carmichael et al. 2000; Yui et al. 2003].

Xilinx provides many FPGA devices that support partial reconfiguration, ranging from the

simplest Spartan-3 device to the most complex Virtex-5 device. Due to their popularity and wide

range of devices, partial reconfiguration is discussed in the context of the capability provided by Xi-

linx FPGAs. Xilinx provides two forms of partial reconfiguration: static and active [Kao 2005].

Static partial reconfiguration modifies a portion of the FPGA configuration while the entire device

remains inactive and non-operational. Active partial reconfiguration, on the other hand, occurs while

the device is active and operational. In the active case, portions of the FPGA not affected by recon-

figuration continue nominal operations during the reconfiguration process. Further discussions of

partial reconfiguration deal solely with active partial reconfiguration.

Two methods of generating an FPGA partial bitstream file exist: difference-based and mod-

ule-based. Difference-based partial reconfiguration enables designers to make small modifications to

the configuration of logic resources [Xilinx 2007a]. After synthesis, translation, as well as Place and

Route (PAR) are complete for a design and a Native Circuit Description (NCD) file is generated,

these small logic modifications are made. The Xilinx FPGA_Editor design utility accesses this NCD

file and allows users to modify LUT contents, I/O standards, and block RAM (Random Access

Memory) contents. The Xilinx bitstream generation utility, BitGen, 1) generates a new full-device

bitstream reflecting the modifications, 2) compares the new bitstream to the original bitstream, and

3) generates a partial bitstream only containing the differences between the two. When the FPGA is

reconfigured using the partial bitstream, only those logic resources modified using the FPGA_Editor

7

tool are modified. Depending on the type and number of modifications, the filesize of this partial

bitstream is typically orders of magnitude less than the initial full-device bitstream and, consequently,

requires a reconfiguration time orders of magnitude less. Difference-based partial reconfiguration is

only applicable if the original and new FPGA configurations are available, which may not apply to

Evolvable Hardware techniques.

The module-based design flow is a coarse-grained method where specific areas of the FPGA

are designated as reconfigurable and can contain one or more modules within an application [Xilinx

2006]. Figure 1-3 shows a top-level view where the reconfigurable areas maintain a constant size

and location throughout the life of the application. For each reconfigurable area, the design process

forms boundaries into which all logic and interconnect resources of its module must reside. Addi-

tionally, bus macros define the static input/output ports through which all communication between its

module and other modules must take place. The static nature of the reconfigurable area with respect

to size and I/Os allows multiple versions of one module to be interchanged dynamically without

affecting other portions of the FPGA. More detail on this topic is provided in CHAPTER 4, which

Figure 1-3: Module-based Design Layout with Two Reconfigurable Modules

8

explains the module-based design flow. It accompanies CHAPTER 5, which describes applications

that utilize the module-based approach.

1.4 Benefits of Partial Reconfiguration

Full-device reconfiguration is the process of changing the arrangement of all utilized resources on

the FPGA. Due to the unlimited programmability of SRAM FPGAs, the configuration may be

modified many times during an extended mission. One immediate benefit of full-device reconfigu-

ration is that unforeseen design errors may be resolved by revising the bitstream to reconfigure the

FPGA. Additionally, an FPGA with reconfiguration may time-multiplex between two functions that

would otherwise not fit within the allocated number of resources on the FPGA; this would allow the

FPGA to be configured with Function A at one time and at another time the FPGA is configured

for Function B. With reconfiguration, each function may utilize the total number of resources on

the FPGA by loading each function separately, whereas without reconfiguration both functions are

loaded together, of which the sum of resources cannot exceed the total number of resources on the

FPGA.

Partial Reconfiguration is the process where only a portion of the FPGA is reconfigured. Par-

tial reconfiguration provides all the benefits of full-device reconfiguration with two additional advan-

tages: 1) the unchanged portion of the FPGA is not affected and, in some cases, may continue ex-

ecution, and 2) a partial bitstream is smaller in filesize than a full bitstream. Since partial reconfigu-

ration does not affect the unchanged portion, applications that require critical components to con-

tinue operation may be implemented on the same chip as modules that undergo many modifications.

Since the size of the bitstream is directly proportional to the number of resources being con-

figured, partial reconfiguration utilizes a smaller bitstream than a full bitstream for the FPGA. The

9

direct benefit is less space needed for storing the necessary configurations for operation. An addi-

tional benefit derived from a smaller bitstream is that the reconfiguration time is shorter. This sav-

ings in time may be particularly useful for systems that depend upon the configuration time such as

repetitive intrinsic evolution processes utilizing Genetic Algorithms (GA).

With FPGAs increasing in size and capability, partial reconfiguration enables designers to

realize implementations of multiple modules residing on one FPGA device. Whereas full reconfigu-

ration implementations treat the entire FPGA as one module, partial reconfiguration decreases the

module granularity from the size of an FPGA to a size as small as 16 PLBs in height [Lysaght et al.

2006]. Thus, an FPGA containing multiple modules operating simultaneously may be reconfigured

to perform Function 2 instead of Function 1 while the remaining tasks continue to operate. As pre-

viously discussed, the partial bitstream filesize for Function 2 is smaller than the entire bitstream,

thus this change between two functions may occur quicker. Without this finer granularity, a design-

er must generate and store a full bitstream for each combination of modules within the FPGA, ex-

ponentially increasing storage requirements for additional modules.

CHAPTER 4 and CHAPTER 5 demonstrate practical applications that exploit these bene-

fits. For example, with partial reconfiguration a designer only generates one full bitstream with mul-

tiple partial bitstreams, each representing one module. For a significantly less amount of storage

than what non-partial reconfiguration implementations require, a user may implement significantly

more combinations of hardware arrangements, increasing the capability of one FPGA device. As

suggested by CHAPTER 5, an increase in capability of smaller FPGAs through time-multiplexed

pipelining of functions may be comparable to larger FPGAs not utilizing partial reconfiguration.

10

1.5 Thesis Outline

Various time and space optimizations, along with architectural approaches to realize dynamic

functionality, are discussed throughout the thesis. CHAPTER 2, PREVIOUS WORK, surveys the

current research of fault-handling techniques for FPGAs, some of which utilize partial reconfigura-

tion to decrease the size of alternative bitstreams used to tolerate faults. The capabilities of these

fault-handling methods develop a descriptive classification ranging from simple Passive techniques

to robust Dynamic methods. Fault-handling methods not requiring modification of the FPGA de-

vice architecture or user intervention to recover from faults are examined and evaluated against

overhead-based and sustainability performance metrics such as additional resource requirements,

operational delay, fault tolerance, and fault coverage. This classification alongside these perfor-

mance metrics forms a standard for useful comparisons of fault-handling methods.

CHAPTER 3, EVOLVABLE HARDWARE OPTIMIZATION STRATEGIES, expands

the discussion of Standard GAs in CHAPTER 2 to investigate techniques that improve the ability of

a GA to repair FPGAs. To evolve and design higher-performing antennas, previous research parti-

tions the population of a standard GA according to the longevity of individual designs within the

population using an Age-layered Population Structure (ALPS). Whereas this application may be

viewed a continuous search space, CHAPTER 3 reviews the techniques proposed and applies them

to the discontinuous and multimodal search space of FPGA repair. The performance of these op-

timization techniques is compared to a standard GA used for FPGA repair. Parameters are then

optimized to increase further the performance of the ALPS strategy.

CHAPTER 4, PARTIAL RECONFIGURATION AND FPGA ARCHITECTURE

ANALYSIS, proposes a case study to refine some of the benefits of partial reconfiguration. The

proposed system switches between two hash algorithms, Message Digest Algorithm-5 (MD5) and

11

Secure Hash Algorithm-1 (SHA-1), demonstrating the ability of partial reconfiguration to time-

multiplex between two applications while only requiring the spatial resources of one. In implement-

ing the case study on a Virtex-II Pro FPGA, each step of the module-based design process is de-

scribed in detail. Then, a comparison is made between Virtex-II Pro and Virtex-4 implementations

to demonstrate architectural portability and assess how specific hardware devices affect the results of

the software-based partial reconfiguration design flow.

CHAPTER 5, DYNAMIC PROCESSOR ALLOCATION STRATEGIES, introduces a

scalable architecture for video compression functions on FPGAs that exploits a wide range of bene-

fits provided by partial reconfiguration. More specifically, the scalable architecture focuses on the

Discrete Cosine Transform (DCT) function, which is reviewed briefly in the context of the video

compression process. A DCT hardware implementation is optimized to form eight discrete

Processing Elements (PE), each of which adds functionality to the DCT process. Through partial

reconfiguration, these PEs may be added or removed in order to satisfy dynamic requirements of

the user. The architecture is shown to be scalable in both the number of PEs allocated to the DCT

function and the precision with which the DCT function is calculated. CHAPTER 6 concludes the

work described herein and proposes future work from this research.

1.6 Contribution of Thesis

The contributions of this thesis include the following:

1. Novel Taxonomy: Many different fault tolerance methods proposed by the research

community, including those that detect, isolate, and repair faults, are considered to

form a descriptive classification. Additionally, performance metrics that enable

12

quantitative comparisons of capabilities are applied to the SRAM FPGA fault-

handling methods surveyed.

2. FPGA Repair Optimization: The Age-layered Population Structure (ALPS) is applied

to the FPGA repair domain to prevent convergence of the population of candidate

solutions by partitioning the population into sub-populations and injecting random

individuals at regular intervals. As a result, ALPS explores more of the repair search

space, which decreases the population fitness by 30%, and produces complete repairs

with 300% greater frequency than a standard GA. Furthermore, introducing a new

selection strategy and optimizing the selection probability increases the complete re-

pair frequency to 500%.

3. The technique of utilizing the age of individuals to subside population convergence

for evolutionary antenna design are applied to the problem domain of repairing digi-

tal circuits located on FPGAs. In doing so, Furthermore, improvements to the aging

strategy are introduced and optimized to enhance the performance of ALPS. In re-

pairing a 3-bit adder, the results presented quantify the benefit of aging by producing

complete repairs with greater frequency.

4. Architectural Analysis: The partial reconfiguration implementation process is com-

pleted on two FPGA architectures, Xilinx Virtex-II and Virtex-4, to reveal the bene-

fits of the newer Virtex-4 architecture. Analysis of the partial bitstream filesizes

identifies the Virtex-4 to have a smaller granularity configuration frame, which gene-

rates bitstreams that more closely represent the resources intended to be reconfi-

gured. Applications reconfiguring small portions of the Virtex-4 FPGA generate bit-

13

streams smaller in filesize than the Virtex-II, which results in shorter reconfiguration

times.

5. Adaptive Architecture Implementation: Partial reconfiguration is shown to make viable a

dynamic and scalable video architecture that makes use of the benefits previously

discussed in Section 1.4. Without partial reconfiguration, time multiplexing of video

processing functions is not possible due to long interruptions of the application from

configuration times. Not only does partial reconfiguration allow portions of the

FPGA not affected by the reconfiguration to operate without interruption, configu-

ration times are decreased, which reduces the length of interruptions to areas being

reconfigured. Additionally, multiple reconfigurable areas within one FPGA are

shown to significantly increase the capability of the device while maintaining storage

requirements similar to an application with one reconfigurable area.

14

CHAPTER 2
PREVIOUS WORK

2.1 Classification of Fault-Handling Techniques

As suggested by Cheatham et al. [2006], Figure 2-1 divides fault-handling approaches into

two categories based on the provider of the method. Manufacturer-Provided fault recovery techniques

[Cheatham et al. 2006; Doumar and Ito 2003] address faults at the level of the device, allowing man-

ufacturers to increase the production yield of their FPGAs. These techniques typically require mod-

ifications to the current FPGA architectures that end-users cannot perform. Once the manufacturer

modifies the architecture for the consumer, the device can tolerate faults from the manufacturing

process or faults occurring during the life of the device. Concealing the fault through the underlying

fabric of the FPGA is advantageous; users need not know of the occurring hardware faults. Despite

making faults transparent to the user, the ability of these methods to tolerate faults is limited in both

location and number.

User-Provided methods, however, depend upon the end-user for implementation. These high-

Figure 2-1: Classification of FPGA Fault-Handling Methods

15

er-level approaches use the configuration bitstream of the FPGA to integrate redundancy within a

user’s application. By viewing the FPGA as an array of abstract resources, these techniques may se-

lect certain resources for implementation, such as those exhibiting fault-free behavior. Whereas

manufacturer-provided methods typically attempt to address all faults, user-provided techniques may

consider the functionality of the circuit to discern between dormant faults and those manifested in

the output. This higher-level approach can determine whether fault recovery should occur imme-

diately or at a more convenient time.

Figure 2-1 further separates user-provided fault-handling methods into two categories based

on whether an FPGA’s configuration will change at run-time. Passive Methods embed processes into

the user’s application that mask faults from the system output. Techniques, such as TMR, are quick

to respond and recover from faults due to the explicit redundancy inherent to the processes. Speed,

however, does come at the cost of increased resource usage and power. Even when a system oper-

ates without any faults, the overhead for redundancy is continuously present. In addition to this

constant overhead, these methods are not able to change the configuration of the FPGA. A fixed

configuration limits the reliability of a system throughout its operational life. For example, a passive

method may tolerate one fault and not return to its original redundancy level. This reduced reliabili-

ty increases the chance of a second fault causing a system malfunction.

 Active Methods strive to increase reliability and Sustainability by modifying the configuration of

the FPGA to adapt to faults. This allows a system to remove accumulated SEUs and avoid perma-

nently faulty resources to reclaim its lost functionality. In addition, active schemes can transform

faulty resources into constructive components by incorporating stuck-at faulty behavior into the cir-

cuit’s functionality. External processors, which cost additional space, typically determine how to

recover from the fault. These methods also require additional time either to reconfigure the FPGA

16

or to generate the new configuration. Figure 2-2 illustrates two classes—A-priori Allocation and Dy-

namic Processes— respectively described in Sections 2.2 and 2.3.

This survey focuses on methods modifying an FPGA’s configuration during run-time to ad-

dress transient and permanent faults. Since SRAM FPGAs can be 1) radiation-tolerant, 2) reconfi-

gured, and 3) partially reconfigured with the remaining portion remaining operational, research has

also begun to focus on exploiting these capabilities for use in environments where human interven-

tion is either undesirable or impossible. Table 2-I lists various considerations addressed in Section

2.4.

Figure 2-2: Classification of Active Fault-Handling Methods

17

2.2 A-priori Allocation

Since a typical FPGA application does not utilize 100% of the resources, the standby-spare

size can be reduced from an entire FPGA to unused resources within the FPGA. A-priori Alloca-

tion takes advantage of the regularity of the FPGA architecture by assigning spare resources during

design-time, independent of fault locations detected during run-time. These techniques may recover

from a fault utilizing design-time compiled spare configurations or re-mapping and rerouting techniques

utilizing spare resources. Spare configuration methods must provide sufficient configurations whereas

spare resource methods must allocate sufficient resources to facilitate a repair without incurring too

much overhead. Sections 2.2.1 and 2.2.2 respectively address these two types of A-priori Allocation.

Table 2-I: Fault-Handling Characteristics and Considerations

 Metric Description

Overhead

Logic/Interconnect
Resources

additional number of resources required
due to fault-handling strategy

Operational Delay reduced rate of computations due to
fault-handling strategy

Fault Latency amount of time required to begin
addressing a detected and isolated fault

Unavailability amount of time system is offline to
completely repair a fault

Recovery Goodput percentage of correct outputs provided
during fault repair

Sustainability

Fault Occlusion ability to bypass and/or exploit defective
resources

Repair Granularity smallest arrangement of components that
can be repaired

Fault Tolerance maximum number of faults handled

Fault Coverage handling of permanent, transient, logic,
or interconnect faults

Critical
Requirements

external fault-handling components
required relied upon as fault free

18

2.2.1 Spare Configurations

2.2.1.1 Fine-grained Partitioning

Lach et al. [1998] implement a fine-grained partitioning technique where tiles, groups of logic

and interconnect resources, are formed. The goal of the tiling technique is to partition FPGA re-

sources in such a way that at least one spare Programmable Logic Block (PLB) is included within

each tile to form Atomic Fault-Tolerant Blocks (AFTB). Since each AFTB contains at least one spare

PLB, each tile is able to tolerate at least one PLB fault.

Alternate fine-grained configurations generated during design-time and stored in an external

memory for run-time provide the ability to tolerate faults. For a significant reduction in storage

space, each configuration is implemented as a partial configuration as opposed to a full configura-

tion. The Xilinx Virtex-4 architecture, for example, allows two-dimensional partial configurations

with a minimum height of 16 Configurable Logic Blocks (CLB) [Lysaght et al. 2006].

During design-time, tiling implements multiple arrangements of logic resources within an

Figure 2-3: Alternate Fine-grained Configurations for a Faulty 3x3 Partition

19

AFTB as separate configurations such that each PLB is represented as a spare in at least one confi-

guration. As seen in Figure 2-3, the bottom-right AFTB in the FPGA produces eight alternate con-

figurations. To tolerate a fault during run-time, the system implements the configuration of the faul-

ty AFTB that renders the faulty PLB as spare, effectively bypassing the fault. Figure 2-3 depicts

configuration #4 as one such alternate. Fixed inter-AFTB interfaces between alternate configura-

tions render the arrangement of each AFTB logically independent.

2.2.1.2 Medium-grained Partitioning

Since Triple Modular Redundancy (TMR) performs the majority vote of three modules, the

voted output remains correct even if a single module is defective. Thus, TMR is a passive fault-

handling technique widely used to mitigate permanent and transient faults. Whereas TMR can tole-

rate one faulty module, a fault occurring in a second module would produce a faulty functional out-

put. As previously discussed, TMR is, thus, is limited in its fault tolerance.

