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ABSTRACT 

Many digital logic applications can take advantage of the reconfiguration capability of Field 

Programmable Gate Arrays (FPGAs) to dynamically patch design flaws, recover from faults, or 

time-multiplex between functions.  Partial reconfiguration is the process by which a user modifies 

one or more modules residing on the FPGA device independently of the others.  Partial Reconfigu-

ration reduces the granularity of reconfiguration to be a set of columns or rectangular region of the 

device.  Decreasing the granularity of reconfiguration results in reduced configuration filesizes and, 

thus, reduced configuration times.  When compared to one bitstream of a non-partial reconfigura-

tion implementation, smaller modules resulting in smaller bitstream filesizes allow an FPGA to im-

plement many more hardware configurations with greater speed under similar storage requirements. 

To realize the benefits of partial reconfiguration in a wider range of applications, this thesis 

begins with a survey of FPGA fault-handling methods, which are compared using performance-

based metrics.  Performance analysis of the Genetic Algorithm (GA) Offline Recovery method is 

investigated and candidate solutions provided by the GA are partitioned by age to improve its effi-

ciency.  Parameters of this aging technique are optimized to increase the occurrence rate of complete 

repairs.  Continuing the discussion of partial reconfiguration, the thesis develops a case-study appli-

cation that implements one partial reconfiguration module to demonstrate the functionality and 

benefits of time multiplexing and reveal the improved efficiencies of the latest large-capacity FPGA 

architectures.  The number of active partial reconfiguration modules implemented on a single FPGA 

device is increased from one to eight to implement a dynamic video-processing architecture for Dis-

crete Cosine Transform and Motion Estimation functions to demonstrate a 55-fold reduction in bit-

stream storage requirements thus improving partial reconfiguration capability. 
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CHAPTER 1 
INTRODUCTION 

1.1 Field Programmable Gate Arrays 

After the advent of the transistor, Application Specific Integrated Circuits (ASIC) emerged 

to combine different types and numbers of transistors, allowing engineers to create complex digital 

designs on a single silicon substrate.  To avoid expensive non-recurring engineering costs associated 

with custom ASIC designs, engineers could forgo the unrestrained flexibility of ASICs for quick 

programmability of simple, fabricated devices called Complex Programmable Logic Devices 

(CPLD).  As a solution between these two extremes, Field Programmable Gate Arrays (FPGA) ap-

peared in the 1980’s to combine the complexity of ASICs with the programmability of CPLDs.  

Since their inception, FPGAs have enabled designers to develop complex systems quickly, decreas-

ing the time-to-market and providing the public with the latest technologies more rapidly. 

The hardware architecture of FPGAs originates from concepts found within CPLDs.  As 

seen in Figure 1-1, an array of Programmable Logic Blocks (PLB) and programmable interconnect 

composes the architecture.  PLBs contain logic and register resources to implement both sequential 

and combinatorial circuits whereas programmable interconnect combines PLBs across the FPGA to 

realize complex circuit designs.  PLBs may implement logic functions with multiplexers (MUX) or 

Look-Up Tables (LUT).  LUTs may have three or four inputs connected to an 8x1 or 16x1 table 

that utilizes the inputs as an address to select the logic stored at the appropriate location. 

In addition to being LUT-based and MUX-based, FPGAs may be configured through anti-

fuses [Actel 2005] or Static Random Access Memory (SRAM) cells [Altera 2008].  Anti-fuse FPGAs 

are One-Time Programmable (OTP) and, as such, configure logic and interconnect by sending a 

high programming current to form links between routing and voltage levels.  The logic and inter-
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connect configuration of an SRAM FPGA is stored by SRAM cells, allowing unlimited configurabili-

ty.  Whereas anti-fuse FPGAs provide more protection against design theft and some inherent pro-

tection from space-borne radiation, SRAM FPGAs allow end-users to change the configuration of a 

design multiple times.  This flexibility allows designers to test prototype designs on the FPGA prior 

to production.  In addition, users are able to update the configuration of a design during the opera-

tion life of the FPGA and even designate certain areas of the FPGA to house various modules de-

pending on the needs of the system. 

FPGAs have found use among various applications including data processing, networks, au-

tomotive, and industrial.  The reconfigurability of FPGAs decreases the time-to-market of these 

hardware applications that would otherwise require its functionality to be hard-wired by a manufac-

turer.  Additionally, the ability to reconfigure its functionality in the field mitigates unforeseen design 

errors.  Both of these characteristics make FPGAs an ideal target for spacecraft applications such as 

 
Figure 1-1: Top-down View of a Simple, Generic FPGA Architecture [Maxfield 2004] 
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ground support equipment, Reusable Launch Vehicles, sensor networks, planetary rovers, and deep 

space probes [Katz and Some 2003; Kizhner et al. 2007; Ratter 2004; Wells and Loo 2001]. 

1.2 Space Applications:  
Radiation-Induced Faults and Handling Techniques 

In-flight devices encounter harsh environments of mechanical/acoustical stress during 

launch and high ionizing radiation and thermal stress while outside Earth’s atmosphere.  FPGAs 

must operate reliably for long mission durations with limited or no capabilities for diagno-

sis/replacement and little onboard capacity for spares.  Mission sustainability realized by autonom-

ous repair of these reconfigurable devices is of particular interest to both in-flight applications and 

ground support equipment for National Aeronautics and Space Administration (NASA) space mis-

sions [Yui et al. 2003]. 

When in the space environment, FPGAs are subject to cosmic rays and high-energy protons, 

which can cause malfunctions to occur in systems located on FPGAs.  These malfunctions may be a 

result of Single-Event Upsets (SEU) or Single-Event Latch-ups (SEL) [Wirthlin et al. 2003].  SEUs are 

transient in nature, inverting bits stored in memory cells or registers, whereas SELs are permanent 

by inducing high operating current into logic or routing resources.  Whereas all FPGAs containing 

memory cells or registers are vulnerable to SEUs, anti-fuse FPGAs are particularly resilient since 

they do not depend upon SRAM cells to store its configuration. 

Reconfigurable SRAM FPGAs, on the other hand, store its configuration in SRAM cells, 

which increases the risk to SEUs.  Additionally, decreasing operating voltages and transistor gate 

widths further increases the risk to SEUs.  Before the availability of radiation-hardened SRAM 

FPGAs, designers of satellites and rovers had no serious alternative to the OTP anti-fuse FPGA.  If 
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the inherent fault tolerant capability of anti-fuse FPGAs was not sufficient, designers were restricted 

to employing Passive Fault-Handling Methods such as Triple Modular Redundancy (TMR).  Due to the 

reconfigurable nature of SRAM FPGAs, radiation-hardened SRAM FPGAs have enabled designers 

to consider other fault-handling methods such as the Active Fault-Handling Methods described in Sec-

tions 2.2 and 2.3. 

Fault Avoidance strives to prevent malfunctions from occurring.  This approach increases the 

probability that the system is functioning correctly throughout its operational life, thereby increasing 

the system’s reliability.  Implementing Fault Avoidance tactics such as increasing radiation shielding 

can protect a system from Single Event Effects.  If those methods fail, however, Fault-Handling me-

thodologies can respond to or recover lost functionality.  Whereas some fault-handling schemes 

maintain system operation, other fault-handling schemes require removing the system offline to re-

cover from a fault, thereby decreasing the system’s availability.  This limited decrease in availability, 

however, can increase overall reliability for extended missions. 

Scrubbing is a fault-handling technique commonly used to reprogram affected FPGA configu-

ration memory cells with viable configuration data.  Scrubbing depends upon reading back the con-

figuration memory cells and detecting faults by comparing them to the original configuration.  Upon 

isolating a fault, the FPGA can recover the correct bitstream through reconfiguration.  The Mars Ex-

ploration Rovers (MER) landing system successfully implemented this method to mitigate SEUs oc-

curring within the Lander Pyro Switching Interface (LPSIF) during the 200-day transit to Mars [Rat-

ter 2004].  As seen in Figure 1-2, about 10 errors had occurred halfway through the transit and ap-

proximately 25 errors can be predicted for the entire transit.  For a critical system such as the landing 

pyrotechnics, scrubbing ensured mission success. 
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Whereas Scrubbing handles SEUs in the configuration memory, additional fault-handling 

methods are necessary to address both transient faults in non-configuration memory elements, such 

as flip-flops and the registers they compose, and other permanent faults in the remaining compo-

nents of the FPGA.  Sections 2.2, 2.3, and 2.4 classify such fault-handling methods and describe 

them in detail. 

1.3 Partial Reconfiguration Overview 

All SRAM FPGAs require a full-device reconfiguration upon power-up.  Initialization in-

volves programming the FPGA with a configuration bitstream file, which resets and configures all 

logic, interconnect, and Input/Output (I/O) resources.  After initialization, partial reconfiguration is the 

capability to modify a fraction of the resources by programming the FPGA with a partial bitstream 

file.  As discussed in detail within CHAPTER 4 and CHAPTER 5, a full bitstream may be as large as 

1,712,614 bytes whereas a partial bitstream may be 2% of this size at 28,306 bytes.  This multiple 

order-of-magnitude reduction in configuration file size can realize several benefits such as reduced 

 
Figure 1-2: SEU Occurrences in Xilinx XQR4062XL FPGAs in the MER LPSIF [Swift 2006] 
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reconfiguration time, reduced storage requirements, and dynamic allocation of functionality as de-

scribed in detail below in Section 1.4.  For use with a fault-handling method such as scrubbing, an 

additional advantage of partial reconfiguration includes allowing normal operation of resources not 

affected by the partial reconfiguration [Carmichael et al. 2000; Yui et al. 2003]. 

Xilinx provides many FPGA devices that support partial reconfiguration, ranging from the 

simplest Spartan-3 device to the most complex Virtex-5 device.  Due to their popularity and wide 

range of devices, partial reconfiguration is discussed in the context of the capability provided by Xi-

linx FPGAs.  Xilinx provides two forms of partial reconfiguration: static and active [Kao 2005].  

Static partial reconfiguration modifies a portion of the FPGA configuration while the entire device 

remains inactive and non-operational.  Active partial reconfiguration, on the other hand, occurs while 

the device is active and operational.  In the active case, portions of the FPGA not affected by recon-

figuration continue nominal operations during the reconfiguration process.  Further discussions of 

partial reconfiguration deal solely with active partial reconfiguration. 

Two methods of generating an FPGA partial bitstream file exist: difference-based and mod-

ule-based.  Difference-based partial reconfiguration enables designers to make small modifications to 

the configuration of logic resources [Xilinx 2007a].  After synthesis, translation, as well as Place and 

Route (PAR) are complete for a design and a Native Circuit Description (NCD) file is generated, 

these small logic modifications are made.  The Xilinx FPGA_Editor design utility accesses this NCD 

file and allows users to modify LUT contents, I/O standards, and block RAM (Random Access 

Memory) contents.  The Xilinx bitstream generation utility, BitGen, 1) generates a new full-device 

bitstream reflecting the modifications, 2) compares the new bitstream to the original bitstream, and 

3) generates a partial bitstream only containing the differences between the two.  When the FPGA is 

reconfigured using the partial bitstream, only those logic resources modified using the FPGA_Editor 
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tool are modified.  Depending on the type and number of modifications, the filesize of this partial 

bitstream is typically orders of magnitude less than the initial full-device bitstream and, consequently, 

requires a reconfiguration time orders of magnitude less.  Difference-based partial reconfiguration is 

only applicable if the original and new FPGA configurations are available, which may not apply to 

Evolvable Hardware techniques. 

The module-based design flow is a coarse-grained method where specific areas of the FPGA 

are designated as reconfigurable and can contain one or more modules within an application [Xilinx 

2006].  Figure 1-3 shows a top-level view where the reconfigurable areas maintain a constant size 

and location throughout the life of the application.  For each reconfigurable area, the design process 

forms boundaries into which all logic and interconnect resources of its module must reside.  Addi-

tionally, bus macros define the static input/output ports through which all communication between its 

module and other modules must take place.  The static nature of the reconfigurable area with respect 

to size and I/Os allows multiple versions of one module to be interchanged dynamically without 

affecting other portions of the FPGA.  More detail on this topic is provided in CHAPTER 4, which 

 
 

 
Figure 1-3: Module-based Design Layout with Two Reconfigurable Modules 
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explains the module-based design flow.  It accompanies CHAPTER 5, which describes applications 

that utilize the module-based approach. 

1.4 Benefits of  Partial Reconfiguration 

Full-device reconfiguration is the process of changing the arrangement of all utilized resources on 

the FPGA.  Due to the unlimited programmability of SRAM FPGAs, the configuration may be 

modified many times during an extended mission.  One immediate benefit of full-device reconfigu-

ration is that unforeseen design errors may be resolved by revising the bitstream to reconfigure the 

FPGA.  Additionally, an FPGA with reconfiguration may time-multiplex between two functions that 

would otherwise not fit within the allocated number of resources on the FPGA; this would allow the 

FPGA to be configured with Function A at one time and at another time the FPGA is configured 

for Function B.  With reconfiguration, each function may utilize the total number of resources on 

the FPGA by loading each function separately, whereas without reconfiguration both functions are 

loaded together, of which the sum of resources cannot exceed the total number of resources on the 

FPGA. 

Partial Reconfiguration is the process where only a portion of the FPGA is reconfigured.  Par-

tial reconfiguration provides all the benefits of full-device reconfiguration with two additional advan-

tages: 1) the unchanged portion of the FPGA is not affected and, in some cases, may continue ex-

ecution, and 2) a partial bitstream is smaller in filesize than a full bitstream.  Since partial reconfigu-

ration does not affect the unchanged portion, applications that require critical components to con-

tinue operation may be implemented on the same chip as modules that undergo many modifications. 

Since the size of the bitstream is directly proportional to the number of resources being con-

figured, partial reconfiguration utilizes a smaller bitstream than a full bitstream for the FPGA.  The 
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direct benefit is less space needed for storing the necessary configurations for operation.  An addi-

tional benefit derived from a smaller bitstream is that the reconfiguration time is shorter.  This sav-

ings in time may be particularly useful for systems that depend upon the configuration time such as 

repetitive intrinsic evolution processes utilizing Genetic Algorithms (GA). 