To increase system reliability, Zhang et al. [2006] combine TMR with Standby (TMRSB) to

Figure 2-4: Triple Modular Redundancy with Standby Configurations [Zhang et al. 2006]

20

create a medium-grained spare configuration method. In TMRSB, each module of the TMR ar-

rangement contains standby configurations that are available at run-time. At design-time, each of

these configurations is created to utilize varying FPGA resources. Upon detecting a fault within one

of the modules, a standby configuration not utilizing a faulty resource is selected and implemented

to bypass the fault. TMRSB exploits the ability of TMR to remain online with two functional mod-

ules while the defective module undergoes repair. Repairing modules at run-time increases the relia-

bility of TMR by allowing another fault to occur in a second module while maintaining a correct

functional output. The process repeats until all standby configurations are exhausted.

2.2.1.3 Coarse-grained Partitioning

Mitra et al. [2004] present a coarse-grained fault-handling technique that reserves one or

more columns of unused PLBs to tolerate faults. At design-time, multiple configurations are gener-

ated, each of which locates the spare columns in a distinct areas of the FPGA. Once a fault occurs

and is located, the system implements a configuration that covers the fault with its spare columns. If

the fault location is not available, then all configurations may be implemented and tested one at a

time until a configuration provides a functional application.

Designers may partition the FPGA in one of two ways. If the application is small with re-

spect to the FPGA device, then a non-overlapping method can be considered. The non-overlapping

scheme separates the FPGA into columns, where one column contains the entire application. The

remaining columns are not used by the application and are reserved as spares. As seen in Figure

2-5a, this method generates three distinct configurations, each of which utilizes non-overlapping

FPGA resources. More generally, the number of generated configurations is 1+m , where m equals

the number of tolerable faulty columns.

21

For larger applications, Figure 2-5b displays a configuration that separates the FPGA appli-

cation into columns while reserving at least one column as spare. Alternate configurations are gen-

erated during design-time so that within each configuration a different column becomes the spare

column. In the case of one spare column and four columns containing the application, five distinct

configurations are generated. More generally, the number of generated configurations is
!!
)!(

mk
mk + ,

where k is the number of columns containing the application. This scheme is overlapping since the

various configurations generated overlap in utilizing FPGA resources. Unlike the non-overlapping

scheme, some configurations, such as Figure 2-5b, may require horizontal routing resources within

the spare column to connect the separated logic resources.

2.2.2 Spare Resources

2.2.2.1 Sub-PLB Spares

Typical FPGA architectures implement logic functions with Look-Up Tables (LUT). As

shown in Figure 2-6, Basic Logic Elements (BLE) combine each LUT with a flip-flop and output MUX

a) Non-overlapping Scheme b) Overlapping Scheme

Figure 2-5: Coarse-grained Partitioning Schemes for an FPGA

22

to enable sequential logic implementation. PLBs, in turn, contain multiple BLEs as in the Virtex-4

architecture, which contains eight BLEs per PLB.

By implementing ten benchmark-circuits, Lakamraju and Tessier [2000] found that, on aver-

age, 40% of the utilized 4-input LUTs contained one or more spare input. This suggests that an

FPGA application contains inherent spares at a finer granularity than the PLB-level as previously

discussed. This PLB repair strategy reserves spare BLEs and implements a hierarchy of fault-

handling strategies to take advantage of these spare resources, beginning with the finest granularity:

LUT input swap, BLE swap, PLB I/O swap, incremental reroute, and complete reroute.

Given the identification of a faulty LUT input by a fault-detection technique, the sub-PLB

fault-handling method attempts to swap the faulty resource with a spare input of the same LUT.

Figure 2-6 shows input I2 of BLE1 as a faulty LUT input that may be swapped with a spare LUT

input such as input I3 to avoid the fault. After swapping the LUT inputs, the contents of the LUT

are modified to compensate for the input change. Whereas Figure 2-6 depicts a full PLB input

routing matrix, some FPGA architectures contain only a partial routing matrix, restricting the num-

ber of PLB inputs to which a given LUT input may connect. For these architectures, the LUT input

swapping method must consider whether the spare LUT input has access to the same PLB inputs as

the faulty LUT input to prevent rerouting. If spare LUT inputs with similar connections are availa-

ble, this method is ideal as it does not require logical or connection changes outside of the BLE. If a

spare LUT input is not available, then the entire BLE is considered faulty.

23

 When a BLE is considered faulty, as is the case with BLE 3 in Figure 2-6, it is swapped with

the reserved spare shown as BLE 4. In the case of partial routing matrices, the BLE swapping me-

thod needs to ensure the spare BLE has access to the same PLB inputs as the faulty BLE to prevent

rerouting. Figure 2-6 shows that BLE 3 can swap with BLE 4 because of the similarity in connectiv-

ity, thus the change only affects the PLB and not the remainder of the circuit. If a spare BLE is not

available, then the entire PLB is considered faulty and incremental rerouting is required. Incremental

rerouting is discussed further in Section 2.3.1.1. Similar to the LUT input swap, faulty PLB in-

put/output wires may be swapped with spare wires that contain similar connections. If a spare PLB

input/output wire is not available, then incremental rerouting is required.

Figure 2-6: PLB Repair Strategies using Sub-PLB spares

24

2.2.2.2 PLB Spares

To tolerate logic and interconnect faults within a PLB, Hanchek and Dutt [1998] allocate the

rightmost PLB of each row as spare. In the case of a fault, a string of PLBs beginning with the faul-

ty PLB is shifted one PLB to the right. More formally, this technique is node covering, which allocates

a cover PLB to each PLB. In the case of a fault occurring in a PLB, its cover replaces the functio-

nality of the faulty PLB to avoid the fault. This covering continues within a row in a cascading fa-

shion until the spare PLB at the end of the row is reached. For a PLB to become a cover, it must

duplicate 1) its logic functionality and 2) its connectivity to other PLBs. Since PLBs within most

FPGA architectures are identical, duplicating logic functionality between PLBs is inherent to the

FPGA. Hanchek and Dutt ensure that cover cells duplicate connectivity by incorporating reserved

wire segments during the design process.

As seen in Figure 2-7, some routing segments are utilized by the initial configuration whereas

others are reserved, one of which is located above location 3. As is the case with Fault Scenario A,

this reserved segment becomes utilized by the functionality of PLB B by shifting into location 3.

Likewise, the two reserved segments above and to the right of location 4 become utilized by PLB D.

Additionally, a design may contain inherent reserved segments where some utilized wire segments of

the initial configuration also function as reserved wire segments in a fault scenario. This is seen in

Fault Scenario A where PLB B allows its utilized wire segment above location 2 to be used by PLB

A. During design-time, a custom tool determines the necessary reserved routing segments to enable

the FPGA to tolerate one faulty PLB per row. Two heuristics that increase the efficiency of routing

include Segment Reuse and Preferred Routing Direction. Segment Reuse allows a utilized net and a re-

served net to map to the same wire segment if the utilized net will move off of the wire segment

with the shifting the PLBs, therefore freeing up a wire segment for the reserved net. For nets that

25

cross the FPGA, Preferred Routing Direction encourages the router to extend such nets to the right,

horizontally, as far as possible before extending the net in either vertical direction. Providing longer

continuous horizontal segments allows greater opportunities for a design to contain inherent re-

served segments as discussed above.

Whereas the authors specify that both the logic and interconnect fault-handling technique

requires modification to the FPGA architecture and, thus, is intended for manufacturer yield en-

hancement, end-users may choose to implement the node-covering strategy for tolerating logic

faults. Since the design process has ensured that the cover cells can duplicate functionality and con-

nectivity, the routing phase of the place-and-route process is finalized during design-time. To avoid

a faulty PLB within a row, an end-user only needs to re-place the PLBs by shifting a row of PLBs

into a fault-free configuration. The time to modify an existing configuration by re-placing a row of

PLBs is significantly less than the time required either to generate a new configuration from scratch

or to incrementally reroute an existing configuration.

Figure 2-7: Fault scenarios with spare PLBs [Hanchek and Dutt 1998]

26

2.3 Dynamic Processes

Methods using dynamic processes aim to allocate spare resources or otherwise modify the

configuration during run-time after detecting the fault. Whereas these approaches offer the flexibili-

ty of adapting to specific fault scenarios, additional time is necessary to generate appropriate confi-

gurations to repair the specific faults. Offline recovery methods require the FPGA’s removal from an

operational status to complete the refurbishment. Online recovery methods maintain some degree of

data throughput during the fault recovery operation, increasing the system’s availability. Sections

2.3.1 and 2.3.2 respectively address these two types of Dynamic Processes.

2.3.1 Offline Recovery Methods

2.3.1.1 Incremental Rerouting Algorithms

The node-covering method discussed in Section 2.2.2.2 avoids a fault by re-placing a circuit

into design-time allocated spares using design-time reserved wire segments. Dutt et al. [1999] ex-

pand this method by dynamically allocating reserved wire segments during run-time instead of de-

sign-time. Run-time reserved wire segments allow the method to utilize unused resources in addi-

tion to the spares allocated during design-time.

Emmert and Bhatia [2000] present a similar Incremental Rerouting approach that does not

require design-time allocated spare resources. The fault recovery method assumes an FPGA to con-

tain PLBs not utilized by the application, thus exploiting unused fault-free resources to replace faulty

resources. Upon detecting and diagnosing a logic or interconnection fault by some detection me-

thod, Incremental Rerouting calculates the new logic netlist to avoid the faulty resource. The me-

thod reads the configuration memory to determine the current netlist and implements the incremen-

tal changes through partial reconfiguration.

27

Since faulty PLBs may not be adjacent to a spare resource, a string of PLBs is created logi-

cally, starting with the faulty PLB and ending with the PLB adjacent to the spare resource. Figure

2-8 shows one such string, starting with PLB 25, including PLB 20, and ending with PLB 15. To

avoid the fault, the string of PLBs shifts away from the faulty resource and towards the spare re-

source. In the case of node covering, every row has a spare resource so the string of PLBs within

the row simply shifts to the right, leaving the faulty resource unused. Since this method does not

allocate a spare resource for every row, the string of PLBs may extend into multiple rows to reach a

spare PLB as shown in Figure 2-8.

This approach uses Minimax Grid Matching (MGM) to determine the optimum re-placement

of faulty PLBs. Minimax refers to an algorithm that minimizes the maximum distance, L, between

the faulty PLB and an unused, fault-free PLB. Beginning with L = 1, Figure 2-8 shows that the faul-

ty cell 23 is adjacent to the spare cell 18 and thus a match, but faulty cells 8 and 25 do not have adja-

cent spares and thus no matches. Incrementing L to two, faulty cell 23 matches cell 17 while main-

taining its match to cell 18. Additionally, faulty cell 8 matches cell 18 and cell 10 whereas faulty cell

Figure 2-8: One Possible Minimax Fault-Handling Strategy for a 5x5 array

28

25 still has no matching spare. Incrementing L to three, faulty cell 23 acquires no new matches,

faulty cell 8 acquires cell 17 as a match and faulty cell 25 matches cell 10 and cell 18. Since all cells

have a match at minimax length L = 3, one match is then chosen for each faulty cell. Figure 2-8

depicts one such possibility for the three faulty PLBs, where, for example, the logic in cell 23 shifts

to cell 22 and the logic in cell 22 shifts to the spare cell 17.

Re-placing PLBs requires the wire segments of the moving PLBs to be rerouted. The confi-

guration memory of the FPGA is read to determine which nets are affected by the re-placed PLBs.

All faulty nets and those that solely connect the moved PLBs are ripped-up [Emmert and Bhatia

2000] while those that connect other unmoved PLBs remain unchanged. A greedy algorithm then

incrementally reroutes each of the dual-terminal nets to reestablish the application’s original functio-

nality. Initially, the algorithm only uses spare interconnection resources within the direct routing

path, but may expand its scope to encompass wider routing paths for unroutable nets. Lakamraju

and Tessier [2000] expand this work by utilizing historical node-cost information from previous

routing attempts to increase the probability of routing success.

2.3.1.2 Genetic Algorithm Repair

Genetic Algorithms (GA) are inspired by evolutionary behavior of biological systems to pro-

duce solutions to computational problems [Mitchell 1996]. Suitable for complex search spaces, GAs

have proven valuable in a wide range of multimodal or discontinuous optimization problems. Pre-

vious research has investigated the capability of GAs to design digital circuits [Miller et al. 1997] and

repair them upon a fault [Keymeulen et al. 2000]. Vigander [2001] proposes the use of GAs to re-

pair faulty FPGA circuits. As a proof of concept, Vigander implements extrinsic evolution, utilizing

29

a simulated feed-forward model of the FPGA device with genetic chromosomes representing logic

and interconnect configurations.

The evolution process begins with initializing a population of candidate solutions. These ini-

tial solutions contain different physical implementations of the same functional circuit. In the midst

of a fault, the performance of each configuration is evaluated, revealing which configurations are

most affected by the fault. If none of the available configurations provides the desired functionality,

then genetic operators create a new population of diverse candidate solutions from the previous

configurations. Those previous configurations having a higher performance rating are more likely to

be selected and to combine with other configurations by the Crossover genetic operator. Additionally,

the Mutation genetic operator injects random variations in the newly created candidate solutions.

Vigander also makes use of a Cell Swap operator that allows the functionality and connectivity of a

faulty cell to swap with a spare cell. The GA evaluates the newly created solutions and replaces

poorer performers in the old population with better performers in the current population to create a

new generation of candidate solutions. This evolutionary process repeats, stopping when an optimal

solution is discovered or after a specific number of generations.

2.3.1.3 Augmented Genetic Algorithm Repair

To decrease the amount of time required to generate a repair, Oreifej et al. [2006] augment

Vigander’s GA fault-handling concept with a Combinatorial Group Testing (CGT) fault isolation tech-

nique. Group Testing partitions suspect resources into groups and coordinates those groups into a

minimal number of tests to isolate the faulty resource. If a group manifests a fault within one of

these tests, then the group is known to contain the faulty resource and thus the resources within the

30

group are classified as suspect. In a deterministic manner, the suspect resources are partitioned into

iteratively smaller groups and tested until the faulty resource is isolated.

A population within a GA contains various configurations, each of which categorizes the

FPGA resources into two groups: utilized and unutilized resources. CGT evaluates each configura-

tion for correct functionality. If a configuration manifests a faulty output, then the resources used

by that configuration are considered suspect. Since the various configurations within the population

form groups that overlap particular resources, CGT tests multiple configurations and accumulates

the number of times each resource is considered suspect through a History Matrix. Configurations

are rotated through the FPGA and tested until one element becomes the maximum value within the

matrix, isolating the fault to one resource. The GA, in turn, uses the fault location information to

avoid faulty resources while evolving a repaired configuration.

2.3.2 Online Recovery Methods

2.3.2.1 TMR with Single-Module Repair

In Section 2.2.1.2, faults in TMR arrangements were handled with a-priori, design-time con-

figurations. Methods presented by Ross and Hall [2006], Shanthi et al. [2002], and Garvie and

Thompson [2004] address faults dynamically through GA repair. As shown by Figure 2-9, genetic

operators and reconfiguration are invoked when a defective module is detected. At design-time,

Ross and Hall [2006] produce a population of diverse configurations for implementation. At run-

time, three of these configurations are implemented into the circuit and monitored for discrepancies.

Agreeing outputs indicate that the modules are functioning correctly whereas discrepancies indicate

defective resources utilized by one of the configurations. A simple mutation genetic operator is ap-

31

plied to defective modules and the fitness of the new individual is evaluated. The process repeats

until the fault is occluded.

In addition to the strategy above, Shanthi [2002] utilize a deterministic approach in identify-

ing faulty resources. By monitoring the resources within each configuration, resources utilized by

viable modules gain confidence whereas resources utilized by faulty modules gain suspicion. This

information allows fault handling by implementing configurations not using defective resources.

Additionally, differing configurations can be rotated to reveal dormant faults in unused resources.

Instead of selecting from a diverse population, Garvie and Thompson [2004] implement

three identical modules. The commonality between configurations permits a Lazy Scrubbing tech-

nique, which considers the majority vote of the three configurations as the original configuration

when scrubbing a faulty module. Of course, Lazy Scrubbing only applies when a GA has not mod-

ified the original configurations to tolerate a permanent fault. To address permanent faults, a (1+1)

Evolutionary Strategy [Schwefel and Rudolph 1995] provides a minimal GA, which produces one

genetically modified offspring from one parent and chooses the most fit between the parent and

offspring. To mitigate the possibility for a misevaluated offspring replacing a superior parent, a His-

Figure 2-9: Single-Module Repair in TMR Arrangement

32

tory Window of past mutations is retained to enable rollback to the superior individual. Normal

FPGA operational inputs provide the test vectors to evaluate the fitness of newly formed individu-

als. To determine correct values, an individual’s output is compared to the output of the voter. An

individual’s fitness evaluation is complete when it has received all possible input combinations.

2.3.2.2 Online Built-in Self Test

Emmert et al. [2007] present an approach that pseudo-exhaustively tests, diagnoses, and re-

configures resources of the FPGA to restore lost functionality due to permanent faults. The appli-

cation logic handles transient faults through a Concurrent Error Detection (CED) technique and by

periodically saving and restoring the system’s state through checkpointing. As shown in Figure 2-10,

this method partitions the FPGA into an Operational Area and a Self-Testing ARea (STAR), which

consists of a Horizontal STAR and a Vertical STAR. Such an organization allows normal functio-

nality to occur within the Operational Area while Built-In Self Tests (BIST) and fault diagnosis occurs

within the STARs. Whereas other BIST methods may utilize external testing resources assumed

fault-free, the resources-under-test also implement the Test-Pattern Generator (TPG) and the Out-

put Response Analyzer (ORA).

To provide fault coverage of the entire FPGA, the STARs incrementally rove across the

FPGA, each time exchanging its tested resources for the adjacent, untested resources in the Opera-

tional Area. The H-STAR roves top to bottom then bottom to top while the V-STAR roves left to

right then right to left. Whereas one STAR can test and diagnose PLBs, two STARs are required to

test and diagnose programmable interconnect—the H-STAR for horizontal routing resources and

the V-STAR for vertical routing resources. Where they intersect, the two STARs may concurrently

test both horizontal and vertical routing resources and the connections between them. Since faults

33

have equal probability to occur within used resources with unused resources, Roving STARs pro-

vides testing for all resources. Uncovering dormant faults in unused resources prevents them from

being allocated as spares to replace faulty operational resources.

In addition to facilitating testing, diagnosis, and reconfigurations, a Test and Reconfiguration

Controller (TREC) is responsible for roving the STARs across the FPGA. The TREC is implemented

as an embedded or external microprocessor that communicates to the FPGA through the Boundary-

Scan interface. All possible configurations of the STARs are processed during design-time and

stored by the TREC for partial reconfiguration during run-time. Relocating the STARs through par-

tial reconfiguration only affects the logic and routing resources within the STAR’s current and new

locations. When a STAR’s next location includes sequential logic, the TREC pauses the system

clock until the logic is completely relocated. In addition to pausing the system clock, the TREC im-

plements an Adaptable System Clock where the clock speed is adjusted to account for timing delays

arising from new configurations that adapt to faults.

Roving STARs supports a three-level strategy to handling permanent faults. In the first level

when a STAR detects a fault, it remains in the same position to cover the fault. Since a STAR con-

tains only offline logic and routing resources, testing and diagnosing time is not at a premium and

Figure 2-10: Roving STARs within an FPGA

34

the application can continue to operate normally while the TREC tests and diagnoses the fault. Af-

ter diagnosing the fault, the TREC determines if the fault will affect the functionality that will soon

occupy the faulty resources upon moving the STAR. If the fault will not affect the new configura-

tion’s functionality, such as only affecting resources that will be unused or spare, then the applica-

tion’s output will not articulate the fault and no action is required. If the fault will affect the new

configuration’s functionality, then the TREC generates a Fault-Bypassing Roving Configuration (FA-

BRIC) to reroute incrementally the new configuration so that the fault will not affect its functionali-

ty. Whereas some FABRICs may be compiled during design-time, most fault scenarios will dictate

compiling them online while the STAR covers the fault. While one STAR covers a fault for testing

and diagnosis, the second STAR may continue roving the FPGA searching for faults in its respective

routing resources and PLBs. The second level strategy then applies the FABRIC that either was

compiled during design-time or was generated during the first-level strategy. Replacing a faulty re-

source with a spare one through a FABRIC thus releases the STAR covering the fault to continue

roving the FPGA.

If the fault affects functionality and no spare resources are available to bypass the fault, then

the third strategy is invoked. As a last resort, the TREC has an option to perform STAR Stealing,

which reallocates resources from a STAR to the Operational Area to bypass the fault. Removing

resources from a STAR immobilizes it from roving the FPGA. Whereas the second STAR can test

all PLBs in an FPGA with an immobile STAR, only half of the routing resources can be tested. In

some situations, however, a mobile STAR may intersect and forfeit its resources to an immobile

STAR, which releases it to rove the FPGA and test the remaining routing resources.

35

As previously stated, testing and diagnosis occurs within resources of a STAR as shown by

Figure 2-11. Utilizing the resources of the STAR through partial reconfiguration, the TREC confi-

gures a TPG, an ORA, and either two Blocks Under Test (BUT) for a PLB test or two Wires Under

Test (WUT) for an interconnect test. Since no resource may be assumed to be fault-free, the TPG,

BUTs/WUTs, and ORA are rotated through common resources of the STAR. The TREC main-

tains the results for all test configurations so that the common faulty resources can be identified be-

tween the two parallel BUTs or WUTs and the rotation of resources.

2.3.2.3 Consensus-based Evaluation of Competing Configurations

Whereas previous Online GA methods utilize an N-MR voting element, the Competitive Run-

time Reconfiguration (CRR) proposed by DeMara and Zhang [2005] handle faults through a pairwise

functional output comparison. Similar to previous GA methods, each of the two individuals is a

unique configuration on the target FPGA exhibiting the desired functionality. CRR divides the

FPGA into two mutually exclusive regions, allocating the Left Half configuration to one individual

and the Right Half configuration to another individual in the population of alternate configurations.

Figure 2-11: 4x2 Array Configured for a PLB BIST

36

This detection method realizes a traditional CED arrangement that allocates mutually exclusive re-

sources for each individual. The comparison results in either a discrepancy or a match between half-

configuration outputs, which detects any single resource fault with certainty. This indicates the

presence or absence of a FPGA resource fault for all inputs that articulate the fault when applied to

a combinational logic module or a pipeline stage consisting of combinational logic.

The Left and Right individuals of the pairwise comparison are selected from their respective

Left and Right populations to maintain resource exclusivity. Functionally identical, yet physically

distinct, Pristine individuals developed at design-time compose the initial population. As Figure

2-12 shows, the Left and Right individuals remain Pristine as long as the Left and Right indi-

viduals exhibit matching outputs. Additionally, the fitness values of both individuals are increased to

encourage selection of individuals exhibiting correct behavior. Upon detecting a discrepant output,

however, the fitness state of both individuals are demoted and labeled as Suspect. Furthermore,

the fitness values of both individuals are decreased to discourage selection of individuals exhibiting

discrepant behavior. Over many pairings and evaluations, the fitness value of individuals utilizing

faulty resources, and therefore its probability for selection, will be decreased regardless of pairing.

Moreover, non-faulty individuals that were previously paired with faulty individuals will eventually

be exonerated.

Figure 2-12 shows that the fitness state of individual i, which has been labeled as Suspect,

is further demoted when its fitness (fi) drops below the Repair Threshold (fRT). Genetic operators are

applied to the Under Repair individual, until its fitness rises above the Operational Threshold (fOT).

Selecting an Operational Threshold greater than the Repair Threshold increases confidence that the

individual, in fact, is Refurbished. Further matching pairings with the Refurbished indi-

vidual can result in either a Partial or Complete Regeneration of lost functionality. Nonetheless, if the

37

individual exhibits further discrepant behavior, its fitness state is returned to Under Repair and

genetic operators are reapplied.

Figure 2-13 shows the CRR processes of Selection, Detection, Fitness Adjustment, and Evolution.

These processes identify individuals utilizing faulty resources and refurbish those individuals in the

midst of the fault. The Selection Process determines the two individuals that will occupy the Left

and Right regions. Typically, one of the halves is reserved as a “control” configuration where fault-

free operational individuals, such as Pristine, Suspect, and Refurbished in that order, are

always preferred. The other half supersedes these operational individuals with Under Repair

individuals at a rate equal to the Re-introduction Rate. Under Repair individuals that are genetical-

ly modified compete by being re-introduced into the operational throughput. The Re-introduction Rate

can be adjusted to achieve a desired recovery goodput during the repair process. This assumes that

alternative configurations exhibiting fault-free behavior over a window of recent inputs remain avail-

able or that the GA has already refurbished configurations within the population.

Figure 2-12: States of an Individual during its Lifetime [DeMara and Zhang 2005]

Figure 2-13: Procedural Flow for Competing Configurations [DeMara and Zhang 2005]

38

Applying an input to the Left and Right individuals invokes the Fitness Adjustment process.

As previously discussed, matching outputs results in increases to the fitness value of both individu-

als. Discrepant outputs decrease the fitness value with a steeper gradient and, consequently, the

probability that either individual is selected again. This process negatively or positively reinforces

certain individuals by decreasing or increasing its fitness appropriately. If an individual’s fitness is

less than the Repair Threshold, a single application of genetic operators such as crossover and muta-

tion are performed with a random Pristine individual. The checking logic is embedded in the

individual and is dependent on the other half. Thus, if the checking logic in one of the halves expe-

riences a fault, it will propagate to the other half, causing the fitness of the individuals to decrease.

Additionally, the checking logic is subject to repair by the genetic operators. This implements a

check-the-checker concept to enhance its fault tolerance. Variation of the Re-introduction Rate

then allows control over how frequently the genetically modified offspring are allowed to compete

with the rest of the population.

CRR exploits the normal operational inputs of the FPGA to evaluate the fitness of individu-

als. To establish confidence in an individual’s fitness, more than one input is evaluated for each in-

dividual; the more inputs evaluated, the greater the confidence. Since this method is not an exhaus-

tive evaluation, CRR utilizes an Evaluation Window that specifies the number of inputs needed to gain

a certain confidence in the individual’s fitness. Over many pairings and fitness evaluations, CRR

eventually forms a consensus from a population of individuals for a customized fault-specific repair.

39

2.4 Comparison of Methods

2.4.1 Overhead-related Metrics

2.4.1.1 Resources

Overheads for both logic and interconnect resources are listed in Table 2-II. Resource

overheads reported as a percentage of the application are values supplied by the respective authors

for those methods. Overheads reported as a percentage of the FPGA are estimates based on the

fault-handling strategy using the largest Virtex-4 device—XC4VLX200, 192x116 array—as a lower-

bound and the smallest Virtex-4 device—XC4VLX15, 64x24 array—as an upper-bound [Xilinx

2007b]. Some fault-handling methods, such as the Coarse-grained method, partition discrete areas

of the FPGA and, thus, do not differentiate between logic and interconnect resource requirements.

2.4.1.2 Operational Delay

Table 2-II lists operational delay values that are reported by the respective authors. Methods

utilizing a stochastic repair method such as GAs have an inestimable operational delay.

2.4.1.3 Fault Latency

Once some fault detection technique has detected and located a fault, fault latency specifies

the amount of time required for the specified fault-handling method to begin addressing the fault.

The authors of the Online BIST method report an upper bound for fault latency as 1.34s for the

ORCA OR2C15A FPGA, a 20x20 PLB array. Considering both the increased size and faster boun-

dary scan clock of the XC4VLX200, the estimated fault latency is listed Table 2-II.

40

2.4.1.4 Unavailability

Since all fault-handling methods discussed address faults through FPGA reconfiguration, a

portion of the unavailability is due to the reconfiguration time. Configuration times are calculated

for the largest Xilinx Virtex-4 device, XC4VLX200, as an upper bound. The size of a full configura-

tion file for this device is 6.12 MB. Using the Virtex-4 SelectMAP byte-wide parallel interface and a

100MHz configuration clock, configuration times are calculated using the following equation de-

rived from [Xilinx 2008]:

cclk
config f

bytesT 1)3(⋅+= , (2-1)

where bytes is the size of the configuration file in bytes and cclkf is the frequency of the configura-

tion clock. A full configuration for the XC4VLX200 device, thus, requires 64 ms, which is reported

below in italics. In the cases where partial configurations are used such as the fine-grained method,

configuration times are calculated from a partial configuration file, with a 16 PLB minimum configu-

ration height for the Virtex-4 architecture [Lysaght et al. 2006] and a 116 PLB maximum width of

the XC4VLX200 device. Given a partial bitstream size of 0.5 MB, the partial configuration time is 6

ms. To recover from a fault, Competing Configurations may require cycling through its entire

population of half-configurations to implement a configuration not utilizing a faulty resource. If all

configurations are adversely affected by the fault, then its stochastic repair process is unbounded.

2.4.1.5 Recovery Goodput

As most methods suggest the system be in an offline state during the entire fault-repair

process, a particular fault may only articulate itself in a small percentage of the output space. In such

a situation, an application with low sensitivity to faulty inputs may benefit from the faulty system

41

remaining in an operational state during the fault-repair process. As defined in Table 2-I, recovery

goodput measures the number of correct or useful outputs provided during the repair process

[Sharma et al. 2007]. The total repair time is the sum of the Fault Latency and Unavailability metrics

listed in Table 2-II. For methods with total repair times greater than their italicized reconfiguration

times, goodput applies. Whereas goodput measurements are largely a result of the type of fault and

application, most fault-handling methods do not consider goodput during fault recovery. As pre-

viously discussed, the Competing Configurations method manages a required goodput by adjusting

the rate at which configurations under repair are implemented on the FPGA.

42

Table 2-II: Summary of Overhead-related Metrics

Metrics
Resources Operational

Delay
Fault

Latency
Unavailability for

single fault Logic Inter-
connect

Fine-grained 2–10% of
application

Not
Addressed

14–45% None 6 ms

Medium-grained 300% of application
Not

Addressed
None None

Coarse-grained 4–50% of FPGA 11–18% None 64 ms

Sub-PLB Spares 0–20% of
application

Not
Addressed

Not
Addressed

None
Place&Route +

64 ms

PLB Spares 1–41% of
FPGA

31–43% of
application

5–10% None
Place+
64 ms

Incremental
Rerouting None 48–53ns None

2–12 s+
64 ms

GA Repair None Inestimable None Unbounded

Augmented GA
Repair None Inestimable None

37% decrease from
GA repair

TMR w/ Single
Module Repair 300% of application Inestimable None None

Online BIST 4–11% of FPGA 0–20% 0–15 s None

Competing
Configurations 200% of application Inestimable None

popSize*64 ms or
Unbounded

2.4.2 Sustainability Metrics

2.4.2.1 Fault Occlusion

By nature, all fault-handling methods typically bypass faulty resources. Techniques that

reuse or exploit faulty resources further increase system reliability by converting previously ignored

resources into conditionally available resources.

43

2.4.2.2 Repair Granularity

The repair granularity metric specifies the resolution with which a fault may be handled. Me-

thods capable of addressing faulty resources finer in granularity and occlude faults by exploiting

those resources further increase system reliability.

2.4.2.3 Fault Tolerance

Each method is capable of handling varying number and types of faults. Fault tolerance

specifies the maximum number of faults handled.

2.4.2.4 Fault Coverage

As discussed in Section 1.2, transient faults are typically addressed by some scrubbing

scheme. Whereas some fault-handling methods explicitly incorporate scrubbing or rollback [Em-

mert et al. 2007; Garvie and Thompson 2004; Ratter 2004], other fault-handling techniques may in-

directly address transient faults by handling them as permanent faults and reconfiguring the faulty

portion of FPGA to scrub away the fault. Table 2-III lists whether a fault-handling method ad-

dresses logic, L, or interconnect, I, faults.

2.4.2.5 Critical Requirements

Fault-handling components that may or may not be implemented by the FPGA itself are ex-

ternal requirements. Additionally, these external requirements are relied upon as fault-free making

them critical requirements. Given that some FPGAs such as the Virtex-4 XC4VFX140 include em-

bedded microprocessors or can realize such hardware equivalents with its PLB logic and intercon-

nect, the FPGA device may implement processing functions such as Place and Route.

44

Table 2-III: Summary of Sustainability Metrics
 Metrics

Fault

Occlusion
Repair

Granularity Fault Tolerance
Fault

Coverage Critical
Requirements L I

Fine-grained Bypass PLB
Single faulty
PLB per tile

Storage of
Configurations

Medium-
grained Bypass

Small group
of PLBs

Single faulty
group of PLBs

Voter, Storage of
Configs

Coarse-grained Bypass
Large group

of PLBs
Single faulty

group of PLBs
Storage of

Configurations

Sub-PLB Spares Bypass
Look-up

Table

Single faulty
resource per

spare resource

Custom Placer
and Router

PLB Spares Bypass PLB
Single faulty
PLB per row

Custom
Placer

Incremental
Rerouting Bypass PLB

Single faulty
PLB per spare

PLB

Custom Placer
and Router

GA Repair Exploit,
Bypass

Variable Indeterminate
Processor and

Memory

Augmented GA
Repair

Exploit,
Bypass

Variable Indeterminate
Processor and

Memory

TMR w/ Single
Module Repair

Bypass,
Exploit

Variable Indeterminate
Voter, Processor

and Memory

Online BIST Bypass,
Exploit

Look-up
Table

2 faulty PLB
columns & 2
faulty rows

Processor and

Memory

Competing
Configurations

Bypass,
Exploit

Variable Indeterminate
Processor and

Memory

2.5 Chapter Summary

Methods that do not change the configuration of an FPGA during run-time are mentioned

as being limited in the number and type of faults it can handle. As such, more robust fault-handling

methods that reprogram the FPGA with a modified configuration are discussed and placed within

the classification depicted by Figure 2-2. Since A-priori Allocation fault-handling strategies exploit

the redundancy of the FPGA architecture, the number of faults they can handle, as indicated by the

fault tolerance metric, is limited to a smaller number in a given area. This static fault-handling na-

45

ture, however, does increase its availability since less time is required to determine a solution to han-

dle the fault. Dynamic Processes, on the other hand, can adapt its fault-handling strategy and tailor

its repair solution to a variety of fault scenarios. Whereas this capability increases its fault tolerance,

its unavailability and critical requirements also increase to determine an appropriate repair solution.