With FPGAs increasing in size and capability, partial reconfiguration enables designers to 

realize implementations of multiple modules residing on one FPGA device.  Whereas full reconfigu-

ration implementations treat the entire FPGA as one module, partial reconfiguration decreases the 

module granularity from the size of an FPGA to a size as small as 16 PLBs in height [Lysaght et al. 

2006].  Thus, an FPGA containing multiple modules operating simultaneously may be reconfigured 

to perform Function 2 instead of Function 1 while the remaining tasks continue to operate.  As pre-

viously discussed, the partial bitstream filesize for Function 2 is smaller than the entire bitstream, 

thus this change between two functions may occur quicker.  Without this finer granularity, a design-

er must generate and store a full bitstream for each combination of modules within the FPGA, ex-

ponentially increasing storage requirements for additional modules.   

CHAPTER 4 and CHAPTER 5 demonstrate practical applications that exploit these bene-

fits.  For example, with partial reconfiguration a designer only generates one full bitstream with mul-

tiple partial bitstreams, each representing one module.  For a significantly less amount of storage 

than what non-partial reconfiguration implementations require, a user may implement significantly 

more combinations of hardware arrangements, increasing the capability of one FPGA device.  As 

suggested by CHAPTER 5, an increase in capability of smaller FPGAs through time-multiplexed 

pipelining of functions may be comparable to larger FPGAs not utilizing partial reconfiguration. 
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1.5 Thesis Outline 

Various time and space optimizations, along with architectural approaches to realize dynamic 

functionality, are discussed throughout the thesis.  CHAPTER 2, PREVIOUS WORK, surveys the 

current research of fault-handling techniques for FPGAs, some of which utilize partial reconfigura-

tion to decrease the size of alternative bitstreams used to tolerate faults.  The capabilities of these 

fault-handling methods develop a descriptive classification ranging from simple Passive techniques 

to robust Dynamic methods.  Fault-handling methods not requiring modification of the FPGA de-

vice architecture or user intervention to recover from faults are examined and evaluated against 

overhead-based and sustainability performance metrics such as additional resource requirements, 

operational delay, fault tolerance, and fault coverage.  This classification alongside these perfor-

mance metrics forms a standard for useful comparisons of fault-handling methods. 

CHAPTER 3, EVOLVABLE HARDWARE OPTIMIZATION STRATEGIES, expands 

the discussion of Standard GAs in CHAPTER 2 to investigate techniques that improve the ability of 

a GA to repair FPGAs.  To evolve and design higher-performing antennas, previous research parti-

tions the population of a standard GA according to the longevity of individual designs within the 

population using an Age-layered Population Structure (ALPS).  Whereas this application may be 

viewed a continuous search space, CHAPTER 3 reviews the techniques proposed and applies them 

to the discontinuous and multimodal search space of FPGA repair.  The performance of these op-

timization techniques is compared to a standard GA used for FPGA repair.  Parameters are then 

optimized to increase further the performance of the ALPS strategy. 

CHAPTER 4, PARTIAL RECONFIGURATION AND FPGA ARCHITECTURE 

ANALYSIS, proposes a case study to refine some of the benefits of partial reconfiguration.  The 

proposed system switches between two hash algorithms, Message Digest Algorithm-5 (MD5) and 
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Secure Hash Algorithm-1 (SHA-1), demonstrating the ability of partial reconfiguration to time-

multiplex between two applications while only requiring the spatial resources of one.  In implement-

ing the case study on a Virtex-II Pro FPGA, each step of the module-based design process is de-

scribed in detail.  Then, a comparison is made between Virtex-II Pro and Virtex-4 implementations 

to demonstrate architectural portability and assess how specific hardware devices affect the results of 

the software-based partial reconfiguration design flow. 

CHAPTER 5, DYNAMIC PROCESSOR ALLOCATION STRATEGIES, introduces a 

scalable architecture for video compression functions on FPGAs that exploits a wide range of bene-

fits provided by partial reconfiguration.  More specifically, the scalable architecture focuses on the 

Discrete Cosine Transform (DCT) function, which is reviewed briefly in the context of the video 

compression process.  A DCT hardware implementation is optimized to form eight discrete 

Processing Elements (PE), each of which adds functionality to the DCT process.  Through partial 

reconfiguration, these PEs may be added or removed in order to satisfy dynamic requirements of 

the user.  The architecture is shown to be scalable in both the number of PEs allocated to the DCT 

function and the precision with which the DCT function is calculated.  CHAPTER 6 concludes the 

work described herein and proposes future work from this research. 

1.6 Contribution of  Thesis 

The contributions of this thesis include the following: 

1. Novel Taxonomy:  Many different fault tolerance methods proposed by the research 

community, including those that detect, isolate, and repair faults, are considered to 

form a descriptive classification.  Additionally, performance metrics that enable 
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quantitative comparisons of capabilities are applied to the SRAM FPGA fault-

handling methods surveyed. 

2. FPGA Repair Optimization:  The Age-layered Population Structure (ALPS) is applied 

to the FPGA repair domain to prevent convergence of the population of candidate 

solutions by partitioning the population into sub-populations and injecting random 

individuals at regular intervals.  As a result, ALPS explores more of the repair search 

space, which decreases the population fitness by 30%, and produces complete repairs 

with 300% greater frequency than a standard GA.  Furthermore, introducing a new 

selection strategy and optimizing the selection probability increases the complete re-

pair frequency to 500%. 

3. The technique of utilizing the age of individuals to subside population convergence 

for evolutionary antenna design are applied to the problem domain of repairing digi-

tal circuits located on FPGAs.  In doing so, Furthermore, improvements to the aging 

strategy are introduced and optimized to enhance the performance of ALPS.  In re-

pairing a 3-bit adder, the results presented quantify the benefit of aging by producing 

complete repairs with greater frequency. 

4. Architectural Analysis:  The partial reconfiguration implementation process is com-

pleted on two FPGA architectures, Xilinx Virtex-II and Virtex-4, to reveal the bene-

fits of the newer Virtex-4 architecture.  Analysis of the partial bitstream filesizes 

identifies the Virtex-4 to have a smaller granularity configuration frame, which gene-

rates bitstreams that more closely represent the resources intended to be reconfi-

gured.  Applications reconfiguring small portions of the Virtex-4 FPGA generate bit-
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streams smaller in filesize than the Virtex-II, which results in shorter reconfiguration 

times. 

5. Adaptive Architecture Implementation:  Partial reconfiguration is shown to make viable a 

dynamic and scalable video architecture that makes use of the benefits previously 

discussed in Section 1.4.  Without partial reconfiguration, time multiplexing of video 

processing functions is not possible due to long interruptions of the application from 

configuration times.  Not only does partial reconfiguration allow portions of the 

FPGA not affected by the reconfiguration to operate without interruption, configu-

ration times are decreased, which reduces the length of interruptions to areas being 

reconfigured.  Additionally, multiple reconfigurable areas within one FPGA are 

shown to significantly increase the capability of the device while maintaining storage 

requirements similar to an application with one reconfigurable area. 
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CHAPTER 2 
PREVIOUS WORK 

2.1 Classification of  Fault-Handling Techniques 

As suggested by Cheatham et al. [2006], Figure 2-1 divides fault-handling approaches into 

two categories based on the provider of the method.  Manufacturer-Provided fault recovery techniques 

[Cheatham et al. 2006; Doumar and Ito 2003] address faults at the level of the device, allowing man-

ufacturers to increase the production yield of their FPGAs.  These techniques typically require mod-

ifications to the current FPGA architectures that end-users cannot perform.  Once the manufacturer 

modifies the architecture for the consumer, the device can tolerate faults from the manufacturing 

process or faults occurring during the life of the device.  Concealing the fault through the underlying 

fabric of the FPGA is advantageous; users need not know of the occurring hardware faults.  Despite 

making faults transparent to the user, the ability of these methods to tolerate faults is limited in both 

location and number. 

User-Provided methods, however, depend upon the end-user for implementation.  These high-

 
 

 
Figure 2-1: Classification of FPGA Fault-Handling Methods 
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er-level approaches use the configuration bitstream of the FPGA to integrate redundancy within a 

user’s application.  By viewing the FPGA as an array of abstract resources, these techniques may se-

lect certain resources for implementation, such as those exhibiting fault-free behavior.  Whereas 

manufacturer-provided methods typically attempt to address all faults, user-provided techniques may 

consider the functionality of the circuit to discern between dormant faults and those manifested in 

the output.  This higher-level approach can determine whether fault recovery should occur imme-

diately or at a more convenient time. 

Figure 2-1 further separates user-provided fault-handling methods into two categories based 

on whether an FPGA’s configuration will change at run-time.  Passive Methods embed processes into 

the user’s application that mask faults from the system output.  Techniques, such as TMR, are quick 

to respond and recover from faults due to the explicit redundancy inherent to the processes.  Speed, 

however, does come at the cost of increased resource usage and power.  Even when a system oper-

ates without any faults, the overhead for redundancy is continuously present.  In addition to this 

constant overhead, these methods are not able to change the configuration of the FPGA.  A fixed 

configuration limits the reliability of a system throughout its operational life.  For example, a passive 

method may tolerate one fault and not return to its original redundancy level.  This reduced reliabili-

ty increases the chance of a second fault causing a system malfunction. 

 Active Methods strive to increase reliability and Sustainability by modifying the configuration of 

the FPGA to adapt to faults.  This allows a system to remove accumulated SEUs and avoid perma-

nently faulty resources to reclaim its lost functionality.  In addition, active schemes can transform 

faulty resources into constructive components by incorporating stuck-at faulty behavior into the cir-

cuit’s functionality.  External processors, which cost additional space, typically determine how to 

recover from the fault.  These methods also require additional time either to reconfigure the FPGA 
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or to generate the new configuration.  Figure 2-2 illustrates two classes—A-priori Allocation and Dy-

namic Processes— respectively described in Sections 2.2 and 2.3. 

This survey focuses on methods modifying an FPGA’s configuration during run-time to ad-

dress transient and permanent faults.  Since SRAM FPGAs can be 1) radiation-tolerant, 2) reconfi-

gured, and 3) partially reconfigured with the remaining portion remaining operational, research has 

also begun to focus on exploiting these capabilities for use in environments where human interven-

tion is either undesirable or impossible.  Table 2-I lists various considerations addressed in Section 

2.4. 

 
Figure 2-2: Classification of Active Fault-Handling Methods 
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2.2 A-priori Allocation 

Since a typical FPGA application does not utilize 100% of the resources, the standby-spare 

size can be reduced from an entire FPGA to unused resources within the FPGA.  A-priori Alloca-

tion takes advantage of the regularity of the FPGA architecture by assigning spare resources during 

design-time, independent of fault locations detected during run-time.  These techniques may recover 

from a fault utilizing design-time compiled spare configurations or re-mapping and rerouting techniques 

utilizing spare resources.  Spare configuration methods must provide sufficient configurations whereas 

spare resource methods must allocate sufficient resources to facilitate a repair without incurring too 

much overhead.  Sections 2.2.1 and 2.2.2 respectively address these two types of A-priori Allocation. 

Table 2-I: Fault-Handling Characteristics and Considerations 

 Metric Description 

Overhead 

Logic/Interconnect 
Resources 

additional number of resources required 
due to fault-handling strategy  

Operational Delay reduced rate of computations due to 
fault-handling strategy 

Fault Latency amount of time required to begin 
addressing a detected and isolated fault 

Unavailability amount of time system is offline to 
completely repair a fault 

Recovery Goodput percentage of correct outputs provided 
during fault repair 

Sustainability 

Fault Occlusion ability to bypass and/or exploit defective 
resources 

Repair Granularity smallest arrangement of components that 
can be repaired 

Fault Tolerance maximum number of faults handled 

Fault Coverage handling of permanent, transient, logic, 
or interconnect faults 

Critical 
Requirements 

external fault-handling components 
required relied upon as fault free 
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2.2.1 Spare Configurations 

2.2.1.1 Fine-grained Partitioning 

Lach et al. [1998] implement a fine-grained partitioning technique where tiles, groups of logic 

and interconnect resources, are formed.  The goal of the tiling technique is to partition FPGA re-

sources in such a way that at least one spare Programmable Logic Block (PLB) is included within 

each tile to form Atomic Fault-Tolerant Blocks (AFTB).  Since each AFTB contains at least one spare 

PLB, each tile is able to tolerate at least one PLB fault. 

Alternate fine-grained configurations generated during design-time and stored in an external 

memory for run-time provide the ability to tolerate faults.  For a significant reduction in storage 

space, each configuration is implemented as a partial configuration as opposed to a full configura-

tion.  The Xilinx Virtex-4 architecture, for example, allows two-dimensional partial configurations 

with a minimum height of 16 Configurable Logic Blocks (CLB) [Lysaght et al. 2006]. 

During design-time, tiling implements multiple arrangements of logic resources within an 

 
 

 
Figure 2-3: Alternate Fine-grained Configurations for a Faulty 3x3 Partition 
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AFTB as separate configurations such that each PLB is represented as a spare in at least one confi-

guration.  As seen in Figure 2-3, the bottom-right AFTB in the FPGA produces eight alternate con-

figurations.  To tolerate a fault during run-time, the system implements the configuration of the faul-

ty AFTB that renders the faulty PLB as spare, effectively bypassing the fault.  Figure 2-3 depicts 

configuration #4 as one such alternate.  Fixed inter-AFTB interfaces between alternate configura-

tions render the arrangement of each AFTB logically independent. 

2.2.1.2 Medium-grained Partitioning 

Since Triple Modular Redundancy (TMR) performs the majority vote of three modules, the 

voted output remains correct even if a single module is defective.  Thus, TMR is a passive fault-

handling technique widely used to mitigate permanent and transient faults.  Whereas TMR can tole-

rate one faulty module, a fault occurring in a second module would produce a faulty functional out-

put.  As previously discussed, TMR is, thus, is limited in its fault tolerance. 