As made evident by the metric tables in Section 2.4, no one method provides the best per-

formance in all situations. Applications with strict availability requirements should consider A-priori

Allocation methods due to the small amount of processing required to either reconfigure the FPGA

with a stored configuration or modify the configuration by a pre-determined process. Applications

with more lenient availability requirements and extended mission times may consider Dynamic

Processes due to their need to handle many more fault scenarios. Perhaps the best solution is some

combination of the methods discussed. For example, the coarse-grained partitioning approach

quickly recovers from a fault by implementing a configuration with a spare column over the faulty

resource. While the application continues to operate, an online BIST could test the resources of this

spare column to search for the faulty resource. Upon detecting the specific resource that is faulty,

Sub-PLB spares or Incremental Rerouting could modify all configurations that utilize the faulty re-

source to avoid it. After such a modification, a configuration could be implemented to return the

application to its original redundancy level. Combining methods for a hybrid approach exploits the

fast reconfiguration of an A-priori Allocation method with the dynamic fault tolerance of Dynamic

Processes.

46

CHAPTER 3
EVOLVABLE HARDWARE OPTIMIZATION STRATEGIES

3.1 Genetic Algorithms

As previously discussed in Section 2.3.1.2, Genetic Algorithms (GA) have demonstrated pro-

ficiency for locating global optimums in large, discontinuous, and multimodal search landscapes.

The search space of repairing a damaged digital circuit residing on an FPGA can be considered large,

discontinuous, and multimodal. Hence, a GA may be an appropriate method to develop solutions

that restore lost functionality. In attempting to apply GAs to the fault-repair problem domain, many

techniques have developed. As evident by the number of methods proposed for repairing FPGAs,

no ideal chromosomal representation has been developed, neither has an optimum set of Genetic

Operators been defined.

Miller et al. [1997] investigated the specific ability of GAs to design innovative configura-

tions of simple digital circuits. Their research resulted in successful designs of a 4-bit full adder and

a 2-bit multiplier. Keymeulen et al. [2000] investigated the ability of GAs to evolve fault tolerant

designs of an analog multiplier and a digital XNOR circuit, both created from an array of program-

mable transistors. When the fault tolerant designs could not perform acceptably, they successfully

used GAs to evolve a repair to address the fault. Vigander [2001] expressed difficulty in evolving a

complete repair of a 4-bit multiplier. To circumvent this difficulty, Vigander proposed a voting

scheme where the majority vote of three partially repaired circuits is used for the functional output

of the circuit. Lohn et al. [2003] utilize a representation similar to the FPGA architecture to repair a

faulty Quadrature Decoder. Implementing 1) a more dynamic fitness function and 2) a higher-level

chromosome representation allowed a greater degree of success for finding a correct solution.

47

Previous research has attempted to parallelize the GA to decrease running time and improve

the quality of solutions. As first analyzed by Grosso [1985], partitioning the GA population into

smaller, isolated sub-populations allowed favorable traits to spread more quickly throughout the

smaller sub-populations, yet these smaller sub-populations each produced less fit individuals upon

convergence. Allowing individuals to migrate between sub-populations at slow rates did not im-

prove performance whereas intermediate rates improved the fitness of individuals upon conver-

gence. Pettey et al. [1987] further investigated the effect migration has on population performance.

By migrating the best individual from each sub-population to its neighbors after every generation,

the parallel GA produced individuals of similar fitness with that of a traditional GA. As investigated

below, a particular form of a parallel GA is used to surpass the performance of the traditional GA in

the FPGA fault-repair problem domain.

3.2 Age-Layered Population Structure Overview

Populations of typical GAs quickly converge upon a single local optimum, which may not be

the global optimum. Research has attempted to prevent convergence and promote diversity by 1)

restricting breeding to similar individuals, 2) modifying the replacement method, or 3) adjusting the

fitness function to penalize individuals that are similar to existing individuals. Each of these me-

thods depends upon a similarity function to determine whether two individuals should mate, replace

one another, or be penalized for being similar. GAs utilizing bitstring representations can readily

assess similarity by a simple hamming distance calculation, although similarity in bitstrings may not

necessarily translate to functional similarity. Other algorithms used to determine functional similari-

ty might be too computationally expensive to be competitive with other searching algorithms.

48

As an alternative method to prevent convergence of populations, an Age-Layered Popula-

tion Structure (ALPS) creates multiple sub-populations that partition individuals by age [Hornby

2006]. The age of an individual is set to zero during the initialization of a population and increments

every time the GA selects the individual as a parent. Additionally, offspring created by parents re-

ceive the age of its oldest parent and furthermore increases the age by one. Therefore, age of indi-

viduals within the population becomes a measure of the time certain genetic material has existed

within the population.

 The age of an individual within ALPS is used to 1) partition the population into age layers

to systematical replace the bottom age-level with random individuals and 2) restrict breeding to simi-

larly aged individuals. Standard GAs typically escape basins of attraction through the mutation op-

erator by introducing new genetic material into the population. As a more drastic method of pre-

venting the population from converging on non-global maximums, ALPS supplements the mutation

operator by replacing the bottom age-level with random individuals at regular intervals, enabling the

GA to explore new areas of the search space. Additionally, genetic operators such as crossover use

age to restrict selection of parents from within the same age-level or the age-level immediately be-

low. Restricting breeding to individuals of similar ages prevents individuals, which contain more

mature genetic material, from dominating the entire population and permits other local optimums to

be explored within lower age-levels. Experiments in Section 3.5.1 explain and demonstrate this ben-

efit in detail.

Research provided by Hornby verifies that ALPS outperforms a standard GA and two other

GA implementations for evolving antenna designs from scratch. Whereas the results are clear, some

implementation details of ALPS remain ambiguous. The implementation presented in Section 3.3

addresses these ambiguities and introduces additional parameters to improve performance. The ex-

49

perimental setup described in Section 3.4 applies the ALPS implementation to an FPGA repair

problem to verify its viability for this problem domain. Section 3.5 reveals the benefits in perfor-

mance of preventing convergence of the population and furthermore optimizes new ALPS parame-

ters for the FPGA repair problem.

3.3 ALPS Implementation

Similar to a typical GA, ALPS follows a similar overall process flow. The GA initializes the

population then subjects the population to a fixed number of generations, as specified by the

genNum parameter in Figure 3-1. Within each generation, Selection, Genetic Operators, and Fitness

Evaluation all repeat to form a new population equal in size to the original population, as specified

by the popSize parameter. The Representation used along with each of the process modules of Initialize

Population, Evaluate Fitness, Selection, Genetic Operators, and Replacement are explained in detail below.

Figure 3-1: Standard Genetic Algorithm and ALPS Process Flow

50

3.3.1 Chromosome Representation

The ALPS FPGA repair system is implemented by Java code. Appropriate for an object-

oriented programming language, the representations of the chromosomes are objects that mimic the

architecture of the FPGA. As such, Figure 3-2 shows a chromosome as an array of LUT objects,

each of which contains 4 inputs and a 16x1 memory to describe the behavior of the LUT. Each of

the four inputs may be connected to either GND, VCC, a circuit input, or the output of another

LUT. To simplify the fitness evaluation process, all individuals evaluated by the fitness function are

verified to constitute a feed-forward network. This verification process merely checks that a LUT

input connects to a LUT output with a lower-numbered label. As seen in Figure 3-2, Input 3 of

LUT5 is connected to the output of LUT2, which is a valid connection to maintain a feed-forward

network. Whereas it is possible that a LUT input be connected to a LUT output of a higher label

ID value while maintaining a feed-forward network, this restrictive, yet simple, verification minimiz-

es the impact on computation time as previously implemented by Miller et al. [1997] and Vigander

Figure 3-2: Detailed View of the GA Chromosome

51

[2001]. In case that the verification detects an non feed-forward individual as defined above, the

invalid LUT input is modified to be a random, valid input—GND, VCC, a circuit input, or the out-

put of a LUT with an lesser ID value.

3.3.2 Initialize Population

 Since the goal of these experiments is FPGA repair, an existing working individual is pre-

supposed. To allow repair, the initial population is seeded with 10 identical individuals exhibiting

100% functional behavior whereas random individuals populate the remaining portion. For the

ALPS implementation, a population size of 100 per each age-level is used, where 10 seed individuals

and 90 random individuals constitute the bottom age-level upon initialization. During initialization,

only the bottom age-level is populated, allowing the age sort function discussed in Section 3.3.6 to

populate additional age-levels as needed up to the limit of 10, as specified by the age-level parameter.

As suggested by Hornby, the standard GA implementation uses a population size of 1000 to mimic

the capacity of the ten-level ALPS implementation, where 10 seed individuals and 990 random indi-

viduals constitute the initial population.

Additionally, the FPGA repair process is initiated after a fault has occurred. To simulate a

fault, a random LUT is selected from the available LUTs and one I/O port is held constant at logic

0 or 1. If the fault has no effect on the circuit, another fault is generated by randomly choosing

another LUT, I/O port, and logic stuck-at level. This process repeats until the fault is manifested in

the output. As specified by the parameters, only one manifested fault is implemented in the experi-

ments. Generally speaking, if a fault only effects a small subset of the application’s outputs, then the

GA will most likely only have to make a small change to the chromosome of the ideal individual to

repair the fault. To allow room for the GA to search, the GA is allocated 115% of the LUTs neces-

52

sary to implement the initial optimized circuit design. As specified later in Section 3.4, the initial cir-

cuit design utilizes 13 LUTs and, therefore, the GA is allocated 15 LUTs to repair the fault.

3.3.3 Evaluate Fitness

The representation described in Section 3.3.1 explicitly defines the circuit inputs whereas the

circuit outputs are not. Since the outputs are undefined, two fitness evaluation techniques are possi-

ble, fixed outputs and floating outputs. When evaluating individuals, the fixed-output fitness evalua-

tion utilizes as outputs the same LUTs specified by the seeded individual, which exhibits correct

functional behavior prior to a fault. This technique is useful when the output LUTs cannot be mod-

ified and, therefore, encourages individuals to utilize the same circuit outputs as defined by the initial

individual. This method can be seen as an additional restriction that the GA must overcome in find-

ing an acceptable solution within the search space.

In an attempt of increasing the scope of the search, Lohn et al. [2003] devised a second fit-

ness evaluation method called floating outputs. In this scheme, the circuit outputs of each individual

are not defined until fitness evaluation. The exhaustive set of input vectors are applied to each indi-

vidual and the output responses of each LUT are retained. After all inputs are applied, the response

of each LUT then is evaluated against each bit-wide output to determine which LUT is the best

match for a given bit-wide output. In cases where the output LUTs may be relocated, increasing the

chances of finding a fully functional repair may justify the increased computation time. The experi-

ments investigated in this work solely make use of the fixed outputs fitness evaluation method.

After the replacement process creates the final, new population, the chromosomes are sorted

in ascending order of raw fitness values and are assigned a rank where the highest fit individual rece-

ives the highest rank value. The rank is used to calculate the proportional fitness of an individual as

53

∑ population
rankrank / . This proportional fitness value has the same effect as placing all individuals

within the population on a roulette wheel for the selection process, each with a specific probability.

3.3.4 Selection

In the implementation proposed by Hornby, tournament selection is used for both the stan-

dard GA and ALPS. For the standard GA in this implementation, selection of both parents func-

tions as a roulette wheel, where a random, fractional value between 0 and 1 is selected and the pro-

portional fitness values of individuals within a population are accumulated until the sum is larger

than the selected random value. As such, individuals with larger fitness values have a higher rank

and, thus, larger proportional values, giving them a greater chance for selection.

In the ALPS implementation, the first parent is selected from the current age-level using

proportional fitness selection as the standard GA. The second parent, however, may be selected

from the current age-level or the age-level immediately below the current level. Two selection

processes are investigated by the experiments. The first method, which is assumed to be used by

Hornby, combines both the current age layer sub-population with the one immediately below it. Whe-

reas Hornby uses a tournament selection, this implementation continues use of proportional fitness

values. After the merge, it calculates the scaled fitness values for the combination of the two sub-

populations and assigns proportional fitness values accordingly.

This paper proposes a second method of ALPS selection that keeps the two age-levels sepa-

rate by selecting one 2nd Parent candidate from the current age-level using proportional selection and

then selecting another 2nd Parent candidate from the age-level immediately below using proportional

selection. The GA then randomly chooses between the two candidates, favoring the candidate from

the current age-level with a probability of 0.25, 0.50, 0.75, or 1.00 as specified by the Age-level Man-

54

agement parameter. A probability of 0.25 slightly favors selecting the second parent from the age-

level below whereas a 0.75 probability slightly favors selecting the second parent from the same age-

level. A 0.50 probability does not favor either age-level and a probability of 1.00 always favors the

same age-level, preventing cross-level breeding. The results of each of these probabilities are inves-

tigated by experiments detailed in Section 3.5.3.

3.3.5 Genetic Operators

3.3.5.1 Crossover

For the object-oriented representation previously described, crossover points reside between

two LUT objects within the array. Two-point crossover has the ability to create either one or two

offspring from two parents. To produce one offspring, Parent 1 receives the genetic material of

Parent 2 that is located within the two crossover points. A second offspring is produced when Par-

ent 2 receives the genetic material of Parent 1 that is located within the two crossover points. In

other words, a second offspring is produced when Parent 1 receives the genetic material of Parent 2

that is located outside of the two crossover points. The experiments conducted utilize 2-pt crossov-

er at a rate of 0.90 and produce one offspring per crossover operation. Upon producing an

offspring, the chromosome is validated as a feed-forward circuit and modified accordingly. Togeth-

er the selection process and crossover operator repeat, producing a number of offspring equal to the

current population size. Whenever an individual contributes genetic material by being a parent in

crossover, its age is increased by the value of 1 per generation, regardless of the number of times it is

used as a parent in a generation. After increasing the ages of the parents accordingly, the offspring

inherits the greater age of the two parents and then increases its own age by the value of 1.

55

3.3.5.2 Mutation

Since crossover cannot modify the contents of an LUT, connectivity or routing, mutation is

given more pressure to introduce variation to the individual LUTs by changing the LUT inputs to a

random value that maintains the feed-forward network or by mutating the LUT contents on a bit-

by-bit basis. Each LUT object of a newly produced offspring chromosome is given a chance for

mutation. Each input and each bit of the 16-bit LUT contents is changed with a 0.005 probability as

specified by the mutation rate. If an input is mutated, the input is changed to a random input that

maintains a feed-forward circuit—GND, VCC, circuit input, or an output of a LUT with a lesser ID

value. If a bit in the contents is mutated, a random Boolean value is selected. Mutations, even if

they occur, may result in no change if the input or Boolean values selected are the same as the pre-

vious values.

3.3.6 Replacement

As suggested by Hornby, a polynomial progression is used to define the age limits of the ten

age-levels as 1, 2, 4, 9, 16, 25, 36, 49, 64, and ∞, respectively. To increase further the separation be-

tween age-levels, this polynomial progression is multiplied by an agegap parameter of 20, resulting in

age limits of 20, 40, 80, 180, etc. These age limits are used to determine which age-level offspring

should reside as its age increases.

To store the offspring created by the genetic operators, a new population containing the

same number of age-levels as the original population is created. Offspring are placed within the age-

level of their oldest parent upon creation. As suggested by Hornby, the ages of both parents, are

increased by 1 since they have donated genetic material. In cases where the age of the oldest parent

is equal to the age-level limit, the offspring that receives this increased age still is placed into the cur-

56

rent age-level. Additionally, the age of the offspring is increased by 1 after receiving its age, which

further exceeds the age limit. After selection and crossover are complete for a population, a sort

based on age is performed on the new population to create new age-levels and redistribute individu-

als into the correct age-levels as necessary.

After the fitness of all individuals within the population have been calculated, the top num-

ber of individuals as specified by the elitism parameter are marked as Elite individuals and are re-

moved from their respective population, original or new. If the age sort function discussed above

causes an age-level to exceed the population limit as specified by the popsize parameter, individuals

are removed at random until the population becomes less than the sum of the population size and

elitism size. Next, the elite individuals are moved into the new population by considering each age-

level in sequence. The ALPS implementation marks one elite individual per age-level totaling ten

elite individuals, whereas the standard GA utilizes 10 elite individuals.

As previously discussed, individuals increasing in age may move into higher age-levels, caus-

ing the size of age-levels in the new population to decrease below the population size specified in

the parameters. If this is the case, the GA moves individuals of the same age-level from the original

population into the new population. Since most of the individuals of the original population were

parents of the offspring in the new population, the original population must also undergo an age

sort function to redistribute individuals in the case that a parent contributing genetic material to an

offspring causes it exceed the age limit of its level. After the age sort function, individuals are ran-

domly selected to be moved into the new population until either the new population is full or the

age-level of the original population becomes depleted. The last step of the replacement process is to

replace the entire bottom age-level with random individuals every 20 generations as specified by the

agegap parameter.

57

3.3.7 GA Parameter Summary

Below is a summary of the GA Parameters described above, some of which only apply to

ALPS implementations. Along with a comparison between the ALPS and standard GA implemen-

tations, various implementations of the Age-level Management parameter are investigated.

Table 3-I: Summary of GA Parameters

Number of
Age Levels

Standard 1
ALPS 10

Population
Size

Standard 1000
ALPS 100 per each age-level

Number of Faults 1

Max # of LUTs 15

Fitness Evaluation Fixed Outputs

Fitness Scaling Rank

Selection Proportional

Age-level Management
during Selection

Combined
Separate

(0.25, 0.50, 0.75, 1.00 probabilities)

Crossover Type 2-pt, 1 offspring produced

Crossover Rate 0.90

Mutation Rate 0.005

Elitism Standard 10
ALPS 1 per each age-level

Age Gap 20 generations

58

3.4 Experimental Setup

Figure 3-3 illustrates the 3-bit full adder circuit implemented with LUTs. The legend in the

figure shows each LUT having an ID, four 1-bit inputs, one 1-bit output, and sixteen 1-bit memory

locations. For readability of the connectivity, the order of the LUTs as they appear in the chromo-

some is rearranged. As discussed in Section 1.1, the inputs of the LUT are used as an address to de-

termine which of the memory locations is utilized as the LUT output. The 3-bit full adder has two

3-bit inputs (A & B) with a carry (C) and one 4-bit output (OUT). LUT inputs either connect to

input A, input B, carry C, the output of another LUT, GND, or VCC.