To increase system reliability, Zhang et al. [2006] combine TMR with Standby (TMRSB) to 

 
 

 
Figure 2-4: Triple Modular Redundancy with Standby Configurations [Zhang et al. 2006] 
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create a medium-grained spare configuration method.  In TMRSB, each module of the TMR ar-

rangement contains standby configurations that are available at run-time.  At design-time, each of 

these configurations is created to utilize varying FPGA resources.  Upon detecting a fault within one 

of the modules, a standby configuration not utilizing a faulty resource is selected and implemented 

to bypass the fault.  TMRSB exploits the ability of TMR to remain online with two functional mod-

ules while the defective module undergoes repair.  Repairing modules at run-time increases the relia-

bility of TMR by allowing another fault to occur in a second module while maintaining a correct 

functional output.  The process repeats until all standby configurations are exhausted. 

2.2.1.3 Coarse-grained Partitioning 

Mitra et al. [2004] present a coarse-grained fault-handling technique that reserves one or 

more columns of unused PLBs to tolerate faults.  At design-time, multiple configurations are gener-

ated, each of which locates the spare columns in a distinct areas of the FPGA.  Once a fault occurs 

and is located, the system implements a configuration that covers the fault with its spare columns.  If 

the fault location is not available, then all configurations may be implemented and tested one at a 

time until a configuration provides a functional application. 

Designers may partition the FPGA in one of two ways.  If the application is small with re-

spect to the FPGA device, then a non-overlapping method can be considered.  The non-overlapping 

scheme separates the FPGA into columns, where one column contains the entire application.  The 

remaining columns are not used by the application and are reserved as spares.  As seen in Figure 

2-5a, this method generates three distinct configurations, each of which utilizes non-overlapping 

FPGA resources.  More generally, the number of generated configurations is 1+m , where m  equals 

the number of tolerable faulty columns. 
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For larger applications, Figure 2-5b displays a configuration that separates the FPGA appli-

cation into columns while reserving at least one column as spare.  Alternate configurations are gen-

erated during design-time so that within each configuration a different column becomes the spare 

column.  In the case of one spare column and four columns containing the application, five distinct 

configurations are generated.  More generally, the number of generated configurations is 
!!
)!(

mk
mk + , 

where k  is the number of columns containing the application.  This scheme is overlapping since the 

various configurations generated overlap in utilizing FPGA resources.  Unlike the non-overlapping 

scheme, some configurations, such as Figure 2-5b, may require horizontal routing resources within 

the spare column to connect the separated logic resources. 

2.2.2 Spare Resources 

2.2.2.1 Sub-PLB Spares 

Typical FPGA architectures implement logic functions with Look-Up Tables (LUT).  As 

shown in Figure 2-6, Basic Logic Elements (BLE) combine each LUT with a flip-flop and output MUX 

 
a) Non-overlapping Scheme b) Overlapping Scheme 

Figure 2-5: Coarse-grained Partitioning Schemes for an FPGA 

 
 



 
 

22

to enable sequential logic implementation.  PLBs, in turn, contain multiple BLEs as in the Virtex-4 

architecture, which contains eight BLEs per PLB. 

By implementing ten benchmark-circuits, Lakamraju and Tessier [2000] found that, on aver-

age, 40% of the utilized 4-input LUTs contained one or more spare input.  This suggests that an 

FPGA application contains inherent spares at a finer granularity than the PLB-level as previously 

discussed.  This PLB repair strategy reserves spare BLEs and implements a hierarchy of fault-

handling strategies to take advantage of these spare resources, beginning with the finest granularity: 

LUT input swap, BLE swap, PLB I/O swap, incremental reroute, and complete reroute. 

Given the identification of a faulty LUT input by a fault-detection technique, the sub-PLB 

fault-handling method attempts to swap the faulty resource with a spare input of the same LUT.  

Figure 2-6 shows input I2 of BLE1 as a faulty LUT input that may be swapped with a spare LUT 

input such as input I3 to avoid the fault.  After swapping the LUT inputs, the contents of the LUT 

are modified to compensate for the input change.  Whereas Figure 2-6 depicts a full PLB input 

routing matrix, some FPGA architectures contain only a partial routing matrix, restricting the num-

ber of PLB inputs to which a given LUT input may connect.  For these architectures, the LUT input 

swapping method must consider whether the spare LUT input has access to the same PLB inputs as 

the faulty LUT input to prevent rerouting.  If spare LUT inputs with similar connections are availa-

ble, this method is ideal as it does not require logical or connection changes outside of the BLE.  If a 

spare LUT input is not available, then the entire BLE is considered faulty. 
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 When a BLE is considered faulty, as is the case with BLE 3 in Figure 2-6, it is swapped with 

the reserved spare shown as BLE 4.  In the case of partial routing matrices, the BLE swapping me-

thod needs to ensure the spare BLE has access to the same PLB inputs as the faulty BLE to prevent 

rerouting.  Figure 2-6 shows that BLE 3 can swap with BLE 4 because of the similarity in connectiv-

ity, thus the change only affects the PLB and not the remainder of the circuit.  If a spare BLE is not 

available, then the entire PLB is considered faulty and incremental rerouting is required.  Incremental 

rerouting is discussed further in Section 2.3.1.1.  Similar to the LUT input swap, faulty PLB in-

put/output wires may be swapped with spare wires that contain similar connections.  If a spare PLB 

input/output wire is not available, then incremental rerouting is required. 

 
Figure 2-6: PLB Repair Strategies using Sub-PLB spares 
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2.2.2.2 PLB Spares 

To tolerate logic and interconnect faults within a PLB, Hanchek and Dutt [1998] allocate the 

rightmost PLB of each row as spare.  In the case of a fault, a string of PLBs beginning with the faul-

ty PLB is shifted one PLB to the right.  More formally, this technique is node covering, which allocates 

a cover PLB to each PLB.  In the case of a fault occurring in a PLB, its cover replaces the functio-

nality of the faulty PLB to avoid the fault.  This covering continues within a row in a cascading fa-

shion until the spare PLB at the end of the row is reached.  For a PLB to become a cover, it must 

duplicate 1) its logic functionality and 2) its connectivity to other PLBs.  Since PLBs within most 

FPGA architectures are identical, duplicating logic functionality between PLBs is inherent to the 

FPGA.  Hanchek and Dutt ensure that cover cells duplicate connectivity by incorporating reserved 

wire segments during the design process. 

As seen in Figure 2-7, some routing segments are utilized by the initial configuration whereas 

others are reserved, one of which is located above location 3.  As is the case with Fault Scenario A, 

this reserved segment becomes utilized by the functionality of PLB B by shifting into location 3.  

Likewise, the two reserved segments above and to the right of location 4 become utilized by PLB D.  

Additionally, a design may contain inherent reserved segments where some utilized wire segments of 

the initial configuration also function as reserved wire segments in a fault scenario.  This is seen in 

Fault Scenario A where PLB B allows its utilized wire segment above location 2 to be used by PLB 

A.  During design-time, a custom tool determines the necessary reserved routing segments to enable 

the FPGA to tolerate one faulty PLB per row.  Two heuristics that increase the efficiency of routing 

include Segment Reuse and Preferred Routing Direction.  Segment Reuse allows a utilized net and a re-

served net to map to the same wire segment if the utilized net will move off of the wire segment 

with the shifting the PLBs, therefore freeing up a wire segment for the reserved net.  For nets that 
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cross the FPGA, Preferred Routing Direction encourages the router to extend such nets to the right, 

horizontally, as far as possible before extending the net in either vertical direction.  Providing longer 

continuous horizontal segments allows greater opportunities for a design to contain inherent re-

served segments as discussed above. 

Whereas the authors specify that both the logic and interconnect fault-handling technique 

requires modification to the FPGA architecture and, thus, is intended for manufacturer yield en-

hancement, end-users may choose to implement the node-covering strategy for tolerating logic 

faults.  Since the design process has ensured that the cover cells can duplicate functionality and con-

nectivity, the routing phase of the place-and-route process is finalized during design-time.  To avoid 

a faulty PLB within a row, an end-user only needs to re-place the PLBs by shifting a row of PLBs 

into a fault-free configuration.  The time to modify an existing configuration by re-placing a row of 

PLBs is significantly less than the time required either to generate a new configuration from scratch 

or to incrementally reroute an existing configuration. 

 
Figure 2-7: Fault scenarios with spare PLBs [Hanchek and Dutt 1998] 
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2.3 Dynamic Processes 

Methods using dynamic processes aim to allocate spare resources or otherwise modify the 

configuration during run-time after detecting the fault.  Whereas these approaches offer the flexibili-

ty of adapting to specific fault scenarios, additional time is necessary to generate appropriate confi-

gurations to repair the specific faults.  Offline recovery methods require the FPGA’s removal from an 

operational status to complete the refurbishment.  Online recovery methods maintain some degree of 

data throughput during the fault recovery operation, increasing the system’s availability.  Sections 

2.3.1 and 2.3.2 respectively address these two types of Dynamic Processes. 

2.3.1 Offline Recovery Methods 

2.3.1.1 Incremental Rerouting Algorithms 

The node-covering method discussed in Section 2.2.2.2 avoids a fault by re-placing a circuit 

into design-time allocated spares using design-time reserved wire segments.  Dutt et al. [1999] ex-

pand this method by dynamically allocating reserved wire segments during run-time instead of de-

sign-time.  Run-time reserved wire segments allow the method to utilize unused resources in addi-

tion to the spares allocated during design-time. 

Emmert and Bhatia [2000] present a similar Incremental Rerouting approach that does not 

require design-time allocated spare resources.  The fault recovery method assumes an FPGA to con-

tain PLBs not utilized by the application, thus exploiting unused fault-free resources to replace faulty 

resources.  Upon detecting and diagnosing a logic or interconnection fault by some detection me-

thod, Incremental Rerouting calculates the new logic netlist to avoid the faulty resource.  The me-

thod reads the configuration memory to determine the current netlist and implements the incremen-

tal changes through partial reconfiguration. 
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Since faulty PLBs may not be adjacent to a spare resource, a string of PLBs is created logi-

cally, starting with the faulty PLB and ending with the PLB adjacent to the spare resource.  Figure 

2-8 shows one such string, starting with PLB 25, including PLB 20, and ending with PLB 15.  To 

avoid the fault, the string of PLBs shifts away from the faulty resource and towards the spare re-

source.  In the case of node covering, every row has a spare resource so the string of PLBs within 

the row simply shifts to the right, leaving the faulty resource unused.  Since this method does not 

allocate a spare resource for every row, the string of PLBs may extend into multiple rows to reach a 

spare PLB as shown in Figure 2-8. 

This approach uses Minimax Grid Matching (MGM) to determine the optimum re-placement 

of faulty PLBs.  Minimax refers to an algorithm that minimizes the maximum distance, L, between 

the faulty PLB and an unused, fault-free PLB.  Beginning with L = 1, Figure 2-8 shows that the faul-

ty cell 23 is adjacent to the spare cell 18 and thus a match, but faulty cells 8 and 25 do not have adja-

cent spares and thus no matches.  Incrementing L to two, faulty cell 23 matches cell 17 while main-

taining its match to cell 18.  Additionally, faulty cell 8 matches cell 18 and cell 10 whereas faulty cell 

 
Figure 2-8: One Possible Minimax Fault-Handling Strategy for a 5x5 array 
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25 still has no matching spare.  Incrementing L to three, faulty cell 23 acquires no new matches, 

faulty cell 8 acquires cell 17 as a match and faulty cell 25 matches cell 10 and cell 18.  Since all cells 

have a match at minimax length L = 3, one match is then chosen for each faulty cell.  Figure 2-8 

depicts one such possibility for the three faulty PLBs, where, for example, the logic in cell 23 shifts 

to cell 22 and the logic in cell 22 shifts to the spare cell 17. 

Re-placing PLBs requires the wire segments of the moving PLBs to be rerouted.  The confi-

guration memory of the FPGA is read to determine which nets are affected by the re-placed PLBs.  

All faulty nets and those that solely connect the moved PLBs are ripped-up [Emmert and Bhatia 

2000] while those that connect other unmoved PLBs remain unchanged.  A greedy algorithm then 

incrementally reroutes each of the dual-terminal nets to reestablish the application’s original functio-

nality.  Initially, the algorithm only uses spare interconnection resources within the direct routing 

path, but may expand its scope to encompass wider routing paths for unroutable nets.  Lakamraju 

and Tessier [2000] expand this work by utilizing historical node-cost information from previous 

routing attempts to increase the probability of routing success. 

2.3.1.2 Genetic Algorithm Repair 

Genetic Algorithms (GA) are inspired by evolutionary behavior of biological systems to pro-

duce solutions to computational problems [Mitchell 1996].  Suitable for complex search spaces, GAs 

have proven valuable in a wide range of multimodal or discontinuous optimization problems.  Pre-

vious research has investigated the capability of GAs to design digital circuits [Miller et al. 1997] and 

repair them upon a fault [Keymeulen et al. 2000].  Vigander [2001] proposes the use of GAs to re-

pair faulty FPGA circuits.  As a proof of concept, Vigander implements extrinsic evolution, utilizing 
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a simulated feed-forward model of the FPGA device with genetic chromosomes representing logic 

and interconnect configurations. 

The evolution process begins with initializing a population of candidate solutions.  These ini-

tial solutions contain different physical implementations of the same functional circuit.  In the midst 

of a fault, the performance of each configuration is evaluated, revealing which configurations are 

most affected by the fault.  If none of the available configurations provides the desired functionality, 

then genetic operators create a new population of diverse candidate solutions from the previous 

configurations.  Those previous configurations having a higher performance rating are more likely to 

be selected and to combine with other configurations by the Crossover genetic operator.  Additionally, 

the Mutation genetic operator injects random variations in the newly created candidate solutions.  

Vigander also makes use of a Cell Swap operator that allows the functionality and connectivity of a 

faulty cell to swap with a spare cell.  The GA evaluates the newly created solutions and replaces 

poorer performers in the old population with better performers in the current population to create a 

new generation of candidate solutions.  This evolutionary process repeats, stopping when an optimal 

solution is discovered or after a specific number of generations. 