The fitness of individuals within the population is calculated by exhaustive evaluation, where

Figure 3-3: 3-bit Full Adder Implementation

(┼ wire junctions are not connected)

59

the functionality of the FPGA is simulated by applying, in turn, the exhaustive set of inputs and

comparing the results to the 3-bit full adder truth table. As such, the raw fitness value for an indi-

vidual is the sum of correct responses for the entire output space. The output space of a logic cir-

cuit is outputsinputs ×2 , where inputs equals 7 and outputs equals 4 for the 3-bit full adder. Thus, the

maximum fitness value an individual may have is 512427 =× .

To simulate a stuck-at fault, a random LUT input is forced to be logic 0 or 1. As seen in

Figure 3-3, the randomly generated fault for these experiments is a stuck-at-1 fault on Input 2 of

LUT 5. This fault causes the fitness of the 3-bit full adder to drop from 512 to 452. The experi-

ments compare the performance of the standard GA implementation with various ALPS implemen-

tations as previously discussed.

3.5 Experimental Results

Unless otherwise specified, the experiments shown below include 3000 generations per run

to discover long-term trends of the standard GA and ALPS, where each run is repeated 100 times to

demonstrate statistical significance in the performance of the various GA implementations.

3.5.1 ALPS Overview

Figure 3-4 shows the first 200 generations of a single run of ALPS with the best individuals

of each age-level at each generation number. It reveals how individuals increase in age and are pro-

moted to higher age-levels. As discussed later in detail, it also reveals how ALPS decreases the in-

fluence the best overall individual has on the population as a whole.

60

At Generation 1, the seeded individual is seen to exist within age-level 0 with a starting fit-

ness of 452. Within 15 generations, at least one of the 10 seeded individuals ages-out and becomes

the first individual to reside within age-level 1. Within another 20 generations, it quickly moves into

age-levels 2 and 3. The same elite individual remains the best of the entire population until Genera-

tion 80 when the GA creates a higher-fit individual with fitness of 460. This individual continues to

undergo genetic operators and, thus, further increase in fitness.

As the seeded individual becomes older and moves to higher age-levels, the lower age-levels

change their focus from repairing the seeded individual to designing an individual from scratch. The

arrows in Figure 3-4 show the first generation that these lower age-levels do not have the seeded

Figure 3-4: Best Individuals of each Age-level during the Initial Generations

61

individual within its population so they can begin evolving solutions from randomly generated indi-

viduals. These individuals, then, become older eventually reaching the higher age-levels to compete

with the original, seeded design and contribute genetic information. The evolution of a randomly

generated individual is highlighted with connecting lines. As shown by the figure, the individual is

randomly generated in the bottom age-level at Generation 100 and moves into higher age-levels, as

shown by the handoff points. As previously discussed, the bottom layer is replaced with random

individuals every 20 generations as specified by the agegap parameter, a cyclic pattern constantly sup-

plying the GA with new information.

When the entire single run is considered, additional individuals are seen to evolve from the

bottom age-level and increase in age to compete in higher age-levels. While the seeded individual

evolves from a fitness of 452 to a fitness of 495 in the top age-level, Figure 3-5 shows multiple can-

didate solutions being evolved from scratch, six of which are shown by black lines. Age levels 1, 3,

and 5 are omitted from the figure for visual clarity. Since the seeded individual is kept within its

own sub-population, the other sub-populations are free from its dominance and can provide alterna-

tive solutions that may reside in areas outside of the basin of attraction that the GA is currently

searching. Interestingly, an alternative candidate moving from age-level 8 to age-level 9 at Genera-

tion 1400 coincides with a better-fit individual being produced in age-level 9, a direct benefit caused

by the newly developed genetic material entering the sub-population.

The results of this single run also reveal three coarse partitions of the fitness landscape. The

bottom partition extends from fitness 260 to 340 and represents fitness values easily obtained by

randomly generated individuals and a minimal number of genetic operators. The middle division

from 340 to 420 represents fitness values that randomly generated individuals cannot attain and,

thus, require a moderate number genetic operations applied. Individuals within the top division are

62

rarer since fitness values from 420 to 512 are the most difficult to obtain. Figure 3-5 reveals that

strong individuals are produced approximately once every 700 generations and move to the top age-

level to contribute genetic material to the overall best individual.

3.5.2 Standard GA and ALPS Comparison

To gauge the effectiveness of ALPS, 100 runs of the standard GA were completed using the

GA parameters previously specified by Table 3-I, producing a best overall individual at each genera-

tion for each run. Figure 3-6 averages the 100 best individuals for a given generation and compares

them to the Combined implementation of ALPS. Whereas the standard GA consistently provides an

individual with fitness of 480 within 100 generations, ALPS requires 1500 generations to achieve the

Figure 3-5: Best Individuals of each Age-level at each Generation

63

same fitness. This sluggishness is attributed to 1) partitioning the population into sub-populations

that contain non-stationary individuals, 2) replacing the bottom age-level every 20 generations, and

3) the beginning population size of ALPS being one-tenth the size of the standard GA. Partitioning

the population into sub-populations restricts the rate at which individuals may communicate genetic

information to the population as a whole. By implementing sub-populations, only a select few are

given access to the genetic information of the overall best individual. In this implementation, elitism

allows the overall best individual to rise quickly to the top age-level and remain there to recombine

with 99 other individuals. Only through time and surviving many replacements can individuals in

the bottom layer combine its genetic information with individuals in the top, slowing down the rate

of population convergence.

Figure 3-6: Best Individuals at each Generation (Averaged over 100 Runs)

64

Secondly, replacing the bottom age-level constantly injects new information into the genetic

pool, preventing the genetic operators from merely producing combinations of the same genetic ma-

terial provided during the initialization phase. Figure 3-7 shows the 95% confidence intervals of the

populations for both implementations, averaged over the 100 runs. Whereas the standard GA has a

consistent confidence interval, the fitness of the ALPS population oscillates due to the regular re-

placement of the bottom age-level. The continual production of random individuals causes ALPS to

become less deterministic and, thus, have a larger confidence interval.

Thirdly, the population size of each age-level is smaller than the standard GA, which de-

creases the amount of genetic material available to a single individual at a given time and restricts the

fitness growth rate for ALPS. Furthermore, the total population size of ALPS begins at one-tenth

Figure 3-7: Fitness of Population at each Generation (Averaged over 100 Runs)

65

the size of the standard GA by initializing only the bottom age-level. Figure 3-8 shows the popula-

tion of ALPS increasing as higher age-levels are initialized due to the age of individuals increasing.

Individuals leaving the bottom age-level and replacing individuals at higher age-levels cause the pop-

ulation to decrease, whereas replenishing the bottom age-level with random individuals increases the

population—an oscillation seen throughout the evolutionary process. At Generation 700, the top

age-level is initialized providing the ALPS population the capacity to compete with the standard GA.

As shown in Figure 3-6, the ALPS fitness value of the best individual increases at an approx-

imate rate of 1 per 400 generations after the population saturates. As previously discussed and

shown by Figure 3-5, ALPS converts random individuals into competitive individuals through genet-

Figure 3-8: Size of Population at each Generation (Averaged over 100 Runs)

66

ic operators. The top age-level is provided with an elite individual once every 200–300 generations.

This continuous supply of new genetic material allows ALPS to surpass the performance of the

standard GA during the last third of the runs as shown by Figure 3-6. The best fitness averages and

standard deviations of 100 runs at Generation 3000 are 481.62±7.92 for the standard GA and

483.42±9.07 for the ALPS method. Whereas a t-test reveals the difference not to be statistically sig-

nificant with P ≥ 0.05, the number of complete repairs produced during these runs reveals the real

benefit of ALPS. Of the 100 runs for each implementation, one run of the standard GA produced a

complete repair with a 512 fitness value, whereas 3 runs of the ALPS implementation produced a

complete repair resulting in a 300% improvement.

3.5.3 Age-Level Management Optimization

As previously discussed in Section 3.3.4, selection of a 2nd parent for crossover may occur by

several methods. The Combined method previously compared to the standard GA views two adja-

cent age-levels as one, calculates proportional fitness for each individual within the combined popu-

lation, and selects the second parent using the roulette wheel method. After selecting one parent,

the Separate method, however, selects a 2nd parent to be one of two candidate individuals: one candi-

date from the current age-level of the first parent and one candidate from the age-level immediately

below. The 2nd parent is selected to be one of these two candidates with a probability of 0.25, 0.50,

0.75, or 1.00, where a probability of 1.00 always selects the candidate from the same age-level as the

1st parent.

Four trials each using a different Separate probability value were run with 100 runs per trial to

determine if the age-level management strategy affects the performance of repairing the faulty 3-bit

adder. As shown in Figure 3-9, a probability of 0.75 outperforms the other probabilities as well as

67

the previous implementations already discussed. It is observed that the 0.75 implementation is not

as sluggish as the Combined method, whereas the 0.25 probability is more sluggish. The performance

difference between 0.75 and the next best implementation of 1.00 is statistically significant with

P < 0.001. The best fitness averages and standard deviations for 100 runs at Generation 3000 for

0.75, 1.00, 0.50, and 0.25 probabilities respectively are 488.31±9.77, 483.62±10.14, 482.81±8.63, and

479.98±9.24.

For all implementations, Figure 3-10 shows the fitness of the population averaged over 100

runs at each generation. The populations of each of the Separate implementations are seen to be

more fit than the Combined population, implying that keeping the age-levels separate during selection

allows fitter individuals to emerge. Figure 3-10 also shows that increasing the probability for indi-

Figure 3-9: Best Individuals at each Generation (Averaged over 100 Runs)

68

viduals to breed within its own age-level further increases the fitness of the population, which im-

plies that breeding across age-levels creates less-fit individuals and may be regarded as unproductive

breeding. As previously seen with the comparison of the standard GA, having a highly fit popula-

tion does not necessarily correlate to producing fitter individuals or complete repairs with greater

frequency. Figure 3-10 further verifies this, showing that the population using a probability of 0.75

has a lower fitness than a probability of 1.00 yet, on average, produces fitter individuals.

For each of the probabilities implemented above, Figure 3-11 categorizes by fitness the best

individuals produced at the end of each run. It also shows the frequency with which each fitness

range occurs for a given probability value. Representing 100 runs each, the 1.00 graph shows a

somewhat normal distribution centered on its mean of 483.62, whereas the 0.75 probability appears

Figure 3-10: Fitness of Population at each Generation (Averaged over 100 Runs)

69

skewed to the right displaying more occurrences of fitter individuals. Coincidently, all individuals

within the 510 category for each graph are complete repairs with a fitness of 512. The 0.75 proba-

bility had a 5% success rate by producing five complete repairs whereas the other probabilities only

produced one complete repair each.

As previously discussed in Section 2.3.1.2, GAs are classified as Dynamic Processes that ad-

dress many specific fault scenarios during run-time. As such, additional time is required to deter-

mine an appropriate solution. Running times for the experiments discussed show that ALPS re-

quires less time due to its variable population size remaining less than the standard GA. Whereas an

application utilizing an offline recovery method such as a GA may not require repair solutions to be

provided quickly, this decrease in running time can benefit any application.

Figure 3-11: Distribution of Best Individuals from 100 Runs

70

3.6 Chapter Summary

The work presented herein verifies the viability of utilizing age-levels to prevent population

convergence for the fault-repair problem domain. As previously shown, partitioning the population

prevents one highly fit individual from quickly dominating the population. For the fault-repair do-

main, the seeded individual is generally a highly fit individual compared to other randomly generated

individuals. Constraining the seeded individual to a sub-population allows the random individuals to

evolve into competitive alternative solutions. These developed individuals may have more of a

chance of contributing useful genetic material to increase the fitness of the best individual.

Preventing convergence is shown to increase the fitness of the best individual produced

along with increasing the probability of evolving a complete repair. To further increase this proba-

bility, a modification to the ALPS algorithm is introduced to improve the fitness of the best individ-

ual evolved. Results reveal an optimized parameter value for this modification that increases fitness

and the probability of completely repairing the faulty circuit.

While the current results of ALPS are promising, better results may be obtained by optimiz-

ing the GA parameters specified by Table 3-I. This thesis does not explore the effect that popula-

tion size, number of age-levels, selection strategy, crossover and mutation rate, elitism, or age gap

has on the success of FPGA repair. The parameters that were selected may be the worst-case set,

meaning that the repair performance may be increased.

An extension for this work includes simulating additional faults or implementing a more dif-

ficult circuit such as the 4-bit multiplier, which Vigander [2001] attempted to repair. To help over-

come these difficulties, the GA could utilize other implementations of the FPGA repair process

such as the Floating Output fitness evaluation method proposed by Lohn et al. [2003]. Hornby

[2006] showed other population management strategies such as deterministic crowding [Mahfoud

71

1992] to be successful in creating fitter individuals, which may be another option for repairing more

difficult digital circuits. Additionally, the complete repairs created by the GA process may be ana-

lyzed to develop new selection and replacement strategies.

72

CHAPTER 4
PARTIAL RECONFIGURATION AND FPGA ARCHITECTURE ANALYSIS

4.1 Introduction

As previously outlined in Section 1.3, partial reconfiguration is a process that reconfigures a

specific region of FPGA resources without disturbing the remaining resources. By designating a

portion of the FPGA as reconfigurable as in Figure 4-1, multiple modules may occupy that space

throughout the life of the FPGA. If a system does not need two modules to operate concurrently,

partial reconfiguration may time-multiplex between them to decrease spatial resource requirements.

Since the size of the partial reconfiguration module determines the reconfiguration speed, smaller

modules allow a system to reconfigure more quickly.

Various design flows are available from Xilinx to implement partial reconfiguration designs

onto their FPGAs. The three design flows that are currently available include the design flow for

ISE 6.3i, Early Access Partial Reconfiguration (EAPR) design flow for ISE 8.2i/9.1i [Xilinx 2006], and

Figure 4-1: Various Modules in an FPGA

73

the PlanAhead design flow for ISE 9.1i. Obtaining the tools and user guides for the EAPR flow

requires registration and authorization from Xilinx. The tools and user guides for the other two

flows are available to the public. This paper investigates the specifics of the EAPR design flow and

compares its advantages to the module-based design flow for ISE 6.3i.

Section 4.2 explains the design process for partial reconfiguration. Section 4.3 proposes an

application for use with partial reconfiguration and details the results obtained from implementing

the application. Section 4.4 makes a comparison between the implementations of two devices from

the Xilinx Virtex Family. Section 4.5 provides conclusions of the partial reconfiguration process.

4.2 Early Access Partial Reconfiguration Design Flow

Each of the steps of the partial reconfiguration design flow is outlined by Figure 4-2 and de-

scribed below.

Step 1: Hardware Description Language (HDL) Design and Synthesis

The initial steps in the EAPR design flow are similar to the initial steps in the standard mod-

ular design flow. The process begins by designing a top-level design that does not contain any logic.

Figure 4-2: Early Access Partial Reconfiguration Flow [Xilinx 2006]

74

The top-level module only contains I/O instantiations, clock primitives, static module instantiations,

partial reconfiguration module instantiations, and signal declarations. In addition, the top-level

module must define bus macros. Bus macros are hard macros that facilitate communication be-

tween static modules and partial reconfiguration modules.

The static modules contain logic that will remain constant during reconfiguration. The static

modules cannot instantiate global clock signals, but may utilize clock signals declared in the top-level

module. Similar to the static modules, the partial reconfiguration modules must also not contain

global clock signals, but may use those from the top-level module. When designing multiple recon-

figurable modules to utilize the same reconfigurable area, the component name and port configura-

tion of each module must match the reconfigurable module instantiation located in the top-level

module.

After the HDL design, all of the modules are synthesized with the Keep Hierarchy

attribute set to yes. In addition, the top module is synthesized with the Add I/O Buffers

attribute enabled, whereas each sub-module—static and each reconfigurable module—is synthesized

with this attribute disabled. This provides an .ngc, .ngo, or .edf file format for the implemen-

tation step. To ensure that each synthesized module does not interfere with another, creating a de-

sign project for each module, each project within its own directory, is recommended.

Step 2: Set Design Constraints

Before implementing the synthesized design, constraints must be specified for the top-level

design. Mandatory constraints include the AREA_GROUP, RANGE, MODE, and LOC con-

straints. The AREA_GROUP constraint specifies which modules in the top-level module are static

and which are reconfigurable. Each module instantiated by the top-level module is assigned to a

75

group. The RANGE constraint is only applied to the reconfigurable group to specify its range of

resources, which may be any-sized rectangle. All resources within the designated area must be cov-

ered by a RANGE constraint, including SLICE, RAMB16, MULT18X18, TBUF (Tri-state Buffer),

FIFO16 (First In, First Out), and DSP48 (Digital Signal Processor) resources. The static group is

allowed to use all other resources not specified by the reconfigurable group. The MODE constraint

is also only applied to the reconfigurable group, which specifies that the group is reconfigurable.

Every pin, clocking primitive, and bus macro in the top-level design must contain a LOC

constraint. Bus macros are located so that they straddle the reconfigurable boundary as set by the

RANGE constraint. Constraining the location of the bus macros enforce their position during all

iterations of the implementation step. This one user constraint file for the top-level directory is used

to implement the static module and each of the reconfigurable modules.

Step 3: Static Module Implementation

Before the static modules are implemented, the top-level is translated to ensure that the con-

straints file has been properly created. After the top-level translation is successful, the static module

implementation begins within the context of the top-level module and constraints. The implementa-

tion process translates the synthesized top-level module while using all synthesized static modules

created in Step 1 and the top-level constraints file created in Step 2. The synthesized bus macros,

which are provided by Xilinx, must also be included in the directory where translation is to take

place. After a successful translation, MAP creates the mapped design.

PAR is invoked to provide the .ncd output file that is used to generate a bitstream for pro-

gramming the FPGA. In addition to the .ncd file, PAR provides a static.used file that lists

76

the routing resources within the reconfigurable area used by the static implementation. This file is

used by the reconfigurable implementation to prevent using the same routing resources.

Step 4: Reconfigurable Module Implementation

The reconfigurable modules are implemented using the top-level module, reconfigurable

modules, and synthesized bus macro design files. NGDBuild, MAP, and PAR are run similarly to

the Step 3, but the static.used file created in Step 3 is renamed to arcs.exclude and in-

cluded in the reconfigurable implementation directory. PAR automatically uses the

arcs.exclude file to prevent the reconfigurable modules from using routing resources allocated

for the static modules. The reconfigurable module implementation process is performed once for

each reconfiguration module occupying the same reconfigurable area, where each implementation

process contains either one module or the other.

Step 5: Merge Implementations

To generate the appropriate full and partial bitstreams for programming the FPGA, the

pr_verifydesign and pr_assemble routines are run using the .ncd files output by the

PAR processes in Step 3 and Step 4. The merge process is run once to merge the static design with

the first reconfigurable module. The merge process is run a second time to merge the static design

with the second reconfigurable module. The merge process outputs an FPGA .bit file used to

initialize the FPGA with the static design and a partial bit file for each reconfigurable module that is

used to partially reconfigure the FPGA.

77

4.3 Application Using Partial Reconfiguration

4.3.1 Case-study Application

The application investigated uses partial reconfiguration to switch between two hash algo-

rithms: MD5 [Rivest 1992] and SHA-1 [NIST 1995]. A hypothetical system is considered where

both algorithms are required for use and space is limited, but does not require simultaneous use of

the two algorithms. Since space, and not time, is at a premium, partial reconfiguration is a viable

option.

Both MD5 and SHA-1 operate by accepting a message and padding the message until its bit

length is a multiple of 512. Afterwards, the algorithm divides each 512-bit section into sixteen 32-bit

segments. As shown in Figure 4-3, these segments (Mi) are inputs to a process that produces a mes-

sage digest. The process includes a step box, F(b,c,d), that uses three 32-bit registers for inputs and

Figure 4-3: MD5 Hash Algorithm Overview [Wikipedia Current]

78

rotates between four functions to determine its output. The algorithm additionally utilizes shifting

and addition modulo 232 operations. This process repeats until the algorithm has used all of the

message segments as inputs. MD5 provides a final message digest of 128 bits whereas SHA-1 pro-

vides a digest of 160 bits.

Since these algorithms are similar in structure and method, research has optimized the two

algorithms for systems that require both algorithms. One method presented in [Järvinen et al. 2005]

optimizes the two algorithms by combining the hardware used by the algorithms. Through resource

sharing, this approach saves space by not implementing redundant hardware. Another method in

[Tan and DeMara 2007] rotates the four functions used by the step-box through partial reconfigura-

tion. Both of these methods are only applicable in systems that do not require both algorithms to

operate concurrently.

The proposed approach moves from the fine granularity in [Tan and DeMara 2007] to a

courser granularity by considering the entire hash algorithm. Partial reconfiguration is utilized by

allocating a portion of the FPGA as reconfigurable to contain either the MD5 module or the SHA-1

module at any given time. The remaining portion of the FPGA contains a keyboard module to ac-

cept a user input used as the message and a Video Graphics Array (VGA) module to display the user

input along with the output of the hash algorithm.

4.3.2 Overview of Design using Partial Reconfiguration

A top-level view of the hash algorithm system is shown in Figure 4-4. The system allows a

user to input a 32-bit hexadecimal message and receive the corresponding message digest. Depend-

ing on which hash algorithm is loaded in the reconfigurable area, the user will receive the appropri-

ate message digest. A Personal System 2 (PS/2) keyboard provides the input while a VGA monitor

79

provides the output. The static design includes a VGA module, keyboard module, and modules ne-

cessary for processing the inputs of the keyboard and the outputs for the VGA monitor. The data

module accepts a user input of eight hexadecimal values as the message and displays these values on

the VGA monitor.

The reconfigurable design includes one hash algorithm, either MD5 or SHA-1. The focus of

the application is to demonstrate the two different hash algorithms, especially the difference in mes-

sage digest length. The MD5 provides a 128-bit message digest whereas the SHA-1 algorithm pro-

vides a 160-bit message digest. To accommodate the two algorithms, the MD5 algorithm pads its

message digest with 32bits of zeros before sending it to the VGA module. Keeping the total mes-

sage digest length constant between the two algorithms allows the VGA processing module to re-

main static for both hash algorithms. It is possible, however, that additional data be passed to the

VGA processing module to inform it which algorithm is present to more appropriately display the

message digest.

Figure 4-4: Top-level View of Partial Reconfiguration Design

80

The total number of bits being passed at one time between static and reconfigurable logic is

192—32 bits for the user input and 160 bits for the message digest. Since all inputs and outputs be-

tween static and reconfigurable logic are required to pass through bus macros, twenty-four bus ma-

cros, 8 bits wide each, are required to pass the 32-bit user input and 160-bit hash output. Whereas

the FPGA can physically accommodate 24 bus macros, a more efficient implementation facilitated a

design of a parallel-to-serial encoder/decoder module for transferring the data.

Before passing the user input to the hash algorithm, the data is sent serially from the static

logic to the reconfigurable logic. At the same time, the reconfigurable logic receives each bit and

converts it into an array for use within the algorithm. Likewise, the reconfigurable logic sends the

160-bit message digest bit-by-bit to the static logic to display on the VGA monitor. After storing

user inputs and message digests into registers, the values are written to RAM locations for readback

by the VGA module.

With this implementation strategy, only two bus macros are required to pass data from static

logic to the reconfigurable logic, one for right-to-left transmissions and the other for left-to-right

transmissions. Only six of the sixteen bus macro channels are used, so ten additional parallel-to-

serial encoder/decoder modules may be implemented to decrease the time for data transfer. To de-

termine whether the additional channels are necessary, data transmission and digest calculation la-

tencies are calculated.

 Digest calculation time is calculated to be 3.2μs with an additional data transmission time of

1.92μs. The Data Processing module updates the RAM with new user inputs and message digest

values during the 64μs V-sync pulse, which occurs at a frequency of 28.8 KHz. As expected, tests

indicate that the data latency between user input, sending the user input, calculating the message di-

gest, sending the message digest, and displaying the message digest is negligible.

81

4.3.3 FPGA Implementation

Partial reconfiguration was successfully implemented on a XC2VP30-FF896 Virtex-II Pro

FPGA. As seen in Figure 4-5a and Figure 4-5b, the reconfigurable area is located in the upper-left

portion of the FPGA to allow the static logic access to the VGA Input/Output Blocks (IOB) in the

upper right and PS/2 IOBs located in the lower right portions of the FPGA.

Figure 4-5a demonstrates the latest feature of the EAPR design flow by allowing a two-

dimensional reconfigurable area. Since the Virtex-II Pro configuration frame extends the entire

height of the device, glitchless reconfiguration prevents interruption of the static logic found under-

neath the reconfigurable area when implementing the hash algorithm [Lysaght et al. 2006]. To dem-

a) Static Modules b) SHA-1 Module

Figure 4-5: FPGA Implementation and Resource Utilization

82

onstrate further that the static logic is not interrupted, the constant connection between the FPGA

and the VGA monitor is visually verified while partially reconfiguring the FPGA device.

4.4 Virtex Family Comparison

The Virtex-II, Virtex-II Pro, and Virtex-4 FPGAs all support partial reconfiguration. Only

the most recent design flow has allowed two-dimensional reconfiguration areas for the Virtex II and

Virtex II Pro. Before the EAPR design flow, the reconfiguration areas on these devices were re-

quired to extend the entire height of the device to match the height of the configuration frames.

EAPR removed this restriction due to an inherent capability of the Virtex-II and Virtex-II Pro,

“glitchless reconfiguration.” Glitchless reconfiguration enables routing and logic resources to remain

operational if the configuration setting for that resource is the same before and after the reconfigura-

tion. This capability is applied to partial reconfiguration when a reconfiguration area is smaller than

the height of the device. Whereas the Virtex-II/ Pro still reconfigures the entire height of the de-

vice, glitchless reconfiguration maintains any static routing and logic resources residing below or

above the reconfiguration area. Since a configuration frame extends the entire height of the device,

reconfigurable areas cannot overlap vertically, lest they change one another’s configurations upon

partial reconfiguration.

Virtex-4 FPGAs differ from the Virtex-II and Virtex-II Pro in that the height of its configu-

ration frame is only 16 CLBs. Because of this smaller configuration granularity, reconfigurable areas

are allowed to overlap vertically, so long as they do not share the same configuration frame. In the

case of the XC4VFX60 Virtex-4 FPGA, which is 128 CLBs in height, up to eight reconfigurable

areas may reside in any one CLB column.

83

Bitstream Size Comparison

Before the availability of partial reconfiguration, users were required to program the entire

FPGA to switch between applications residing on a mere portion of the FPGA. One downside to

this method is the reconfiguration time—larger bitstream files increase the reconfiguration time.

Additionally, the portion of the FPGA that will not be changed is interrupted until the reconfigura-

tion process is complete.

Partial reconfiguration addresses the bitstream size by reducing the filesize of the partial bit-

stream representing the reconfigurable module. As listed in Table 4-I, the MD5 partial bitstream

generated by the EAPR flow is 22.1% of an initial device bitstream. Based on the filesize alone, one

could predict that the configuration time is decreased by 77.9% of a full-device configuration. Ex-

periments validated this prediction with a reconfiguration time decrease of 71.4%. In addition, the

partial reconfiguration was demonstrated not to interrupt the operation of the static logic, including

the keyboard and VGA modules.

Table 4-I also lists the area allocated for the MD5 and SHA-1 reconfigurable modules. As

previously discussed, the Virtex-II Pro configuration frame extends the entire height of the device.

Therefore, even if a small section of the FPGA is to be reconfigured, such as the 2.8% area used by

Table 4-I: Virtex-II Pro Bitstream and Area Sizes
 xc2vp30-7ff896, 80CLB configuration frame
 Bitstream

Filesize
(bytes)

Area Allocated
(slices)

Area Used
(slices)

Time to
Configure
(seconds)

Full Device 1,448,817 13,696 13,696 7
MD5 320,597

(22.1%)
1280 (9.3%) 389 (2.8%) 2 (28.6%)

SHA-1 356,702
(24.6%)

1280 (9.3%) 457 (3.3%) 2 (28.6%)

84

the MD5 module, the full height of the device is included in the configuration bitstream. This ex-

plains the discrepancy between the 28.6% bitstream filesize and 2.8% area actually used by the re-

configurable module. As expected, the partial bitstreams of the Virtex-II Pro FPGAs are much larg-

er than required.

For comparison, the same application was implemented on a Virtex-4 FPGA. While the se-

lected Virtex-4 device was not available to configure, bitstreams were generated nonetheless. The

Virtex-II Pro user constraints file was modified to accommodate the change in device, including

LOC constraints and resource RANGE constraints. Additionally, the Virtex-II Pro bus macros

were replaced with Virtex-4 bus macros. The EAPR design flow was then followed as outlined by

Figure 4-2.

As previously discussed, since the height of the configuration frame in Virtex-4 devices are

shorter, the partial bitstream filesize should more closely represent the number of resources actually

being reconfigured. Table 4-II verifies this prediction by listing the MD5 partial bitstream as 3.7%

of a full bitstream more closely representing the 2.8% slice utilization. Since the Virtex-4 has nearly

twice the available resources of the Virtex-II Pro, the possible savings in configuration time is even

more dramatic at 96.3%.

The Virtex-II Pro bitstream filesizes can also be compared to the Virtex-4 bitstream filesizes.

Table 4-II: Virtex-4 Bitstream and Area Sizes
 xc4vfx60-11ff672, 16CLB configuration frame
 Bitstream

Filesize
(bytes)

Area Allocated
(slices)

Area Used
(slices)

Full Device 2,625,438 25,280 25,280
MD5 95,962 (3.7%) 1,280 (5.1%) 405 (1.6%)
SHA-1 97,619 (3.7%) 1,280 (5.1%) 472 (1.9%)

85

When comparing the filesizes of the partial bitstreams for the MD5 algorithm, it is obvious that the

Virtex-4 has a more efficient bitstream. As proven by Table 4-I, a smaller bitstream decreases the

reconfiguration time. In comparing the two MD5 bitstream filesizes, the Virtex-4 can conceivably

reconfigure the approximate same number of resources 30% quicker than the Virtex-II Pro. Actual

reconfigurations with a Virtex-4 need to be performed to verify these predictions.

4.5 Chapter Summary

A simple application of switching between two hash algorithms was demonstrated to suc-

cessfully exhibit the benefits of partial reconfiguration. For systems that require more modules than

spatial resources allow, partial reconfiguration is a viable option. Partial reconfiguration reduces the

bitstream filesize when compared to a full reconfiguration. Additionally, partial reconfiguration al-

lows applications to switch without interrupting the static portion of the FPGA.

The Virtex-4 was proven more efficient than the Virtex-II Pro for partial reconfiguration.

By decreasing the size of the bitstream, the Virtex-4 requires less time to reconfigure the same ap-

proximate number of resources. This savings in time may be particularly useful for systems that de-

pend upon the configuration time such as a repetitive intrinsic evolution process utilizing GAs. Ad-

ditional work includes verifying the predictions in the savings of configuration time in the Virtex-4

device.

86

CHAPTER 5
DYNAMIC PROCESSOR ALLOCATION STRATEGIES

In the previous chapter, partial reconfiguration was shown to time-multiplex between two

different modules utilizing the same hardware resources. Another application that exploits the re-

duced reconfiguration granularity and the time multiplexing of partial reconfiguration is a scalable

architecture for video processing. Within a scalable architecture, generic processing elements (PE)

are implemented for use between multiple video processing functions such as Discrete Cosine

Transform (DCT) [Lee et al. 2006a] and motion estimation [Lee et al. 2006b]. If a user requires va-

rying degrees of video quality, partial reconfiguration can be used to add and remove PEs while the

overall process continues to run. Huang et al. [2008] implement such an architecture as a two-level

scalable architecture using partial reconfiguration. On one level, the architecture modifies the num-

ber of Processing Elements (PE) allocated to the DCT video processing function. On the second

level, the architecture modifies the precision with which the DCT function is processed.

5.1 Video Compression Overview

Video compression is used by applications to reduce the size of the information for either

transmission or storage. Lossless video compression techniques reduce the size in such a way that

the original content may be reconstructed perfectly from the compressed information. Lossy video

compression techniques, on the other hand, cannot reconstruct the original video perfectly; during

the compression, some information is discarded or lost. The goal of lossy techniques is to maximize

the compression ratio while minimizing perceptible or objectionable differences between the com-

pressed and original videos. Since videos are merely a sequence of still images referred to as frames,

87

video compression may be understood generally by exploring common image compression tech-

niques.

One such common image compression technique includes the specification by the Joint

Photographic Experts Group (JPEG). The first step in JPEG compression is to partition the image

into 8x8pixel blocks, as seen in Figure 5-1. Each of these blocks then is transformed into a frequency

domain representation by an 8x8 DCT. Frequency information is useful in the compression process

since lower frequencies correspond to highly perceptible features in the image whereas the higher

frequencies are less perceptible. DCT produces 64 frequency-domain coefficients from the 64 spa-

tial pixels of each 8x8 block. If lower quality is acceptable, some of the higher frequency coefficients

may be discarded to produce blocks of various sizes, such as 7x7 or 1x1. Following DCT, the quan-

tization process favors the lower frequency coefficients by encoding them with a higher degree of

precision than the higher frequency coefficients. After quantization, most of the higher frequency

Figure 5-1: Generic Image Compression Method

88

DCT coefficients become zero. A run-length coding method capitalizes on this trend by grouping a run

of zero-valued coefficients together, compressing the image bitstream. Variable-length coding usually

follows, converting commonly occurring symbols representing quantized DCT coefficients or runs

of zero-valued coefficients with shorter length code words. On average, variable-length coding fur-

ther reduces the image bitstream size.

5.2 Scalable Architecture for DCT and Motion Estimation

The scalable architecture is designed for applications that vary in required quality and, thus,

dynamically control the parameters of video processing functions. For example, a user may not re-

quire full quality of a video signal. As such, the proposed architecture may compensate by imple-

menting PEs that provide partial precision of its calculations of the DCT computation to reduce

dynamic power consumption. Similarly, when a user requires higher quality video, full precision PEs

may be implemented. Additionally, the compression ratio may be a parameter to the video

processing function that varies with time. To compensate for higher compression ratios, the scala-

ble architecture may reduce the number of PEs allocated to the DCT function. A direct benefit of

removing PEs from operation is, again, a reduction in dynamic power consumption.