2.3.1.3 Augmented Genetic Algorithm Repair 

To decrease the amount of time required to generate a repair, Oreifej et al. [2006] augment 

Vigander’s GA fault-handling concept with a Combinatorial Group Testing (CGT) fault isolation tech-

nique.  Group Testing partitions suspect resources into groups and coordinates those groups into a 

minimal number of tests to isolate the faulty resource.  If a group manifests a fault within one of 

these tests, then the group is known to contain the faulty resource and thus the resources within the 
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group are classified as suspect.  In a deterministic manner, the suspect resources are partitioned into 

iteratively smaller groups and tested until the faulty resource is isolated. 

A population within a GA contains various configurations, each of which categorizes the 

FPGA resources into two groups: utilized and unutilized resources.  CGT evaluates each configura-

tion for correct functionality.  If a configuration manifests a faulty output, then the resources used 

by that configuration are considered suspect.  Since the various configurations within the population 

form groups that overlap particular resources, CGT tests multiple configurations and accumulates 

the number of times each resource is considered suspect through a History Matrix.  Configurations 

are rotated through the FPGA and tested until one element becomes the maximum value within the 

matrix, isolating the fault to one resource.  The GA, in turn, uses the fault location information to 

avoid faulty resources while evolving a repaired configuration. 

2.3.2 Online Recovery Methods 

2.3.2.1 TMR with Single-Module Repair 

In Section 2.2.1.2, faults in TMR arrangements were handled with a-priori, design-time con-

figurations.  Methods presented by Ross and Hall [2006], Shanthi et al. [2002], and Garvie and 

Thompson [2004] address faults dynamically through GA repair.  As shown by Figure 2-9, genetic 

operators and reconfiguration are invoked when a defective module is detected.  At design-time, 

Ross and Hall [2006] produce a population of diverse configurations for implementation.  At run-

time, three of these configurations are implemented into the circuit and monitored for discrepancies.  

Agreeing outputs indicate that the modules are functioning correctly whereas discrepancies indicate 

defective resources utilized by one of the configurations.  A simple mutation genetic operator is ap-
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plied to defective modules and the fitness of the new individual is evaluated.  The process repeats 

until the fault is occluded. 

In addition to the strategy above, Shanthi [2002] utilize a deterministic approach in identify-

ing faulty resources.  By monitoring the resources within each configuration, resources utilized by 

viable modules gain confidence whereas resources utilized by faulty modules gain suspicion.  This 

information allows fault handling by implementing configurations not using defective resources.  

Additionally, differing configurations can be rotated to reveal dormant faults in unused resources. 

Instead of selecting from a diverse population, Garvie and Thompson [2004] implement 

three identical modules.  The commonality between configurations permits a Lazy Scrubbing tech-

nique, which considers the majority vote of the three configurations as the original configuration 

when scrubbing a faulty module.  Of course, Lazy Scrubbing only applies when a GA has not mod-

ified the original configurations to tolerate a permanent fault.  To address permanent faults, a (1+1) 

Evolutionary Strategy [Schwefel and Rudolph 1995] provides a minimal GA, which produces one 

genetically modified offspring from one parent and chooses the most fit between the parent and 

offspring.  To mitigate the possibility for a misevaluated offspring replacing a superior parent, a His-

 
Figure 2-9: Single-Module Repair in TMR Arrangement 
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tory Window of past mutations is retained to enable rollback to the superior individual.  Normal 

FPGA operational inputs provide the test vectors to evaluate the fitness of newly formed individu-

als.  To determine correct values, an individual’s output is compared to the output of the voter.  An 

individual’s fitness evaluation is complete when it has received all possible input combinations. 

2.3.2.2 Online Built-in Self  Test 

Emmert et al. [2007] present an approach that pseudo-exhaustively tests, diagnoses, and re-

configures resources of the FPGA to restore lost functionality due to permanent faults.  The appli-

cation logic handles transient faults through a Concurrent Error Detection (CED) technique and by 

periodically saving and restoring the system’s state through checkpointing.  As shown in Figure 2-10, 

this method partitions the FPGA into an Operational Area and a Self-Testing ARea (STAR), which 

consists of a Horizontal STAR and a Vertical STAR.  Such an organization allows normal functio-

nality to occur within the Operational Area while Built-In Self Tests (BIST) and fault diagnosis occurs 

within the STARs.  Whereas other BIST methods may utilize external testing resources assumed 

fault-free, the resources-under-test also implement the Test-Pattern Generator (TPG) and the Out-

put Response Analyzer (ORA). 

To provide fault coverage of the entire FPGA, the STARs incrementally rove across the 

FPGA, each time exchanging its tested resources for the adjacent, untested resources in the Opera-

tional Area.  The H-STAR roves top to bottom then bottom to top while the V-STAR roves left to 

right then right to left.  Whereas one STAR can test and diagnose PLBs, two STARs are required to 

test and diagnose programmable interconnect—the H-STAR for horizontal routing resources and 

the V-STAR for vertical routing resources.  Where they intersect, the two STARs may concurrently 

test both horizontal and vertical routing resources and the connections between them.  Since faults 
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have equal probability to occur within used resources with unused resources, Roving STARs pro-

vides testing for all resources.  Uncovering dormant faults in unused resources prevents them from 

being allocated as spares to replace faulty operational resources. 

In addition to facilitating testing, diagnosis, and reconfigurations, a Test and Reconfiguration 

Controller (TREC) is responsible for roving the STARs across the FPGA.  The TREC is implemented 

as an embedded or external microprocessor that communicates to the FPGA through the Boundary-

Scan interface.  All possible configurations of the STARs are processed during design-time and 

stored by the TREC for partial reconfiguration during run-time.  Relocating the STARs through par-

tial reconfiguration only affects the logic and routing resources within the STAR’s current and new 

locations.  When a STAR’s next location includes sequential logic, the TREC pauses the system 

clock until the logic is completely relocated.  In addition to pausing the system clock, the TREC im-

plements an Adaptable System Clock where the clock speed is adjusted to account for timing delays 

arising from new configurations that adapt to faults. 

Roving STARs supports a three-level strategy to handling permanent faults.  In the first level 

when a STAR detects a fault, it remains in the same position to cover the fault.  Since a STAR con-

tains only offline logic and routing resources, testing and diagnosing time is not at a premium and 

 
Figure 2-10: Roving STARs within an FPGA 
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the application can continue to operate normally while the TREC tests and diagnoses the fault.  Af-

ter diagnosing the fault, the TREC determines if the fault will affect the functionality that will soon 

occupy the faulty resources upon moving the STAR.  If the fault will not affect the new configura-

tion’s functionality, such as only affecting resources that will be unused or spare, then the applica-

tion’s output will not articulate the fault and no action is required.  If the fault will affect the new 

configuration’s functionality, then the TREC generates a Fault-Bypassing Roving Configuration (FA-

BRIC) to reroute incrementally the new configuration so that the fault will not affect its functionali-

ty.  Whereas some FABRICs may be compiled during design-time, most fault scenarios will dictate 

compiling them online while the STAR covers the fault.  While one STAR covers a fault for testing 

and diagnosis, the second STAR may continue roving the FPGA searching for faults in its respective 

routing resources and PLBs.  The second level strategy then applies the FABRIC that either was 

compiled during design-time or was generated during the first-level strategy.  Replacing a faulty re-

source with a spare one through a FABRIC thus releases the STAR covering the fault to continue 

roving the FPGA. 

If the fault affects functionality and no spare resources are available to bypass the fault, then 

the third strategy is invoked.  As a last resort, the TREC has an option to perform STAR Stealing, 

which reallocates resources from a STAR to the Operational Area to bypass the fault.  Removing 

resources from a STAR immobilizes it from roving the FPGA.  Whereas the second STAR can test 

all PLBs in an FPGA with an immobile STAR, only half of the routing resources can be tested.  In 

some situations, however, a mobile STAR may intersect and forfeit its resources to an immobile 

STAR, which releases it to rove the FPGA and test the remaining routing resources. 
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As previously stated, testing and diagnosis occurs within resources of a STAR as shown by 

Figure 2-11.  Utilizing the resources of the STAR through partial reconfiguration, the TREC confi-

gures a TPG, an ORA, and either two Blocks Under Test (BUT) for a PLB test or two Wires Under 

Test (WUT) for an interconnect test.  Since no resource may be assumed to be fault-free, the TPG, 

BUTs/WUTs, and ORA are rotated through common resources of the STAR.  The TREC main-

tains the results for all test configurations so that the common faulty resources can be identified be-

tween the two parallel BUTs or WUTs and the rotation of resources. 

2.3.2.3 Consensus-based Evaluation of  Competing Configurations 

Whereas previous Online GA methods utilize an N-MR voting element, the Competitive Run-

time Reconfiguration (CRR) proposed by DeMara and Zhang [2005] handle faults through a pairwise 

functional output comparison.  Similar to previous GA methods, each of the two individuals is a 

unique configuration on the target FPGA exhibiting the desired functionality.  CRR divides the 

FPGA into two mutually exclusive regions, allocating the Left Half configuration to one individual 

and the Right Half configuration to another individual in the population of alternate configurations.  

 
Figure 2-11: 4x2 Array Configured for a PLB BIST 
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This detection method realizes a traditional CED arrangement that allocates mutually exclusive re-

sources for each individual.  The comparison results in either a discrepancy or a match between half-

configuration outputs, which detects any single resource fault with certainty.  This indicates the 

presence or absence of a FPGA resource fault for all inputs that articulate the fault when applied to 

a combinational logic module or a pipeline stage consisting of combinational logic. 

The Left and Right individuals of the pairwise comparison are selected from their respective 

Left and Right populations to maintain resource exclusivity.  Functionally identical, yet physically 

distinct, Pristine individuals developed at design-time compose the initial population.  As Figure 

2-12 shows, the Left and Right individuals remain Pristine as long as the Left and Right indi-

viduals exhibit matching outputs.  Additionally, the fitness values of both individuals are increased to 

encourage selection of individuals exhibiting correct behavior.  Upon detecting a discrepant output, 

however, the fitness state of both individuals are demoted and labeled as Suspect.  Furthermore, 

the fitness values of both individuals are decreased to discourage selection of individuals exhibiting 

discrepant behavior.  Over many pairings and evaluations, the fitness value of individuals utilizing 

faulty resources, and therefore its probability for selection, will be decreased regardless of pairing.  

Moreover, non-faulty individuals that were previously paired with faulty individuals will eventually 

be exonerated. 

Figure 2-12 shows that the fitness state of individual i, which has been labeled as Suspect, 

is further demoted when its fitness (fi) drops below the Repair Threshold (fRT).  Genetic operators are 

applied to the Under Repair individual, until its fitness rises above the Operational Threshold (fOT).  

Selecting an Operational Threshold greater than the Repair Threshold increases confidence that the 

individual, in fact, is Refurbished.  Further matching pairings with the Refurbished indi-

vidual can result in either a Partial or Complete Regeneration of lost functionality.  Nonetheless, if the 
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individual exhibits further discrepant behavior, its fitness state is returned to Under Repair and 

genetic operators are reapplied. 

Figure 2-13 shows the CRR processes of Selection, Detection, Fitness Adjustment, and Evolution.  

These processes identify individuals utilizing faulty resources and refurbish those individuals in the 

midst of the fault.  The Selection Process determines the two individuals that will occupy the Left 

and Right regions.  Typically, one of the halves is reserved as a “control” configuration where fault-

free operational individuals, such as Pristine, Suspect, and Refurbished in that order, are 

always preferred.  The other half supersedes these operational individuals with Under Repair 

individuals at a rate equal to the Re-introduction Rate.  Under Repair individuals that are genetical-

ly modified compete by being re-introduced into the operational throughput.  The Re-introduction Rate 

can be adjusted to achieve a desired recovery goodput during the repair process.  This assumes that 

alternative configurations exhibiting fault-free behavior over a window of recent inputs remain avail-

able or that the GA has already refurbished configurations within the population. 

 
Figure 2-12: States of an Individual during its Lifetime [DeMara and Zhang 2005] 

 
 

 
Figure 2-13: Procedural Flow for Competing Configurations [DeMara and Zhang 2005] 
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Applying an input to the Left and Right individuals invokes the Fitness Adjustment process.  

As previously discussed, matching outputs results in increases to the fitness value of both individu-

als.  Discrepant outputs decrease the fitness value with a steeper gradient and, consequently, the 

probability that either individual is selected again.  This process negatively or positively reinforces 

certain individuals by decreasing or increasing its fitness appropriately.  If an individual’s fitness is 

less than the Repair Threshold, a single application of genetic operators such as crossover and muta-

tion are performed with a random Pristine individual.  The checking logic is embedded in the 

individual and is dependent on the other half.  Thus, if the checking logic in one of the halves expe-

riences a fault, it will propagate to the other half, causing the fitness of the individuals to decrease.  

Additionally, the checking logic is subject to repair by the genetic operators.  This implements a 

check-the-checker concept to enhance its fault tolerance.  Variation of the Re-introduction Rate 

then allows control over how frequently the genetically modified offspring are allowed to compete 

with the rest of the population. 

CRR exploits the normal operational inputs of the FPGA to evaluate the fitness of individu-

als.  To establish confidence in an individual’s fitness, more than one input is evaluated for each in-

dividual; the more inputs evaluated, the greater the confidence.  Since this method is not an exhaus-

tive evaluation, CRR utilizes an Evaluation Window that specifies the number of inputs needed to gain 

a certain confidence in the individual’s fitness.  Over many pairings and fitness evaluations, CRR 

eventually forms a consensus from a population of individuals for a customized fault-specific repair. 



 
 

39

2.4 Comparison of  Methods 

2.4.1 Overhead-related Metrics 

2.4.1.1 Resources 

Overheads for both logic and interconnect resources are listed in Table 2-II.  Resource 

overheads reported as a percentage of the application are values supplied by the respective authors 

for those methods.  Overheads reported as a percentage of the FPGA are estimates based on the 

fault-handling strategy using the largest Virtex-4 device—XC4VLX200, 192x116 array—as a lower-

bound and the smallest Virtex-4 device—XC4VLX15, 64x24 array—as an upper-bound [Xilinx 

2007b].  Some fault-handling methods, such as the Coarse-grained method, partition discrete areas 

of the FPGA and, thus, do not differentiate between logic and interconnect resource requirements. 