One alternative to partial reconfiguration is to implement some control logic to facilitate the

precision of the PE and enable or disable the PEs from operation. Such an implementation, while it

may equally reduce dynamic power consumption, requires a greater number of FPGA resources. A

tradeoff is apparent between the time to reconfigure the FPGA with partial bitstreams and the space

to implement logic to switch between precisions and number of PEs. An additional benefit of par-

tial reconfiguration that switching logic cannot provide is the ability to reallocate its resources to

other functions. In the case of DCT and Motion Estimation (ME), the PE for each function is suf-

89

ficiently different that simple logic cannot switch between the two types of PEs without incurring

significant resource overheads. The scalable architecture exploits the power of partial reconfigura-

tion by reconfiguring unused DCT PEs to other types of PEs for video processing functions that

may benefit from the extra processing power. As an example, motion estimation is considered as

another video processing function that may benefit from unused DCT processing elements.

Partial reconfiguration also allows dynamic resource management to increase the capability

of an FPGA device. Whereas a smaller FPGA device is limited in logic resources, it may use partial

reconfiguration to implement a time-multiplexed pipeline of video processing functions. Whereas

more time is required, a smaller FPGA becomes capable of producing video equal in quality to a

much larger FPGA device. This time multiplexing between functions on a small scale demonstrates

the capability that partial reconfiguration enables for FPGAs.

5.3 Scalable Architecture Implementation

Using the Xilinx Early Access Partial Reconfiguration (EAPR) design flow [Xilinx 2006], the

scalable architecture is implemented on the Xilinx Virtex-4 SX35 Video Starter Kit. The scalable ar-

chitecture previously described naturally allows each PE to reside within a separate reconfiguration

area for modification of its configuration without disturbing the remaining portion of the FPGA—

meaning that the system clocks do not stop and the rest of the FPGA can continue to function.

Figure 5-2 shows an implementation of the scalable architecture with the locations of the eight re-

configuration areas.

Partial reconfiguration allows flexibility in selecting the quality of precision of a specific PE

along with the total number of PEs allocated to the DCT application. Each reconfigurable region is

able to implement one PE. In 8x8 2D-DCT computations, for example, each reconfigurable area is

90

configured to contain one PE each, totaling 8 PEs. In 1x1 computations, one reconfigurable area

contains one PE while the other 7 reconfigurable areas are made available to other video functions

such as motion estimation. In the scalable architecture, three types of PEs are designed: a full preci-

sion DCT PE, a partial precision DCT PE, and an Empty PE. The Empty PE allows those reconfi-

guration areas not being used by video processing functions to contain no switching logic to reduce

dynamic power consumption.

Since the Full Precision PE is the largest of the three configurations, its resource require-

ments determine the boundaries of the reconfiguration areas. The Virtex-4 architecture has a confi-

guration frame resolution of 16 CLBs in height—reduced from the Virtex-II architecture whose

configuration frame resolution includes the entire height of the device [Lysaght et al. 2006]. There-

fore, the reconfiguration areas span the minimum of 32 slices in height, whereas the width of each

reconfiguration area is minimized to encompass its specific PE design, making each of the Slices with-

in Area values listed in Table 5-I a multiple of 32.

Figure 5-2: Location of 8 PEs on a V4SX35 device [Huang et al. 2008]

91

A partial bitstream is generated for each reconfiguration area and for each type of PE. For

example, 24 partial bitstreams are generated in the implementation of 8 reconfiguration areas and 3

types of PEs. Table 5-I lists the area size, resource utilization, and bitstream filesizes for each of the

Full Precision PE partial bitstreams generated. Since the Full Precision PE has the largest resource

utilization, larger than the Partial Precision or Empty PEs, its bitstream sizes are the upper bounds

for all types of PEs. For comparison, a bitstream filesize of an Empty PE is 10,586 bytes.

Before partial bitstreams are used, the FPGA is initialized first with a full bitstream. In de-

signing the initial full bitstream, the user determines the most useful combination of type and num-

ber of PEs to be the initial configuration of the FPGA—full or partial precision and the type of

DCT, 1x1, 2x2, etc. The size of the initial bitstream is always 1,712,614 bytes, regardless of whether

all 8 Full Precision PEs are implemented or only 1 Full Precision PE with 7 Empty PEs are imple-

mented. In comparison to a full bitstream, partial bitstream filesizes are significantly smaller and

reducing the storage space required for the various bitstreams. The results show that the filesize of a

Full Precision PE bitstream is about 1.6% of a full bitstream. As demonstrated in CHAPTER 4, this

decrease in bitstream filesize proportionally decreases the reconfiguration time.

Table 5-I: Full Precision PE Implementation Results
 Slices within Area

(Slice Utilization)
Bitstream Filesize

in bytes
PE0 320 (94.38%) 22,306
PE1 384 (95.05%) 27,794
PE2 384 (84.38%) 28,306
PE3 384 (92.97%) 28,158
PE4 320 (91.25%) 22,306
PE5 384 (88.54%) 27,354
PE6 384 (87.76%) 27,618
PE7 384 (95.57%) 27,654

92

Table 5-II lists a comparison between one non-partial reconfiguration scenario and two par-

tial reconfiguration scenarios. In the case of non-partial reconfiguration, a full bitstream needs to be

generated and stored for each 2D-DCT configuration. For example, a full bitstream of 1,712,614

bytes is required for a 1x1 Full Precision DCT configuration. To implement an 8x8 Full Precision

DCT function, another full bitstream is required. To implement a 4x4 Full Precision DCT function

with 4 Motion Estimation PEs, a third full bitstream is required. For three distinct hardware ar-

rangements, 4.90 MB of storage space is required. To switch between each of these hardware ar-

rangements, the entire FPGA is reconfigured, stopping all video processing elements. The shortest

configuration time needed to switch between hardware arrangements is equal to the worst time at 17

ms. The configuration time is estimated based on the timing of SelectMAP interface using conti-

Table 5-II: Size and Configuration Times of Bitstreams [Huang et al. 2008]
 Bitstream

Filesize
Configuration

Time

N
on

-P
R

 1x1 Full 2D-DCT 1,712,614 bytes 17 ms
4x4 DCT & 4 ME PEs 1,712,614 bytes 17 ms
8x8 Full 2D-DCT 1,712,614 bytes 17 ms

3 H/W Arrangements 4.90 MB 17 ms/17 ms
(Best/Worst)

P
R

Initial (8x8) 1,712,614 bytes 17 ms
8 Full Precision PEs 8 × 28,306 bytes 8 × 0.283 ms
8 Partial Precision PEs 8 × 28,306 bytes 8 × 0.283 ms
8 Empty PEs 8 × 10,586 bytes 8 × 0.106 ms

16 H/W Arrangements 2.15 MB 0.106/2.265 ms
(Best/Worst)

P
R

Initial (8x8) 1,712,614 bytes 17 ms
8 Full Precision PEs 8 × 28,306 bytes 8 × 0.283 ms
8 Partial Precision PEs 8 × 28,306 bytes 8 × 0.283 ms
8 Empty PEs 8 × 10,586 bytes 8 × 0.106 ms
8 Motion Estimation PEs 8 × 28,306 bytes 8 × 0.283 ms

80 H/W Arrangements 2.36 MB 0.106/2.265 ms
(Best/Worst)

93

nuous data loading as previously shown in Section 2.4.1.4:

cclk
config f

bytesT 1)3(⋅+= , (5-1)

Here, bytes is the number of bytes of the bitstream stored in the external PROM and cclkf is the

clock frequency of the SelectMAP configuration clock set to 100 MHz in the estimations in Table

5-II.

In an implementation of the scalable architecture using partial reconfiguration, a user stores

one full-device bitstream and all partial bitstreams on an external ROM. In calculating the storage

requirements, the worst-case Full Precision PE partial bitstream filesize— 28,306 bytes— is used for

partial bitstream totals. The total space required for implementing the initial bitstream and all three

types of 2D-DCT PEs—Full, Partial, and Empty—is approximately 2.15 MB. In comparison to the

non-pr implementation shown in Table 5-II, partial reconfiguration results in a 2.3-fold decrease in

storage whereas the number of distinct hardware arrangements possible is increased 5.3-fold. Addi-

tionally, switching between these hardware arrangements does not disturb logic residing outside of

the reconfiguration areas. The shortest configuration time to switch between arrangements is 0.106

ms by implementing one Empty PE, for example, to switch from 8x8 DCT to 7x7 DCT. The long-

est configuration time is estimated to be 2.265 ms to switch, for example, from 8x8 Partial Precision

to 8x8 Full Precision, which is much less than the 17 ms required by a full bitstream.

5.4 Scalable Architecture Hardware Arrangements

As seen in Table 5-II, the addition of eight motion estimation PE bitstreams only increases

the storage requirement by 0.21 MB. For a 1.1-fold increase in storage overhead, the capability of

the FPGA is increased 5-fold, expanding the number of possible hardware arrangements from 16 to

94

80. Table 5-III lists all 80 hardware arrangements possible with the Full Precision, Partial Precision,

Empty, and Motion Estimation PEs.

As indicated by the first row of Table 5-III, the Full Precision DCT function can vary from

1x1 to 8x8, where Empty PEs fill up the unutilized PE locations. Since the number of PEs are va-

ried with the DCT function, this results in 8 unique hardware arrangements. When the Motion Es-

timation PE is used in conjunction with the Full Precision, and the Empty PEs fill the unutilized PE

locations, Row 2 shows that one Motion Estimation PE may be implemented while a 7x7 Full Preci-

sion DCT function is implemented, resulting in one hardware arrangement. Row 3 shows that a 6x6

Full Precision DCT function leaves available two PE locations where Motion Estimation may use

both or Motion Estimation may use one and an Empty PE may occupy the other, resulting in two

Table 5-III: Partial Reconfiguration Hardware Arrangements for 8 PE Locations

 Variable Unique H/W
Arrangements

Full Precision filled w/ Empty PEs DCT [1x1–8x8] 8

Full Precision and
Motion Estimation (ME)

PEs filled w/ Empty
PEs

7x7 DCT ME PE [1] 1
6x6 DCT ME PEs [1–2] 2
5x5 DCT ME PEs [1–3] 3
4x4 DCT ME PEs [1–4] 4
3x3 DCT ME PEs [1–5] 5
2x2 DCT ME PEs [1–6] 6
1x1 DCT ME PEs [1–7] 7

Partial Precision filled w/ Empty PEs DCT [1x1–8x8] 8

Partial Precision and
Motion Estimation (ME)

PEs filled w/ Empty
PEs

7x7 DCT ME PE [1] 1
6x6 DCT ME PEs [1–2] 2
5x5 DCT ME PEs [1–3] 3
4x4 DCT ME PEs [1–4] 4
3x3 DCT ME PEs [1–5] 5
2x2 DCT ME PEs [1–6] 6
1x1 DCT ME PEs [1–7] 7

No DCT—Motion Estimation Only ME PEs [1–8] 8
TOTAL 80

95

hardware arrangements. Rows 4-8 list the remaining Full Precision DCT arrangements with the cor-

responding number of Motion Estimation PEs that may be implemented and the hardware ar-

rangement possible.

The next 8 rows of the table duplicate the possible hardware arrangements when implement-

ing Partial Precision DCT functions. The last row of the table lists an additional 8 hardware ar-

rangements possible when neither Full or Partial Precision DCT function is used and only Motion

Estimation PEs are used. Similar to the Full and Partial PEs, the number of Motion Estimation PEs

that may be implemented at any one time ranges from 1 to 8, which also results in 8 unique hard-

ware arrangements, increasing the total to 80.

5.5 Chapter Summary

The scalable architecture exploits all of the benefits of partial reconfiguration discussed in

Section 1.4. Any change made by partial reconfiguration to the type or number of PEs for the DCT

function does not affect the other video compression functions. Since partial reconfiguration re-

duces the reconfiguration granularity, adding small-sized partial bitstreams increases the capability of

the FPGA without large storage requirements. As demonstrated, a 1.63 MB bitstream must be gen-

erated and stored for each hardware arrangement when not using partial reconfiguration. Without

the use of partial reconfiguration, 16 hardware arrangements require 16 full-device bitstreams total-

ing 26.13 MB. By using partial reconfiguration, 16 hardware arrangements require 1 full-device bit-

stream and 24 partial bitstreams only totaling 2.15 MB.

With respect to reducing configuration time, the best-case reconfiguration time of a full-

device reconfiguration scheme is estimated to be 17 ms. The worst-case reconfiguration time in the

partial reconfiguration implementation is decreased significantly to 2.265 ms. An additional 8 partial

96

bitstreams totaling 221 KB further increases the capability of the FPGA to 80 hardware arrange-

ments. When compared to the non-partial reconfiguration option, partial reconfiguration increases

the capability of the FPGA with a significant decrease in reconfiguration time while maintaining sim-

ilar storage requirements.

97

CHAPTER 6
CONCLUSION

Whereas the vast majority of FPGA fault-handling is deterministic, either by depending

upon knowledge of the fault location or providing alternative solutions prior to the fault occurring,

this thesis develops and optimizes techniques of active regeneration of lost functionality. Consider-

ing the experiments repairing the 3-bit adder in CHAPTER 3, many of these deterministic methods

could repair the FPGA circuit given the simulation model. For example, the Incremental Rerouting

method discussed in Section 2.3.1.1 could shift the LUTs away from the fault towards one of the

two available spares. Since the simulation only considers the logic portion of the application, mod-

ifying the input values of the appropriate LUTs would take negligible time. Moreover, as long as

spare LUTs are provided the success of these deterministic methods would remain constant while

the complexity of the application increases.

Nonetheless, methods incorporating GAs are stochastic processes so their results are not de-

terministic. GAs perform best when solving problems whose solution quality can be definitively

assessed yet the paths to obtain such solutions cannot be precisely defined. Although the standard

GA was improved, the best implementation shown in CHAPTER 3 could repair a simple 3-bit ad-

der only 5% of the time. Additionally, the computational time required to generate a complete re-

pair is significantly larger than that required by an Incremental Rerouting algorithm. Since FPGA

fault-detection techniques are available, the solution to a specific fault scenario can be determined,

as used by Emmert et al. [2007]. As discussed in Section 2.3.1.3, improvements in the performance

of GAs have been observed when considering the location of a fault—an improvement that this

thesis does not make.

98

The simulations used only consider the logical portion of the FPGA application. Future

work includes incorporating routing information into the simulator to consider the limited number

of routing channels on an FPGA device. This addition for evaluating the fitness of individuals with-

in the population would result in additional computation complexity for the GA. Since the success

of GAs is heavily dependant upon the simplicity of the circuit, increasing the complexity of the ap-

plication would amplify its limitations compared to deterministic approaches. The limitations of the

GA, however, are offset by its ability to exploit faulty resources. Whereas an incremental rerouting

algorithm can only bypass faulty PLBs, possibly leaving behind some functional aspects, a GA can

provide a solution that uses the faulty PLB in a constructive manner. This makes the GA fault-

handling method more amenable to more difficult fault scenarios, including the case where more

faults exist than there are spare PLBs.

Solutions derived in simulated environments may not easily translate to the actual faulty de-

vice. In lieu of simulations, intrinsic evolution creates individuals with genetic operators and tests

them directly on the FPGA device to obtain its fitness value. Research has manipulated the FPGA

bitstream directly [Oreifej et al. 2007], eliminating the need to create an object-oriented chromosome

representation. Crossover and mutation may have more success manipulating a string of bits rather

than the object-oriented chromosome utilized by the simulations herein. Additionally if the repair

area is small relative to the device, intrinsic evolution would benefit from the shorter reconfiguration

times of partial reconfiguration, as each repair process requires configuring the FPGA a number of

times equal to the population size multiplied by the number of generations. CHAPTER 4 also ben-

efits from this reduction in configuration time whereas CHAPTER 5 mandates this reduction to im-

plement a dynamic architecture for video processing where time is critical to the operation of the

application.

99

The size of the reconfigurable area directly affects the configuration time. The partial recon-

figuration design flow for ISE 6.3i enables reconfigurable areas to reside on the FPGA device. Since

the configuration frame of the Virtex-II extends the entire height of the device, each reconfigurable

area must also extend the entire height of the device, whereas its width may be variable which makes

it a partial configuration instead of a full configuration. Modules whose width is less than the entire

device will generate partial bitstreams with reduced configuration times.

For reconfigurable modules that do not require use of the entire height of the device, the

Early Access Partial Reconfiguration (EAPR) design flow exploits the glitchless reconfiguration

hardware feature of Virtex-II devices to bypass this software limitation. As such, reconfigurable

modules may be any-sized rectangle where non-reconfigurable or static modules utilize unused re-

sources within the same column, minimizing the area utilization of the application. Although recon-

figurable modules may only use a small portion of the device, the full-column frame forces the con-

figuration time of the reconfigurable module to remain the same. To reduce the configuration time,

the Virtex-4 hardware architecture reduces the size of its configuration frame from the entire device

as in the Virtex-II family to 16 CLBs. The capability of the EAPR design flow, therefore, is ex-

panded to support multiple reconfigurable modules within one column of resources.

CHAPTER 4 shows how configuration times are reduced when the finer reconfiguration

granularity offered by the EAPR software design flow is replicated by the hardware architecture as in

the newer Virtex-4 FPGA device. The DCT function benefits from the EAPR software design flow

and the corresponding hardware architecture by implementing eight partial reconfiguration areas,

four of which reside within the same columns of resources on the left side of the device whereas the

other four reside within the same columns of resources on the right side. The reduced area utiliza-

tion from the EAPR software design flow results in eighty unique hardware arrangements that only

100

require 2.36 MB of external storage, whereas a non-partial reconfiguration implementation requires

130.66 MB. The configuration time of a reduced frame results in a worst-case time of 2.265 ms and

a best-case time of 0.106 ms, whereas a non-partial reconfiguration implementation requires 17 ms.