2.4.1.2 Operational Delay 

Table 2-II lists operational delay values that are reported by the respective authors.  Methods 

utilizing a stochastic repair method such as GAs have an inestimable operational delay. 

2.4.1.3 Fault Latency 

Once some fault detection technique has detected and located a fault, fault latency specifies 

the amount of time required for the specified fault-handling method to begin addressing the fault.  

The authors of the Online BIST method report an upper bound for fault latency as 1.34s for the 

ORCA OR2C15A FPGA, a 20x20 PLB array.  Considering both the increased size and faster boun-

dary scan clock of the XC4VLX200, the estimated fault latency is listed Table 2-II. 
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2.4.1.4 Unavailability 

Since all fault-handling methods discussed address faults through FPGA reconfiguration, a 

portion of the unavailability is due to the reconfiguration time.  Configuration times are calculated 

for the largest Xilinx Virtex-4 device, XC4VLX200, as an upper bound.  The size of a full configura-

tion file for this device is 6.12 MB.  Using the Virtex-4 SelectMAP byte-wide parallel interface and a 

100MHz configuration clock, configuration times are calculated using the following equation de-

rived from [Xilinx 2008]: 

cclk
config f

bytesT 1)3( ⋅+= , (2-1) 

where bytes  is the size of the configuration file in bytes and cclkf is the frequency of the configura-

tion clock.  A full configuration for the XC4VLX200 device, thus, requires 64 ms, which is reported 

below in italics.  In the cases where partial configurations are used such as the fine-grained method, 

configuration times are calculated from a partial configuration file, with a 16 PLB minimum configu-

ration height for the Virtex-4 architecture [Lysaght et al. 2006] and a 116 PLB maximum width of 

the XC4VLX200 device.  Given a partial bitstream size of 0.5 MB, the partial configuration time is 6 

ms.  To recover from a fault, Competing Configurations may require cycling through its entire 

population of half-configurations to implement a configuration not utilizing a faulty resource.  If all 

configurations are adversely affected by the fault, then its stochastic repair process is unbounded. 

2.4.1.5 Recovery Goodput 

As most methods suggest the system be in an offline state during the entire fault-repair 

process, a particular fault may only articulate itself in a small percentage of the output space.  In such 

a situation, an application with low sensitivity to faulty inputs may benefit from the faulty system 
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remaining in an operational state during the fault-repair process.  As defined in Table 2-I, recovery 

goodput measures the number of correct or useful outputs provided during the repair process 

[Sharma et al. 2007].  The total repair time is the sum of the Fault Latency and Unavailability metrics 

listed in Table 2-II.  For methods with total repair times greater than their italicized reconfiguration 

times, goodput applies.  Whereas goodput measurements are largely a result of the type of fault and 

application, most fault-handling methods do not consider goodput during fault recovery.  As pre-

viously discussed, the Competing Configurations method manages a required goodput by adjusting 

the rate at which configurations under repair are implemented on the FPGA. 
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Table 2-II: Summary of Overhead-related Metrics 

 

Metrics
Resources Operational 

Delay 
Fault 

Latency 
Unavailability for 

single fault Logic Inter-
connect 

Fine-grained 2–10% of 
application 

Not 
Addressed 

14–45% None 6 ms 

Medium-grained 300% of application 
Not 

Addressed 
None None 

Coarse-grained 4–50% of FPGA 11–18% None 64 ms  

Sub-PLB Spares 0–20% of 
application 

Not 
Addressed 

Not 
Addressed 

None 
Place&Route +  

64 ms 

PLB Spares 1–41% of 
FPGA 

31–43% of 
application 

5–10% None 
Place+ 
64 ms 

Incremental 
Rerouting None 48–53ns  None 

2–12 s+ 
64 ms 

GA Repair None Inestimable None Unbounded 

Augmented GA 
Repair None Inestimable None 

37% decrease from 
GA repair 

TMR w/ Single 
Module Repair 300% of application Inestimable None None 

Online BIST 4–11% of FPGA  0–20% 0–15 s None 

Competing 
Configurations 200% of application Inestimable None 

popSize*64 ms  or 
Unbounded 

 

2.4.2 Sustainability Metrics 

2.4.2.1 Fault Occlusion 

By nature, all fault-handling methods typically bypass faulty resources.  Techniques that 

reuse or exploit faulty resources further increase system reliability by converting previously ignored 

resources into conditionally available resources. 
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2.4.2.2 Repair Granularity 

The repair granularity metric specifies the resolution with which a fault may be handled.  Me-

thods capable of addressing faulty resources finer in granularity and occlude faults by exploiting 

those resources further increase system reliability. 

2.4.2.3 Fault Tolerance 

Each method is capable of handling varying number and types of faults.  Fault tolerance 

specifies the maximum number of faults handled. 

2.4.2.4 Fault Coverage 

As discussed in Section 1.2, transient faults are typically addressed by some scrubbing 

scheme.  Whereas some fault-handling methods explicitly incorporate scrubbing or rollback [Em-

mert et al. 2007; Garvie and Thompson 2004; Ratter 2004], other fault-handling techniques may in-

directly address transient faults by handling them as permanent faults and reconfiguring the faulty 

portion of FPGA to scrub away the fault.  Table 2-III lists whether a fault-handling method ad-

dresses logic, L, or interconnect, I, faults. 

2.4.2.5 Critical Requirements 

Fault-handling components that may or may not be implemented by the FPGA itself are ex-

ternal requirements.  Additionally, these external requirements are relied upon as fault-free making 

them critical requirements.  Given that some FPGAs such as the Virtex-4 XC4VFX140 include em-

bedded microprocessors or can realize such hardware equivalents with its PLB logic and intercon-

nect, the FPGA device may implement processing functions such as Place and Route. 
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Table 2-III: Summary of Sustainability Metrics 
 Metrics

 
Fault 

Occlusion 
Repair 

Granularity Fault Tolerance
Fault 

Coverage Critical 
Requirements L I 

Fine-grained Bypass PLB 
Single faulty 
PLB per tile   

Storage of 
Configurations 

Medium-
grained Bypass 

Small group 
of PLBs 

Single faulty 
group of PLBs   

Voter, Storage of 
Configs 

Coarse-grained Bypass 
Large group 

of PLBs 
Single faulty 

group of PLBs   
Storage of 

Configurations 

Sub-PLB Spares Bypass 
Look-up 

Table 

Single faulty 
resource per 

spare resource
  

Custom Placer 
and Router 

PLB Spares Bypass PLB 
Single faulty 
PLB per row   

Custom 
Placer 

Incremental 
Rerouting Bypass PLB 

Single faulty 
PLB per spare 

PLB 
  

Custom Placer 
and Router 

GA Repair Exploit, 
Bypass 

Variable Indeterminate   
Processor and 

Memory 

Augmented GA 
Repair 

Exploit, 
Bypass 

Variable Indeterminate   
Processor and 

Memory 

TMR w/ Single 
Module Repair 

Bypass, 
Exploit 

Variable Indeterminate   
Voter, Processor 

and Memory 

Online BIST Bypass, 
Exploit 

Look-up 
Table 

2 faulty PLB 
columns & 2 
faulty rows 

  
Processor and 

Memory 

Competing 
Configurations 

Bypass, 
Exploit 

Variable Indeterminate   
Processor and 

Memory 

 

2.5 Chapter Summary 

Methods that do not change the configuration of an FPGA during run-time are mentioned 

as being limited in the number and type of faults it can handle.  As such, more robust fault-handling 

methods that reprogram the FPGA with a modified configuration are discussed and placed within 

the classification depicted by Figure 2-2.  Since A-priori Allocation fault-handling strategies exploit 

the redundancy of the FPGA architecture, the number of faults they can handle, as indicated by the 

fault tolerance metric, is limited to a smaller number in a given area.  This static fault-handling na-



 
 

45

ture, however, does increase its availability since less time is required to determine a solution to han-

dle the fault.  Dynamic Processes, on the other hand, can adapt its fault-handling strategy and tailor 

its repair solution to a variety of fault scenarios.  Whereas this capability increases its fault tolerance, 

its unavailability and critical requirements also increase to determine an appropriate repair solution. 

As made evident by the metric tables in Section 2.4, no one method provides the best per-

formance in all situations.  Applications with strict availability requirements should consider A-priori 

Allocation methods due to the small amount of processing required to either reconfigure the FPGA 

with a stored configuration or modify the configuration by a pre-determined process.  Applications 

with more lenient availability requirements and extended mission times may consider Dynamic 

Processes due to their need to handle many more fault scenarios.  Perhaps the best solution is some 

combination of the methods discussed.  For example, the coarse-grained partitioning approach 

quickly recovers from a fault by implementing a configuration with a spare column over the faulty 

resource.  While the application continues to operate, an online BIST could test the resources of this 

spare column to search for the faulty resource.  Upon detecting the specific resource that is faulty, 

Sub-PLB spares or Incremental Rerouting could modify all configurations that utilize the faulty re-

source to avoid it.  After such a modification, a configuration could be implemented to return the 

application to its original redundancy level.  Combining methods for a hybrid approach exploits the 

fast reconfiguration of an A-priori Allocation method with the dynamic fault tolerance of Dynamic 

Processes. 
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CHAPTER 3 
EVOLVABLE HARDWARE OPTIMIZATION STRATEGIES 

3.1 Genetic Algorithms 

As previously discussed in Section 2.3.1.2, Genetic Algorithms (GA) have demonstrated pro-

ficiency for locating global optimums in large, discontinuous, and multimodal search landscapes.  

The search space of repairing a damaged digital circuit residing on an FPGA can be considered large, 

discontinuous, and multimodal.  Hence, a GA may be an appropriate method to develop solutions 

that restore lost functionality.  In attempting to apply GAs to the fault-repair problem domain, many 

techniques have developed.  As evident by the number of methods proposed for repairing FPGAs, 

no ideal chromosomal representation has been developed, neither has an optimum set of Genetic 

Operators been defined. 

Miller et al. [1997] investigated the specific ability of GAs to design innovative configura-

tions of simple digital circuits.  Their research resulted in successful designs of a 4-bit full adder and 

a 2-bit multiplier.  Keymeulen et al. [2000] investigated the ability of GAs to evolve fault tolerant 

designs of an analog multiplier and a digital XNOR circuit, both created from an array of program-

mable transistors.  When the fault tolerant designs could not perform acceptably, they successfully 

used GAs to evolve a repair to address the fault.  Vigander [2001] expressed difficulty in evolving a 

complete repair of a 4-bit multiplier.  To circumvent this difficulty, Vigander proposed a voting 

scheme where the majority vote of three partially repaired circuits is used for the functional output 

of the circuit.  Lohn et al. [2003] utilize a representation similar to the FPGA architecture to repair a 

faulty Quadrature Decoder.  Implementing 1) a more dynamic fitness function and 2) a higher-level 

chromosome representation allowed a greater degree of success for finding a correct solution. 
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Previous research has attempted to parallelize the GA to decrease running time and improve 

the quality of solutions.  As first analyzed by Grosso [1985], partitioning the GA population into 

smaller, isolated sub-populations allowed favorable traits to spread more quickly throughout the 

smaller sub-populations, yet these smaller sub-populations each produced less fit individuals upon 

convergence.  Allowing individuals to migrate between sub-populations at slow rates did not im-

prove performance whereas intermediate rates improved the fitness of individuals upon conver-

gence.  Pettey et al. [1987] further investigated the effect migration has on population performance.  

By migrating the best individual from each sub-population to its neighbors after every generation, 

the parallel GA produced individuals of similar fitness with that of a traditional GA.  As investigated 

below, a particular form of a parallel GA is used to surpass the performance of the traditional GA in 

the FPGA fault-repair problem domain. 

3.2 Age-Layered Population Structure Overview 

Populations of typical GAs quickly converge upon a single local optimum, which may not be 

the global optimum.  Research has attempted to prevent convergence and promote diversity by 1) 

restricting breeding to similar individuals, 2) modifying the replacement method, or 3) adjusting the 

fitness function to penalize individuals that are similar to existing individuals.  Each of these me-

thods depends upon a similarity function to determine whether two individuals should mate, replace 

one another, or be penalized for being similar.  GAs utilizing bitstring representations can readily 

assess similarity by a simple hamming distance calculation, although similarity in bitstrings may not 

necessarily translate to functional similarity.  Other algorithms used to determine functional similari-

ty might be too computationally expensive to be competitive with other searching algorithms. 
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As an alternative method to prevent convergence of populations, an Age-Layered Popula-

tion Structure (ALPS) creates multiple sub-populations that partition individuals by age [Hornby 

2006].  The age of an individual is set to zero during the initialization of a population and increments 

every time the GA selects the individual as a parent.  Additionally, offspring created by parents re-

ceive the age of its oldest parent and furthermore increases the age by one.  Therefore, age of indi-

viduals within the population becomes a measure of the time certain genetic material has existed 

within the population. 

 The age of an individual within ALPS is used to 1) partition the population into age layers 

to systematical replace the bottom age-level with random individuals and 2) restrict breeding to simi-

larly aged individuals.  Standard GAs typically escape basins of attraction through the mutation op-

erator by introducing new genetic material into the population.  As a more drastic method of pre-

venting the population from converging on non-global maximums, ALPS supplements the mutation 

operator by replacing the bottom age-level with random individuals at regular intervals, enabling the 

GA to explore new areas of the search space.  Additionally, genetic operators such as crossover use 

age to restrict selection of parents from within the same age-level or the age-level immediately be-

low.  Restricting breeding to individuals of similar ages prevents individuals, which contain more 

mature genetic material, from dominating the entire population and permits other local optimums to 

be explored within lower age-levels.  Experiments in Section 3.5.1 explain and demonstrate this ben-

efit in detail. 

Research provided by Hornby verifies that ALPS outperforms a standard GA and two other 

GA implementations for evolving antenna designs from scratch.  Whereas the results are clear, some 

implementation details of ALPS remain ambiguous.  The implementation presented in Section 3.3 

addresses these ambiguities and introduces additional parameters to improve performance.  The ex-
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perimental setup described in Section 3.4 applies the ALPS implementation to an FPGA repair 

problem to verify its viability for this problem domain.  Section 3.5 reveals the benefits in perfor-

mance of preventing convergence of the population and furthermore optimizes new ALPS parame-

ters for the FPGA repair problem. 

3.3 ALPS Implementation 

Similar to a typical GA, ALPS follows a similar overall process flow.  The GA initializes the 

population then subjects the population to a fixed number of generations, as specified by the 

genNum parameter in Figure 3-1.  Within each generation, Selection, Genetic Operators, and Fitness 

Evaluation all repeat to form a new population equal in size to the original population, as specified 

by the popSize parameter.  The Representation used along with each of the process modules of Initialize 

Population, Evaluate Fitness, Selection, Genetic Operators, and Replacement are explained in detail below. 

 
 

 
Figure 3-1: Standard Genetic Algorithm and ALPS Process Flow 
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3.3.1 Chromosome Representation 

The ALPS FPGA repair system is implemented by Java code.  Appropriate for an object-

oriented programming language, the representations of the chromosomes are objects that mimic the 

architecture of the FPGA.  As such, Figure 3-2 shows a chromosome as an array of LUT objects, 

each of which contains 4 inputs and a 16x1 memory to describe the behavior of the LUT.  Each of 

the four inputs may be connected to either GND, VCC, a circuit input, or the output of another 

LUT.  To simplify the fitness evaluation process, all individuals evaluated by the fitness function are 

verified to constitute a feed-forward network.  This verification process merely checks that a LUT 

input connects to a LUT output with a lower-numbered label.  As seen in Figure 3-2, Input 3 of 

LUT5 is connected to the output of LUT2, which is a valid connection to maintain a feed-forward 

network.  Whereas it is possible that a LUT input be connected to a LUT output of a higher label 

ID value while maintaining a feed-forward network, this restrictive, yet simple, verification minimiz-

es the impact on computation time as previously implemented by Miller et al. [1997] and Vigander 

 
 

 
Figure 3-2: Detailed View of the GA Chromosome 
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[2001].  In case that the verification detects an non feed-forward individual as defined above, the 

invalid LUT input is modified to be a random, valid input—GND, VCC, a circuit input, or the out-

put of a LUT with an lesser ID value. 

3.3.2 Initialize Population 

  Since the goal of these experiments is FPGA repair, an existing working individual is pre-

supposed.  To allow repair, the initial population is seeded with 10 identical individuals exhibiting 

100% functional behavior whereas random individuals populate the remaining portion.  For the 

ALPS implementation, a population size of 100 per each age-level is used, where 10 seed individuals 

and 90 random individuals constitute the bottom age-level upon initialization.  During initialization, 

only the bottom age-level is populated, allowing the age sort function discussed in Section 3.3.6 to 

populate additional age-levels as needed up to the limit of 10, as specified by the age-level parameter.  

As suggested by Hornby, the standard GA implementation uses a population size of 1000 to mimic 

the capacity of the ten-level ALPS implementation, where 10 seed individuals and 990 random indi-

viduals constitute the initial population. 

Additionally, the FPGA repair process is initiated after a fault has occurred.  To simulate a 

fault, a random LUT is selected from the available LUTs and one I/O port is held constant at logic 

0 or 1.  If the fault has no effect on the circuit, another fault is generated by randomly choosing 

another LUT, I/O port, and logic stuck-at level.  This process repeats until the fault is manifested in 

the output.  As specified by the parameters, only one manifested fault is implemented in the experi-

ments.  Generally speaking, if a fault only effects a small subset of the application’s outputs, then the 

GA will most likely only have to make a small change to the chromosome of the ideal individual to 

repair the fault.  To allow room for the GA to search, the GA is allocated 115% of the LUTs neces-
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sary to implement the initial optimized circuit design.  As specified later in Section 3.4, the initial cir-

cuit design utilizes 13 LUTs and, therefore, the GA is allocated 15 LUTs to repair the fault. 

3.3.3 Evaluate Fitness 

The representation described in Section 3.3.1 explicitly defines the circuit inputs whereas the 

circuit outputs are not.  Since the outputs are undefined, two fitness evaluation techniques are possi-

ble, fixed outputs and floating outputs.  When evaluating individuals, the fixed-output fitness evalua-

tion utilizes as outputs the same LUTs specified by the seeded individual, which exhibits correct 

functional behavior prior to a fault.  This technique is useful when the output LUTs cannot be mod-

ified and, therefore, encourages individuals to utilize the same circuit outputs as defined by the initial 

individual.  This method can be seen as an additional restriction that the GA must overcome in find-

ing an acceptable solution within the search space. 

In an attempt of increasing the scope of the search, Lohn et al. [2003] devised a second fit-

ness evaluation method called floating outputs.  In this scheme, the circuit outputs of each individual 

are not defined until fitness evaluation.  The exhaustive set of input vectors are applied to each indi-

vidual and the output responses of each LUT are retained.  After all inputs are applied, the response 

of each LUT then is evaluated against each bit-wide output to determine which LUT is the best 

match for a given bit-wide output.  In cases where the output LUTs may be relocated, increasing the 

chances of finding a fully functional repair may justify the increased computation time.  The experi-

ments investigated in this work solely make use of the fixed outputs fitness evaluation method. 

After the replacement process creates the final, new population, the chromosomes are sorted 

in ascending order of raw fitness values and are assigned a rank where the highest fit individual rece-

ives the highest rank value.  The rank is used to calculate the proportional fitness of an individual as 



 
 

53

∑ population
rankrank / .  This proportional fitness value has the same effect as placing all individuals 

within the population on a roulette wheel for the selection process, each with a specific probability. 

3.3.4 Selection 

In the implementation proposed by Hornby, tournament selection is used for both the stan-

dard GA and ALPS.  For the standard GA in this implementation, selection of both parents func-

tions as a roulette wheel, where a random, fractional value between 0 and 1 is selected and the pro-

portional fitness values of individuals within a population are accumulated until the sum is larger 

than the selected random value.  As such, individuals with larger fitness values have a higher rank 

and, thus, larger proportional values, giving them a greater chance for selection. 

In the ALPS implementation, the first parent is selected from the current age-level using 

proportional fitness selection as the standard GA.  The second parent, however, may be selected 

from the current age-level or the age-level immediately below the current level.  Two selection 

processes are investigated by the experiments.  The first method, which is assumed to be used by 

Hornby, combines both the current age layer sub-population with the one immediately below it.  Whe-

reas Hornby uses a tournament selection, this implementation continues use of proportional fitness 

values.  After the merge, it calculates the scaled fitness values for the combination of the two sub-

populations and assigns proportional fitness values accordingly. 

This paper proposes a second method of ALPS selection that keeps the two age-levels sepa-

rate by selecting one 2nd Parent candidate from the current age-level using proportional selection and 

then selecting another 2nd Parent candidate from the age-level immediately below using proportional 

selection.  The GA then randomly chooses between the two candidates, favoring the candidate from 

the current age-level with a probability of 0.25, 0.50, 0.75, or 1.00 as specified by the Age-level Man-
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agement parameter.  A probability of 0.25 slightly favors selecting the second parent from the age-

level below whereas a 0.75 probability slightly favors selecting the second parent from the same age-

level.  A 0.50 probability does not favor either age-level and a probability of 1.00 always favors the 

same age-level, preventing cross-level breeding.  The results of each of these probabilities are inves-

tigated by experiments detailed in Section 3.5.3. 

3.3.5 Genetic Operators 

3.3.5.1 Crossover 

For the object-oriented representation previously described, crossover points reside between 

two LUT objects within the array.  Two-point crossover has the ability to create either one or two 

offspring from two parents.  To produce one offspring, Parent 1 receives the genetic material of 

Parent 2 that is located within the two crossover points.  A second offspring is produced when Par-

ent 2 receives the genetic material of Parent 1 that is located within the two crossover points.  In 

other words, a second offspring is produced when Parent 1 receives the genetic material of Parent 2 

that is located outside of the two crossover points.  The experiments conducted utilize 2-pt crossov-

er at a rate of 0.90 and produce one offspring per crossover operation.  Upon producing an 

offspring, the chromosome is validated as a feed-forward circuit and modified accordingly.  Togeth-

er the selection process and crossover operator repeat, producing a number of offspring equal to the 

current population size.  Whenever an individual contributes genetic material by being a parent in 

crossover, its age is increased by the value of 1 per generation, regardless of the number of times it is 

used as a parent in a generation.  After increasing the ages of the parents accordingly, the offspring 

inherits the greater age of the two parents and then increases its own age by the value of 1. 
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3.3.5.2 Mutation 

Since crossover cannot modify the contents of an LUT, connectivity or routing, mutation is 

given more pressure to introduce variation to the individual LUTs by changing the LUT inputs to a 

random value that maintains the feed-forward network or by mutating the LUT contents on a bit-

by-bit basis.  Each LUT object of a newly produced offspring chromosome is given a chance for 

mutation.  Each input and each bit of the 16-bit LUT contents is changed with a 0.005 probability as 

specified by the mutation rate.  If an input is mutated, the input is changed to a random input that 

maintains a feed-forward circuit—GND, VCC, circuit input, or an output of a LUT with a lesser ID 

value.  If a bit in the contents is mutated, a random Boolean value is selected.  Mutations, even if 

they occur, may result in no change if the input or Boolean values selected are the same as the pre-

vious values. 

3.3.6 Replacement 

As suggested by Hornby, a polynomial progression is used to define the age limits of the ten 

age-levels as 1, 2, 4, 9, 16, 25, 36, 49, 64, and ∞, respectively.  To increase further the separation be-

tween age-levels, this polynomial progression is multiplied by an agegap parameter of 20, resulting in 

age limits of 20, 40, 80, 180, etc.  These age limits are used to determine which age-level offspring 

should reside as its age increases. 

To store the offspring created by the genetic operators, a new population containing the 

same number of age-levels as the original population is created.  Offspring are placed within the age-

level of their oldest parent upon creation.  As suggested by Hornby, the ages of both parents, are 

increased by 1 since they have donated genetic material.  In cases where the age of the oldest parent 

is equal to the age-level limit, the offspring that receives this increased age still is placed into the cur-
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rent age-level.  Additionally, the age of the offspring is increased by 1 after receiving its age, which 

further exceeds the age limit.  After selection and crossover are complete for a population, a sort 

based on age is performed on the new population to create new age-levels and redistribute individu-

als into the correct age-levels as necessary. 

After the fitness of all individuals within the population have been calculated, the top num-

ber of individuals as specified by the elitism parameter are marked as Elite individuals and are re-

moved from their respective population, original or new.  If the age sort function discussed above 

causes an age-level to exceed the population limit as specified by the popsize parameter, individuals 

are removed at random until the population becomes less than the sum of the population size and 

elitism size.  Next, the elite individuals are moved into the new population by considering each age-

level in sequence.  The ALPS implementation marks one elite individual per age-level totaling ten 

elite individuals, whereas the standard GA utilizes 10 elite individuals. 

As previously discussed, individuals increasing in age may move into higher age-levels, caus-

ing the size of age-levels in the new population to decrease below the population size specified in 

the parameters.  If this is the case, the GA moves individuals of the same age-level from the original 

population into the new population.  Since most of the individuals of the original population were 

parents of the offspring in the new population, the original population must also undergo an age 

sort function to redistribute individuals in the case that a parent contributing genetic material to an 

offspring causes it exceed the age limit of its level.  After the age sort function, individuals are ran-

domly selected to be moved into the new population until either the new population is full or the 

age-level of the original population becomes depleted.  The last step of the replacement process is to 

replace the entire bottom age-level with random individuals every 20 generations as specified by the 

agegap parameter. 
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3.3.7 GA Parameter Summary 

Below is a summary of the GA Parameters described above, some of which only apply to 

ALPS implementations.  Along with a comparison between the ALPS and standard GA implemen-

tations, various implementations of the Age-level Management parameter are investigated. 

 

Table 3-I: Summary of GA Parameters 

Number of 
Age Levels 

Standard 1 
ALPS 10 

Population 
Size 

Standard 1000 
ALPS 100 per each age-level 

Number of Faults 1 

Max # of LUTs 15 

Fitness Evaluation Fixed Outputs 

Fitness Scaling Rank 

Selection Proportional 

Age-level Management 
during Selection 

Combined 
Separate 

(0.25, 0.50, 0.75, 1.00 probabilities) 

Crossover Type 2-pt, 1 offspring produced 

Crossover Rate 0.90 

Mutation Rate 0.005 

Elitism Standard 10 
ALPS 1 per each age-level 

Age Gap 20 generations 
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3.4 Experimental Setup 

Figure 3-3 illustrates the 3-bit full adder circuit implemented with LUTs.  The legend in the 

figure shows each LUT having an ID, four 1-bit inputs, one 1-bit output, and sixteen 1-bit memory 

locations.  For readability of the connectivity, the order of the LUTs as they appear in the chromo-

some is rearranged.  As discussed in Section 1.1, the inputs of the LUT are used as an address to de-

termine which of the memory locations is utilized as the LUT output.  The 3-bit full adder has two 

3-bit inputs (A & B) with a carry (C) and one 4-bit output (OUT).  LUT inputs either connect to 

input A, input B, carry C, the output of another LUT, GND, or VCC. 

The fitness of individuals within the population is calculated by exhaustive evaluation, where 

 
 

 
Figure 3-3: 3-bit Full Adder Implementation  

(┼ wire junctions are not connected) 
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the functionality of the FPGA is simulated by applying, in turn, the exhaustive set of inputs and 

comparing the results to the 3-bit full adder truth table.  As such, the raw fitness value for an indi-

vidual is the sum of correct responses for the entire output space.  The output space of a logic cir-

cuit is outputsinputs ×2 , where inputs equals 7 and outputs equals 4 for the 3-bit full adder.  Thus, the 

maximum fitness value an individual may have is 512427 =× . 

To simulate a stuck-at fault, a random LUT input is forced to be logic 0 or 1.  As seen in 

Figure 3-3, the randomly generated fault for these experiments is a stuck-at-1 fault on Input 2 of 

LUT 5.  This fault causes the fitness of the 3-bit full adder to drop from 512 to 452.  The experi-

ments compare the performance of the standard GA implementation with various ALPS implemen-

tations as previously discussed. 