Additionally, partial reconfiguration can increase the number of resources available to the video pro-

cessor as a whole by time multiplexing between various sub-processing functions, such as DCT and

motion estimation. Lastly, the reconfiguration process occurs without disturbing the remaining

components of the FPGA, allowing sub-processing functions to adapt to user’s requirements inde-

pendently.

The ideal FPGA implementation for partial reconfiguration includes utilizing a soft-core

processor or one of the internal PowerPC processors to control the reconfiguration process. The

application implemented in CHAPTER 4 requires the user to configure the desired hash algorithm

using the Xilinx tools. Utilizing an internal processor would allow a user to simply press a key on

the PC keyboard attached to the FPGA to select the desired hashing algorithm. Upon selecting the

desired hashing algorithm, the FPGA would then partially reconfigure itself to change the hash algo-

rithm. Additionally, the SelectMAP interface could be used to decrease the observed configuration

time from 2 seconds to 3.6μs, making the transition delay negligible to the user. The application

presented in CHAPTER 5 would also greatly benefit from implementing an internal processor. In

this implementation, a user would request a desired video quality using some communication chan-

nel and the FPGA would automatically adjust its configuration to implement the necessary sub-

functions to achieve such a quality. Under either of these implementations, the partial reconfigura-

tion process would only need an external storage element such as an Erasable Programmable Read-

Only Memory (EPROM) or compact flash device, creating a dynamic, self-contained solution.

101

As promising as these results are, the complete capability of partial reconfiguration remains

to be discovered. Current implementations of genetic algorithms, for example, may require proces-

sors external to the FPGA increasing spatial requirements of fault-handling techniques for deep-

space missions where user intervention is limited or non-existent. As software design-flows im-

prove, FPGA architectures become more integrated, and clock frequencies increase, FPGAs will

increasingly become standalone platforms for evolvable and adaptable systems.

102

APPENDIX:
FIGURE 1-1—PERMISSION TO REPRINT

103

Dear Matthew Parris,

We hereby grant you permission to reprint the material detailed below at no charge in your thesis
subject to the following conditions:

1. If any part of the material to be used (for example, figures) has appeared in our publication

with credit or acknowledgement to another source, permission must also be sought from
that source. If such permission is not obtained then that material may not be included in
your publication/copies.

2. Suitable acknowledgment to the source must be made, either as a footnote or in a reference

list at the end of your publication, as follows:

“This article was published in Publication title, Vol number, Author(s), Title of article, Page
Nos, Copyright Elsevier (or appropriate Society name) (Year).”

3. Your thesis may be submitted to your institution in either print or electronic form.

4. Reproduction of this material is confined to the purpose for which permission is hereby giv-

en.

5. This permission is granted for non-exclusive world English rights only. For other languages

please reapply separately for each one required. Permission excludes use in an electronic
form other than submission. Should you have a specific electronic project in mind please
reapply for permission.

6. Should your thesis be published commercially, please reapply for permission.

This includes permission for UMI to supply single copies, on demand, of the complete thesis.
Should your thesis be published commercially, please reapply for permission.

Kind regards,
Marek Gorczyca
Rights Assistant
Elsevier LTD
Phone number: +441865843841
Fax number: +441865853333
m.gorczyca@elsevier.com

mailto:m.gorczyca@elsevier.com�

104

LIST OF REFERENCES

ACTEL 2005. Axcelerator Family FPGAs, http://www.actel.com/documents/AX_DS.pdf.

ALTERA 2008. Stratix IV Device Handbook, http://www.altera.com/literature/hb/stratix-
iv/stratix4_handbook.pdf.

CARMICHAEL, C., CAFFREY, M. and SALAZAR, A. 2000. Correcting Single-Event Upsets Through
Virtex Partial Configuration. Xilinx Application Notes 216.

CHEATHAM, J.A., EMMERT, J.M. and BAUMGART, S. 2006. A Survey of Fault Tolerant Methodologies
for FPGAs. ACM Transactions on Design Automation of Electronic Systems (TODAES) 11, 501-
533.

DEMARA, R.F. and ZHANG, K. 2005. Autonomous FPGA fault handling through competitive
runtime reconfiguration. In Proceedings of the NASA/DoD Conference on Evolvable Hardware,
Washington D.C., U.S.A., 2005, 109-116.

DUTT, S., SHANMUGAVEL, V. and TRIMBERGER, S. 1999. Efficient Incremental Rerouting for Fault
Reconfiguration in Field Programmable Gate Arrays. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 1999, 173-176.

EMMERT, J.M. and BHATIA, D.K. 2000. A Fault Tolerant Technique for FPGAs. Journal of Electronic
Testing 16, 591-606.

EMMERT, J.M., STROUD, C.E. and ABRAMOVICI, M. 2007. Online Fault Tolerance for FPGA Logic
Blocks. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 15, 216-226.

GARVIE, M. and THOMPSON, A. 2004. Scrubbing away transients and jiggling around the permanent:
long survival of FPGA systems through evolutionary self-repair. In Proceedings of the IEEE
International On-Line Testing Symposium, 2004, 155-160.

GROSSO, P.B. 1985. Computer simulations of genetic adaptation: parallel subcomponent interaction
in a multilocus model University of Michigan, 198.

http://www.actel.com/documents/AX_DS.pdf�
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf�
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf�

105

HANCHEK, F. and DUTT, S. 1998. Methodologies for tolerating cell and interconnect faults in
FPGAs. Computers, IEEE Transactions on 47, 15-33.

HORNBY, G.S. 2006. ALPS: the Age-layered Population Structure for Reducing the Problem of
Premature Convergence. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, Seattle, Washington, USA, 2006 ACM.

HUANG, J., PARRIS, M., LEE, J. and DEMARA, R.F. 2008. Scalable FPGA Architecture for DCT
Computation using Dynamic Partial Reconfiguration. In Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, Nevada,
USA, 2008.

JÄRVINEN, K.U., TOMMISKA, M.T. and SKYTTÄ, J.O. 2005. A Compact MD5 and SHA-1 Co-
Implementation Utilizing Algorithm Similarities. In Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, Nevada, USA, 2005.

KAO, C. 2005. Benefits of Partial Reconfiguration. Xcell Journal Fourth Quarter, 2005, 65-67.

KATZ, D.S. and SOME, R.R. 2003. NASA advances robotic space exploration. In Computer, 52-61.

KEYMEULEN, D., ZEBULUM, R.S., JIN, Y. and STOICA, A.A.S.A. 2000. Fault-tolerant evolvable
hardware using field-programmable transistor arrays. Reliability, IEEE Transactions on 49, 305-
316.

KIZHNER, S., PATEL, U.D. and VOOTUKURU, M. 2007. On Representative Spaceflight Instrument and
Associated Instrument Sensor Web Framework. In Proceedings of the IEEE Aerospace
Conference, 2007, U.D. PATEL Ed., 1-10.

LACH, J., MANGIONE-SMITH, W.H. and POTKONJAK, M. 1998. Low overhead fault-tolerant FPGA
systems. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 6, 212-221.

LAKAMRAJU, V. and TESSIER, R. 2000. Tolerating operational faults in cluster-based FPGAs. In
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, California, United States, 2000 ACM, 187-194.

106

LEE, J., VIJAYKRISHNAN, N., IRWIN, M.J. and CHANDRAMOULI, R. 2006a. Block-based frequency
scalable technique for efficient hierarchical coding. Signal Processing, IEEE Transactions on [see
also Acoustics, Speech, and Signal Processing, IEEE Transactions on] 54, 2559-2566.

LEE, J., VIJAYKRISHNAN, N., IRWIN, M.J. and WOLF, W. 2006b. An Efficient Architecture for Motion
Estimation and Compensation in the Transform Domain. Circuits and Systems for Video
Technology, IEEE Transactions on 16, 191-201.

LOHN, J., LARCHEV, G. and DEMARA, R. 2003. Evolutionary fault recovery in a Virtex FPGA using a
representation that incorporates routing. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, 8 pp.

LYSAGHT, P., BLODGET, B., MASON, J., YOUNG, J.A.Y.J. and BRIDGFORD, B.A.B.B. 2006. Invited
Paper: Enhanced Architectures, Design Methodologies and CAD Tools for Dynamic
Reconfiguration of Xilinx FPGAs. In Proceedings of the International Conference on Field
Programmable Logic and Applications, 2006, 1-6.

MAHFOUD, S.W. 1992. Crowding and preselection revisited. In Parallel Problem Solving from Nature, R.
MÄNNER and B. MANDERICK Eds.

MAXFIELD, C.M. 2004. The Design Warrior's Guide to FPGAs. Newnes.

MILLER, J.F., THOMSON, P. and FOGARTY, T. 1997. Designing Electronic Circuits Using Evolutionary
Algorithms. Arithmetic Circuits: A Case Study. In Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science, D. QUAGLIARELLA, J. PERIAUX, C. POLONI and G. WINTER
Eds. Wiley, 105–131.

MITCHELL, M. 1996. An Introduction to Genetic Algorithms. Mit Pr.

MITRA, S., HUANG, W.J., SAXENA, N.R., YU, S. and MCCLUSKEY, E.J. 2004. Reconfigurable
architecture for autonomous self-repair. Design & Test of Computers, IEEE 21, 228-240.

NIST 1995. SECURE HASH STANDARD. Federal Information Processing Standards Publications 180-1.

OREIFEJ, R.S., AL-HADDAD, R.N., HENG, T. and DEMARA, R.F. 2007. Layered Approach to Intrinsic
Evolvable Hardware using Direct Bitstream Manipulation of Virtex II Pro Devices. In Field
Programmable Logic and Applications, 2007. FPL 2007. International Conference on, 299-304.

107

OREIFEJ, R.S., SHARMA, C.A. and DEMARA, R.F. 2006. Expediting GA-Based Evolution Using
Group Testing Techniques for Reconfigurable Hardware. In Proceedings of the IEEE
International Conference on Reconfigurable Computing and FPGA's, 2006, 1-8.

PETTEY, C.B., LEUZE, M.R. and GREFENSTETTE, J.J. 1987. A parallel genetic algorithm. In Proceedings
of the Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and
their application, Cambridge, Massachusetts, United States, 1987 Lawrence Erlbaum
Associates, Inc.

RATTER, D. 2004. FPGAs on Mars. Xcell Journal Third Quarter, 2004, 8-11.

RIVEST, R. 1992. The MD5 Message-Digest Algorithm. Request for Comments 1321.

ROSS, R. and HALL, R. 2006. A FPGA Simulation Using Asexual Genetic Algorithms for Integrated
Self-Repair. In Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems,
2006, 301-304.

SCHWEFEL, H.-P. and RUDOLPH, G. 1995. Contemporary Evolution Strategies In Advances in Artificial
Life: Third European Conference on Artificial Life Granada, Spain, June 4–6, 1995 Proceedings
Springer Berlin / Heidelberg, 891-907.

SHANTHI, A.P., VIJAYAN, B., RAJENDRAN, M., VELUSWAMI, S. and PARTHASARATHI, R. 2002. GA
Based On-line Testing and Recovery for Critical Digital Systems. In Proceedings of the HiPC
Workshop on Soft Computing, Bangalore, India, 2002, 81-89.

SHARMA, C.A., DEMARA, R.F. and SARVI, A. 2007. Self-Healing Reconfigurable Logic Using
Autonomous Group Testing. submitted to ACM Transactions on Autonomous and Adaptive
Systems (TAAS) of Special Issue on Organic Computing. May, 2007.

SWIFT, G.M. 2006. Radiation Effects and Field Programmable Gate Arrays. In Proceedings of the Single
Event Effects Symposium, Long Beach, CA, 2006.

TAN, H. and DEMARA, R.F. 2007. A Multi-layer Framework Supporting Autonomous Runtime
Partial Reconfiguration. accepted to Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on.

108

VIGANDER, S. 2001. Evolutionary Fault Repair of Electronics in Space Applications. In Department
of Computer and Information Science Norwegian University of Science and Technology (NTNU),
50.

WELLS, B.E. and LOO, S.M. 2001. On the Use of Distributed Reconfigurable Hardware in Launch
Control Avionics. In Proceedings of the 20th Digital Avionics Systems, Daytona Beach, Florida,
USA, 2001.

WIKIPEDIA Current. MD5, http://en.wikipedia.org/wiki/MD5.

WIRTHLIN, M., JOHNSON, E., ROLLINS, N., CAFFREY, M. and GRAHAM, P. 2003. The reliability of
FPGA circuit designs in the presence of radiation induced configuration upsets. In
Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2003, 133-142.

XILINX 2006. Early Access Partial Reconfiguration. User Guide 208.

XILINX 2007a. Difference-Based Partial Reconfiguration. Application Note 290.

XILINX 2007b. Virtex-4 Family Overview. Xilinx Data Sheet 112.

XILINX 2008. Virtex-4 FPGA Configuration. Xilinx User Guide 071.

YUI, C.C., SWIFT, G.M. and CARMICHAEL, C. 2003. SEU Mitigation of Xilinx Virtex II FPGAs for
Critical Flight Applications. In Proceedings of the IEEE Nuclear and Space Radiation Effects
Conference, 2003.

ZHANG, K., BEDETTE, G. and DEMARA, R.F. 2006. Triple Modular Redundancy with Standby
(TMRSB) Supporting Dynamic Resource Reconfiguration. In Proceedings of the IEEE Systems
Readiness Technology Conference, 2006, 690-696.

http://en.wikipedia.org/wiki/MD5�

	Optimizing Dynamic Logic Realizations For Partial Reconfiguration Of Field Programmable Gate Arrays
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Field Programmable Gate Arrays
	1.2 Space Applications: Radiation-Induced Faults and Handling Techniques
	1.3 Partial Reconfiguration Overview
	1.4 Benefits of Partial Reconfiguration
	1.5 Thesis Outline
	1.6 Contribution of Thesis

	CHAPTER 2 PREVIOUS WORK
	2.1 Classification of Fault-Handling Techniques
	2.2 A-priori Allocation
	2.2.1 Spare Configurations
	2.2.1.1 Fine-grained Partitioning
	2.2.1.2 Medium-grained Partitioning
	2.2.1.3 Coarse-grained Partitioning

	2.2.2 Spare Resources
	2.2.2.1 Sub-PLB Spares
	2.2.2.2 PLB Spares

	2.3 Dynamic Processes
	2.3.1 Offline Recovery Methods
	2.3.1.1 Incremental Rerouting Algorithms
	2.3.1.2 Genetic Algorithm Repair
	2.3.1.3 Augmented Genetic Algorithm Repair

	2.3.2 Online Recovery Methods
	2.3.2.1 TMR with Single-Module Repair
	2.3.2.2 Online Built-in Self Test
	2.3.2.3 Consensus-based Evaluation of Competing Configurations

	2.4 Comparison of Methods
	2.4.1 Overhead-related Metrics
	2.4.1.1 Resources
	2.4.1.2 Operational Delay
	2.4.1.3 Fault Latency
	2.4.1.4 Unavailability
	2.4.1.5 Recovery Goodput

	2.4.2 Sustainability Metrics
	2.4.2.1 Fault Occlusion
	2.4.2.2 Repair Granularity
	2.4.2.3 Fault Tolerance
	2.4.2.4 Fault Coverage
	2.4.2.5 Critical Requirements

	2.5 Chapter Summary

	CHAPTER 3 EVOLVABLE HARDWARE OPTIMIZATION STRATEGIES
	3.1 Genetic Algorithms
	3.2 Age-Layered Population Structure Overview
	3.3 ALPS Implementation
	3.3.1 Chromosome Representation
	3.3.2 Initialize Population
	3.3.3 Evaluate Fitness
	3.3.4 Selection
	3.3.5 Genetic Operators
	3.3.5.1 Crossover
	3.3.5.2 Mutation

	3.3.6 Replacement
	3.3.7 GA Parameter Summary

	3.4 Experimental Setup
	3.5 Experimental Results
	3.5.1 ALPS Overview
	3.5.2 Standard GA and ALPS Comparison
	3.5.3 Age-Level Management Optimization

	3.6 Chapter Summary

	CHAPTER 4 PARTIAL RECONFIGURATION AND FPGA ARCHITECTURE ANALYSIS
	4.1 Introduction
	4.2 Early Access Partial Reconfiguration Design Flow
	Step 1: Hardware Description Language (HDL) Design and Synthesis
	Step 2: Set Design Constraints
	Step 3: Static Module Implementation
	Step 4: Reconfigurable Module Implementation
	Step 5: Merge Implementations

	4.3 Application Using Partial Reconfiguration
	4.3.1 Case-study Application
	4.3.2 Overview of Design using Partial Reconfiguration
	4.3.3 FPGA Implementation

	4.4 Virtex Family Comparison
	Bitstream Size Comparison

	4.5 Chapter Summary

	CHAPTER 5 DYNAMIC PROCESSOR ALLOCATION STRATEGIES
	5.1 Video Compression Overview
	5.2 Scalable Architecture for DCT and Motion Estimation
	5.3 Scalable Architecture Implementation
	5.4 Scalable Architecture Hardware Arrangements
	5.5 Chapter Summary

	CHAPTER 6 CONCLUSION
	APPENDIX:FIGURE 1-1—PERMISSION TO REPRINT
	LIST OF REFERENCES