3.5 Experimental Results 

Unless otherwise specified, the experiments shown below include 3000 generations per run 

to discover long-term trends of the standard GA and ALPS, where each run is repeated 100 times to 

demonstrate statistical significance in the performance of the various GA implementations. 

3.5.1 ALPS Overview 

Figure 3-4 shows the first 200 generations of a single run of ALPS with the best individuals 

of each age-level at each generation number.  It reveals how individuals increase in age and are pro-

moted to higher age-levels.  As discussed later in detail, it also reveals how ALPS decreases the in-

fluence the best overall individual has on the population as a whole. 
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At Generation 1, the seeded individual is seen to exist within age-level 0 with a starting fit-

ness of 452.  Within 15 generations, at least one of the 10 seeded individuals ages-out and becomes 

the first individual to reside within age-level 1.  Within another 20 generations, it quickly moves into 

age-levels 2 and 3.  The same elite individual remains the best of the entire population until Genera-

tion 80 when the GA creates a higher-fit individual with fitness of 460.  This individual continues to 

undergo genetic operators and, thus, further increase in fitness. 

As the seeded individual becomes older and moves to higher age-levels, the lower age-levels 

change their focus from repairing the seeded individual to designing an individual from scratch.  The 

arrows in Figure 3-4 show the first generation that these lower age-levels do not have the seeded 

 
Figure 3-4: Best Individuals of each Age-level during the Initial Generations 
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individual within its population so they can begin evolving solutions from randomly generated indi-

viduals.  These individuals, then, become older eventually reaching the higher age-levels to compete 

with the original, seeded design and contribute genetic information.  The evolution of a randomly 

generated individual is highlighted with connecting lines.  As shown by the figure, the individual is 

randomly generated in the bottom age-level at Generation 100 and moves into higher age-levels, as 

shown by the handoff points.  As previously discussed, the bottom layer is replaced with random 

individuals every 20 generations as specified by the agegap parameter, a cyclic pattern constantly sup-

plying the GA with new information. 

When the entire single run is considered, additional individuals are seen to evolve from the 

bottom age-level and increase in age to compete in higher age-levels.  While the seeded individual 

evolves from a fitness of 452 to a fitness of 495 in the top age-level, Figure 3-5 shows multiple can-

didate solutions being evolved from scratch, six of which are shown by black lines.  Age levels 1, 3, 

and 5 are omitted from the figure for visual clarity.  Since the seeded individual is kept within its 

own sub-population, the other sub-populations are free from its dominance and can provide alterna-

tive solutions that may reside in areas outside of the basin of attraction that the GA is currently 

searching.  Interestingly, an alternative candidate moving from age-level 8 to age-level 9 at Genera-

tion 1400 coincides with a better-fit individual being produced in age-level 9, a direct benefit caused 

by the newly developed genetic material entering the sub-population. 

The results of this single run also reveal three coarse partitions of the fitness landscape.  The 

bottom partition extends from fitness 260 to 340 and represents fitness values easily obtained by 

randomly generated individuals and a minimal number of genetic operators.  The middle division 

from 340 to 420 represents fitness values that randomly generated individuals cannot attain and, 

thus, require a moderate number genetic operations applied.  Individuals within the top division are 
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rarer since fitness values from 420 to 512 are the most difficult to obtain.  Figure 3-5 reveals that 

strong individuals are produced approximately once every 700 generations and move to the top age-

level to contribute genetic material to the overall best individual. 

3.5.2 Standard GA and ALPS Comparison 

To gauge the effectiveness of ALPS, 100 runs of the standard GA were completed using the 

GA parameters previously specified by Table 3-I, producing a best overall individual at each genera-

tion for each run.  Figure 3-6 averages the 100 best individuals for a given generation and compares 

them to the Combined implementation of ALPS.  Whereas the standard GA consistently provides an 

individual with fitness of 480 within 100 generations, ALPS requires 1500 generations to achieve the 

 
Figure 3-5: Best Individuals of each Age-level at each Generation 
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same fitness.  This sluggishness is attributed to 1) partitioning the population into sub-populations 

that contain non-stationary individuals, 2) replacing the bottom age-level every 20 generations, and 

3) the beginning population size of ALPS being one-tenth the size of the standard GA.  Partitioning 

the population into sub-populations restricts the rate at which individuals may communicate genetic 

information to the population as a whole.  By implementing sub-populations, only a select few are 

given access to the genetic information of the overall best individual.  In this implementation, elitism 

allows the overall best individual to rise quickly to the top age-level and remain there to recombine 

with 99 other individuals.  Only through time and surviving many replacements can individuals in 

the bottom layer combine its genetic information with individuals in the top, slowing down the rate 

of population convergence. 

 
Figure 3-6: Best Individuals at each Generation (Averaged over 100 Runs) 
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Secondly, replacing the bottom age-level constantly injects new information into the genetic 

pool, preventing the genetic operators from merely producing combinations of the same genetic ma-

terial provided during the initialization phase.  Figure 3-7 shows the 95% confidence intervals of the 

populations for both implementations, averaged over the 100 runs.  Whereas the standard GA has a 

consistent confidence interval, the fitness of the ALPS population oscillates due to the regular re-

placement of the bottom age-level.  The continual production of random individuals causes ALPS to 

become less deterministic and, thus, have a larger confidence interval. 

Thirdly, the population size of each age-level is smaller than the standard GA, which de-

creases the amount of genetic material available to a single individual at a given time and restricts the 

fitness growth rate for ALPS.  Furthermore, the total population size of ALPS begins at one-tenth 

 
 

 
Figure 3-7: Fitness of Population at each Generation (Averaged over 100 Runs) 
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the size of the standard GA by initializing only the bottom age-level.  Figure 3-8 shows the popula-

tion of ALPS increasing as higher age-levels are initialized due to the age of individuals increasing.  

Individuals leaving the bottom age-level and replacing individuals at higher age-levels cause the pop-

ulation to decrease, whereas replenishing the bottom age-level with random individuals increases the 

population—an oscillation seen throughout the evolutionary process.  At Generation 700, the top 

age-level is initialized providing the ALPS population the capacity to compete with the standard GA. 

As shown in Figure 3-6, the ALPS fitness value of the best individual increases at an approx-

imate rate of 1 per 400 generations after the population saturates.  As previously discussed and 

shown by Figure 3-5, ALPS converts random individuals into competitive individuals through genet-

 
 

 
Figure 3-8: Size of Population at each Generation (Averaged over 100 Runs) 
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ic operators.  The top age-level is provided with an elite individual once every 200–300 generations.  

This continuous supply of new genetic material allows ALPS to surpass the performance of the 

standard GA during the last third of the runs as shown by Figure 3-6.  The best fitness averages and 

standard deviations of 100 runs at Generation 3000 are 481.62±7.92 for the standard GA and 

483.42±9.07 for the ALPS method.  Whereas a t-test reveals the difference not to be statistically sig-

nificant with P ≥ 0.05, the number of complete repairs produced during these runs reveals the real 

benefit of ALPS.  Of the 100 runs for each implementation, one run of the standard GA produced a 

complete repair with a 512 fitness value, whereas 3 runs of the ALPS implementation produced a 

complete repair resulting in a 300% improvement. 

3.5.3 Age-Level Management Optimization 

As previously discussed in Section 3.3.4, selection of a 2nd parent for crossover may occur by 

several methods.  The Combined method previously compared to the standard GA views two adja-

cent age-levels as one, calculates proportional fitness for each individual within the combined popu-

lation, and selects the second parent using the roulette wheel method.  After selecting one parent, 

the Separate method, however, selects a 2nd parent to be one of two candidate individuals: one candi-

date from the current age-level of the first parent and one candidate from the age-level immediately 

below.  The 2nd parent is selected to be one of these two candidates with a probability of 0.25, 0.50, 

0.75, or 1.00, where a probability of 1.00 always selects the candidate from the same age-level as the 

1st parent. 

Four trials each using a different Separate probability value were run with 100 runs per trial to 

determine if the age-level management strategy affects the performance of repairing the faulty 3-bit 

adder.  As shown in Figure 3-9, a probability of 0.75 outperforms the other probabilities as well as 
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the previous implementations already discussed.  It is observed that the 0.75 implementation is not 

as sluggish as the Combined method, whereas the 0.25 probability is more sluggish.  The performance 

difference between 0.75 and the next best implementation of 1.00 is statistically significant with  

P < 0.001.  The best fitness averages and standard deviations for 100 runs at Generation 3000 for 

0.75, 1.00, 0.50, and 0.25 probabilities respectively are 488.31±9.77, 483.62±10.14, 482.81±8.63, and 

479.98±9.24. 

For all implementations, Figure 3-10 shows the fitness of the population averaged over 100 

runs at each generation.  The populations of each of the Separate implementations are seen to be 

more fit than the Combined population, implying that keeping the age-levels separate during selection 

allows fitter individuals to emerge.  Figure 3-10 also shows that increasing the probability for indi-

 
Figure 3-9: Best Individuals at each Generation (Averaged over 100 Runs) 
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viduals to breed within its own age-level further increases the fitness of the population, which im-

plies that breeding across age-levels creates less-fit individuals and may be regarded as unproductive 

breeding.  As previously seen with the comparison of the standard GA, having a highly fit popula-

tion does not necessarily correlate to producing fitter individuals or complete repairs with greater 

frequency.  Figure 3-10 further verifies this, showing that the population using a probability of 0.75 

has a lower fitness than a probability of 1.00 yet, on average, produces fitter individuals. 

For each of the probabilities implemented above, Figure 3-11 categorizes by fitness the best 

individuals produced at the end of each run.  It also shows the frequency with which each fitness 

range occurs for a given probability value.  Representing 100 runs each, the 1.00 graph shows a 

somewhat normal distribution centered on its mean of 483.62, whereas the 0.75 probability appears 

 
Figure 3-10: Fitness of Population at each Generation (Averaged over 100 Runs) 
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skewed to the right displaying more occurrences of fitter individuals.  Coincidently, all individuals 

within the 510 category for each graph are complete repairs with a fitness of 512.  The 0.75 proba-

bility had a 5% success rate by producing five complete repairs whereas the other probabilities only 

produced one complete repair each. 

As previously discussed in Section 2.3.1.2, GAs are classified as Dynamic Processes that ad-

dress many specific fault scenarios during run-time.  As such, additional time is required to deter-

mine an appropriate solution.  Running times for the experiments discussed show that ALPS re-

quires less time due to its variable population size remaining less than the standard GA.  Whereas an 

application utilizing an offline recovery method such as a GA may not require repair solutions to be 

provided quickly, this decrease in running time can benefit any application. 

Figure 3-11: Distribution of Best Individuals from 100 Runs 
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3.6 Chapter Summary 

The work presented herein verifies the viability of utilizing age-levels to prevent population 

convergence for the fault-repair problem domain.  As previously shown, partitioning the population 

prevents one highly fit individual from quickly dominating the population.  For the fault-repair do-

main, the seeded individual is generally a highly fit individual compared to other randomly generated 

individuals.  Constraining the seeded individual to a sub-population allows the random individuals to 

evolve into competitive alternative solutions.  These developed individuals may have more of a 

chance of contributing useful genetic material to increase the fitness of the best individual. 

Preventing convergence is shown to increase the fitness of the best individual produced 

along with increasing the probability of evolving a complete repair.  To further increase this proba-

bility, a modification to the ALPS algorithm is introduced to improve the fitness of the best individ-

ual evolved.  Results reveal an optimized parameter value for this modification that increases fitness 

and the probability of completely repairing the faulty circuit. 

While the current results of ALPS are promising, better results may be obtained by optimiz-

ing the GA parameters specified by Table 3-I.  This thesis does not explore the effect that popula-

tion size, number of age-levels, selection strategy, crossover and mutation rate, elitism, or age gap 

has on the success of FPGA repair.  The parameters that were selected may be the worst-case set, 

meaning that the repair performance may be increased. 

An extension for this work includes simulating additional faults or implementing a more dif-

ficult circuit such as the 4-bit multiplier, which Vigander [2001] attempted to repair.  To help over-

come these difficulties, the GA could utilize other implementations of the FPGA repair process 

such as the Floating Output fitness evaluation method proposed by Lohn et al. [2003].  Hornby 

[2006] showed other population management strategies such as deterministic crowding [Mahfoud 
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1992] to be successful in creating fitter individuals, which may be another option for repairing more 

difficult digital circuits.  Additionally, the complete repairs created by the GA process may be ana-

lyzed to develop new selection and replacement strategies. 
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CHAPTER 4 
PARTIAL RECONFIGURATION AND FPGA ARCHITECTURE ANALYSIS 

4.1 Introduction 

As previously outlined in Section 1.3, partial reconfiguration is a process that reconfigures a 

specific region of FPGA resources without disturbing the remaining resources.  By designating a 

portion of the FPGA as reconfigurable as in Figure 4-1, multiple modules may occupy that space 

throughout the life of the FPGA.  If a system does not need two modules to operate concurrently, 

partial reconfiguration may time-multiplex between them to decrease spatial resource requirements.  

Since the size of the partial reconfiguration module determines the reconfiguration speed, smaller 

modules allow a system to reconfigure more quickly. 

Various design flows are available from Xilinx to implement partial reconfiguration designs 

onto their FPGAs.  The three design flows that are currently available include the design flow for 

ISE 6.3i, Early Access Partial Reconfiguration (EAPR) design flow for ISE 8.2i/9.1i [Xilinx 2006], and 

 
 

 
Figure 4-1: Various Modules in an FPGA 
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the PlanAhead design flow for ISE 9.1i.  Obtaining the tools and user guides for the EAPR flow 

requires registration and authorization from Xilinx.  The tools and user guides for the other two 

flows are available to the public.  This paper investigates the specifics of the EAPR design flow and 

compares its advantages to the module-based design flow for ISE 6.3i. 

Section 4.2 explains the design process for partial reconfiguration.  Section 4.3 proposes an 

application for use with partial reconfiguration and details the results obtained from implementing 

the application.  Section 4.4 makes a comparison between the implementations of two devices from 

the Xilinx Virtex Family.  Section 4.5 provides conclusions of the partial reconfiguration process. 

4.2 Early Access Partial Reconfiguration Design Flow 

Each of the steps of the partial reconfiguration design flow is outlined by Figure 4-2 and de-

scribed below. 

Step 1: Hardware Description Language (HDL) Design and Synthesis 

The initial steps in the EAPR design flow are similar to the initial steps in the standard mod-

ular design flow.  The process begins by designing a top-level design that does not contain any logic.  

 
 

 
Figure 4-2: Early Access Partial Reconfiguration Flow [Xilinx 2006] 
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The top-level module only contains I/O instantiations, clock primitives, static module instantiations, 

partial reconfiguration module instantiations, and signal declarations.  In addition, the top-level 

module must define bus macros.  Bus macros are hard macros that facilitate communication be-

tween static modules and partial reconfiguration modules. 

The static modules contain logic that will remain constant during reconfiguration.  The static 

modules cannot instantiate global clock signals, but may utilize clock signals declared in the top-level 

module.  Similar to the static modules, the partial reconfiguration modules must also not contain 

global clock signals, but may use those from the top-level module.  When designing multiple recon-

figurable modules to utilize the same reconfigurable area, the component name and port configura-

tion of each module must match the reconfigurable module instantiation located in the top-level 

module. 

After the HDL design, all of the modules are synthesized with the Keep Hierarchy 

attribute set to yes.  In addition, the top module is synthesized with the Add I/O Buffers 

attribute enabled, whereas each sub-module—static and each reconfigurable module—is synthesized 

with this attribute disabled.  This provides an .ngc, .ngo, or .edf file format for the implemen-

tation step.  To ensure that each synthesized module does not interfere with another, creating a de-

sign project for each module, each project within its own directory, is recommended. 

Step 2: Set Design Constraints 

Before implementing the synthesized design, constraints must be specified for the top-level 

design.  Mandatory constraints include the AREA_GROUP, RANGE, MODE, and LOC con-

straints.  The AREA_GROUP constraint specifies which modules in the top-level module are static 

and which are reconfigurable.  Each module instantiated by the top-level module is assigned to a 



 
 

75

group.  The RANGE constraint is only applied to the reconfigurable group to specify its range of 

resources, which may be any-sized rectangle.  All resources within the designated area must be cov-

ered by a RANGE constraint, including SLICE, RAMB16, MULT18X18, TBUF (Tri-state Buffer), 

FIFO16 (First In, First Out), and DSP48 (Digital Signal Processor) resources.  The static group is 

allowed to use all other resources not specified by the reconfigurable group.  The MODE constraint 

is also only applied to the reconfigurable group, which specifies that the group is reconfigurable. 

Every pin, clocking primitive, and bus macro in the top-level design must contain a LOC 

constraint.  Bus macros are located so that they straddle the reconfigurable boundary as set by the 

RANGE constraint.  Constraining the location of the bus macros enforce their position during all 

iterations of the implementation step.  This one user constraint file for the top-level directory is used 

to implement the static module and each of the reconfigurable modules. 

Step 3: Static Module Implementation 

Before the static modules are implemented, the top-level is translated to ensure that the con-

straints file has been properly created.  After the top-level translation is successful, the static module 

implementation begins within the context of the top-level module and constraints.  The implementa-

tion process translates the synthesized top-level module while using all synthesized static modules 

created in Step 1 and the top-level constraints file created in Step 2.  The synthesized bus macros, 

which are provided by Xilinx, must also be included in the directory where translation is to take 

place.  After a successful translation, MAP creates the mapped design. 

PAR is invoked to provide the .ncd output file that is used to generate a bitstream for pro-

gramming the FPGA.  In addition to the .ncd file, PAR provides a static.used file that lists 
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the routing resources within the reconfigurable area used by the static implementation.  This file is 

used by the reconfigurable implementation to prevent using the same routing resources. 

Step 4: Reconfigurable Module Implementation 

The reconfigurable modules are implemented using the top-level module, reconfigurable 

modules, and synthesized bus macro design files.  NGDBuild, MAP, and PAR are run similarly to 

the Step 3, but the static.used file created in Step 3 is renamed to arcs.exclude and in-

cluded in the reconfigurable implementation directory.  PAR automatically uses the 

arcs.exclude file to prevent the reconfigurable modules from using routing resources allocated 

for the static modules.  The reconfigurable module implementation process is performed once for 

each reconfiguration module occupying the same reconfigurable area, where each implementation 

process contains either one module or the other. 

Step 5: Merge Implementations 

To generate the appropriate full and partial bitstreams for programming the FPGA, the 

pr_verifydesign and pr_assemble routines are run using the .ncd files output by the 

PAR processes in Step 3 and Step 4.  The merge process is run once to merge the static design with 

the first reconfigurable module.  The merge process is run a second time to merge the static design 

with the second reconfigurable module.  The merge process outputs an FPGA .bit file used to 

initialize the FPGA with the static design and a partial bit file for each reconfigurable module that is 

used to partially reconfigure the FPGA. 
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4.3 Application Using Partial Reconfiguration 

4.3.1 Case-study Application 

The application investigated uses partial reconfiguration to switch between two hash algo-

rithms: MD5 [Rivest 1992] and SHA-1 [NIST 1995].  A hypothetical system is considered where 

both algorithms are required for use and space is limited, but does not require simultaneous use of 

the two algorithms.  Since space, and not time, is at a premium, partial reconfiguration is a viable 

option. 

Both MD5 and SHA-1 operate by accepting a message and padding the message until its bit 

length is a multiple of 512.  Afterwards, the algorithm divides each 512-bit section into sixteen 32-bit 

segments.  As shown in Figure 4-3, these segments (Mi) are inputs to a process that produces a mes-

sage digest.  The process includes a step box, F(b,c,d), that uses three 32-bit registers for inputs and 

 
 

 
Figure 4-3: MD5 Hash Algorithm Overview [Wikipedia Current] 
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rotates between four functions to determine its output.  The algorithm additionally utilizes shifting 

and addition modulo 232 operations.  This process repeats until the algorithm has used all of the 

message segments as inputs.  MD5 provides a final message digest of 128 bits whereas SHA-1 pro-

vides a digest of 160 bits. 

Since these algorithms are similar in structure and method, research has optimized the two 

algorithms for systems that require both algorithms.  One method presented in [Järvinen et al. 2005] 

optimizes the two algorithms by combining the hardware used by the algorithms.  Through resource 

sharing, this approach saves space by not implementing redundant hardware.  Another method in 

[Tan and DeMara 2007] rotates the four functions used by the step-box through partial reconfigura-

tion.  Both of these methods are only applicable in systems that do not require both algorithms to 

operate concurrently. 

The proposed approach moves from the fine granularity in [Tan and DeMara 2007] to a 

courser granularity by considering the entire hash algorithm.  Partial reconfiguration is utilized by 

allocating a portion of the FPGA as reconfigurable to contain either the MD5 module or the SHA-1 

module at any given time.  The remaining portion of the FPGA contains a keyboard module to ac-

cept a user input used as the message and a Video Graphics Array (VGA) module to display the user 

input along with the output of the hash algorithm. 

4.3.2 Overview of  Design using Partial Reconfiguration 

A top-level view of the hash algorithm system is shown in Figure 4-4.  The system allows a 

user to input a 32-bit hexadecimal message and receive the corresponding message digest.  Depend-

ing on which hash algorithm is loaded in the reconfigurable area, the user will receive the appropri-

ate message digest.  A Personal System 2 (PS/2) keyboard provides the input while a VGA monitor 
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provides the output.  The static design includes a VGA module, keyboard module, and modules ne-

cessary for processing the inputs of the keyboard and the outputs for the VGA monitor.  The data 

module accepts a user input of eight hexadecimal values as the message and displays these values on 

the VGA monitor. 

The reconfigurable design includes one hash algorithm, either MD5 or SHA-1.  The focus of 

the application is to demonstrate the two different hash algorithms, especially the difference in mes-

sage digest length.  The MD5 provides a 128-bit message digest whereas the SHA-1 algorithm pro-

vides a 160-bit message digest.  To accommodate the two algorithms, the MD5 algorithm pads its 

message digest with 32bits of zeros before sending it to the VGA module.  Keeping the total mes-

sage digest length constant between the two algorithms allows the VGA processing module to re-

main static for both hash algorithms.  It is possible, however, that additional data be passed to the 

VGA processing module to inform it which algorithm is present to more appropriately display the 

message digest. 

 
Figure 4-4: Top-level View of Partial Reconfiguration Design 

 
 



 
 

80

The total number of bits being passed at one time between static and reconfigurable logic is 

192—32 bits for the user input and 160 bits for the message digest.  Since all inputs and outputs be-

tween static and reconfigurable logic are required to pass through bus macros, twenty-four bus ma-

cros, 8 bits wide each, are required to pass the 32-bit user input and 160-bit hash output.  Whereas 

the FPGA can physically accommodate 24 bus macros, a more efficient implementation facilitated a 

design of a parallel-to-serial encoder/decoder module for transferring the data. 

Before passing the user input to the hash algorithm, the data is sent serially from the static 

logic to the reconfigurable logic.  At the same time, the reconfigurable logic receives each bit and 

converts it into an array for use within the algorithm.  Likewise, the reconfigurable logic sends the 

160-bit message digest bit-by-bit to the static logic to display on the VGA monitor.  After storing 

user inputs and message digests into registers, the values are written to RAM locations for readback 

by the VGA module. 

With this implementation strategy, only two bus macros are required to pass data from static 

logic to the reconfigurable logic, one for right-to-left transmissions and the other for left-to-right 

transmissions.  Only six of the sixteen bus macro channels are used, so ten additional parallel-to-

serial encoder/decoder modules may be implemented to decrease the time for data transfer.  To de-

termine whether the additional channels are necessary, data transmission and digest calculation la-

tencies are calculated. 

 Digest calculation time is calculated to be 3.2μs with an additional data transmission time of 

1.92μs.  The Data Processing module updates the RAM with new user inputs and message digest 

values during the 64μs V-sync pulse, which occurs at a frequency of 28.8 KHz.  As expected, tests 

indicate that the data latency between user input, sending the user input, calculating the message di-

gest, sending the message digest, and displaying the message digest is negligible. 
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4.3.3 FPGA Implementation 

Partial reconfiguration was successfully implemented on a XC2VP30-FF896 Virtex-II Pro 

FPGA.  As seen in Figure 4-5a and Figure 4-5b, the reconfigurable area is located in the upper-left 

portion of the FPGA to allow the static logic access to the VGA Input/Output Blocks (IOB) in the 

upper right and PS/2 IOBs located in the lower right portions of the FPGA. 

Figure 4-5a demonstrates the latest feature of the EAPR design flow by allowing a two-

dimensional reconfigurable area.  Since the Virtex-II Pro configuration frame extends the entire 

height of the device, glitchless reconfiguration prevents interruption of the static logic found under-

neath the reconfigurable area when implementing the hash algorithm [Lysaght et al. 2006].  To dem-

 
 

 
a) Static Modules b) SHA-1 Module 

Figure 4-5: FPGA Implementation and Resource Utilization 
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onstrate further that the static logic is not interrupted, the constant connection between the FPGA 

and the VGA monitor is visually verified while partially reconfiguring the FPGA device. 

4.4 Virtex Family Comparison  

The Virtex-II, Virtex-II Pro, and Virtex-4 FPGAs all support partial reconfiguration.  Only 

the most recent design flow has allowed two-dimensional reconfiguration areas for the Virtex II and 

Virtex II Pro.  Before the EAPR design flow, the reconfiguration areas on these devices were re-

quired to extend the entire height of the device to match the height of the configuration frames.  

EAPR removed this restriction due to an inherent capability of the Virtex-II and Virtex-II Pro, 

“glitchless reconfiguration.”  Glitchless reconfiguration enables routing and logic resources to remain 

operational if the configuration setting for that resource is the same before and after the reconfigura-

tion.  This capability is applied to partial reconfiguration when a reconfiguration area is smaller than 

the height of the device.  Whereas the Virtex-II/ Pro still reconfigures the entire height of the de-

vice, glitchless reconfiguration maintains any static routing and logic resources residing below or 

above the reconfiguration area.  Since a configuration frame extends the entire height of the device, 

reconfigurable areas cannot overlap vertically, lest they change one another’s configurations upon 

partial reconfiguration. 

Virtex-4 FPGAs differ from the Virtex-II and Virtex-II Pro in that the height of its configu-

ration frame is only 16 CLBs.  Because of this smaller configuration granularity, reconfigurable areas 

are allowed to overlap vertically, so long as they do not share the same configuration frame.  In the 

case of the XC4VFX60 Virtex-4 FPGA, which is 128 CLBs in height, up to eight reconfigurable 

areas may reside in any one CLB column. 
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Bitstream Size Comparison 

Before the availability of partial reconfiguration, users were required to program the entire 

FPGA to switch between applications residing on a mere portion of the FPGA.  One downside to 

this method is the reconfiguration time—larger bitstream files increase the reconfiguration time.  

Additionally, the portion of the FPGA that will not be changed is interrupted until the reconfigura-

tion process is complete. 

Partial reconfiguration addresses the bitstream size by reducing the filesize of the partial bit-

stream representing the reconfigurable module.  As listed in Table 4-I, the MD5 partial bitstream 

generated by the EAPR flow is 22.1% of an initial device bitstream.  Based on the filesize alone, one 

could predict that the configuration time is decreased by 77.9% of a full-device configuration.  Ex-

periments validated this prediction with a reconfiguration time decrease of 71.4%.  In addition, the 

partial reconfiguration was demonstrated not to interrupt the operation of the static logic, including 

the keyboard and VGA modules. 

Table 4-I also lists the area allocated for the MD5 and SHA-1 reconfigurable modules.  As 

previously discussed, the Virtex-II Pro configuration frame extends the entire height of the device.  

Therefore, even if a small section of the FPGA is to be reconfigured, such as the 2.8% area used by 

 
 

Table 4-I: Virtex-II Pro Bitstream and Area Sizes 
 xc2vp30-7ff896, 80CLB configuration frame 
 Bitstream 

Filesize 
(bytes) 

Area Allocated 
(slices) 

Area Used
(slices) 

Time to 
Configure 
(seconds) 

Full Device 1,448,817 13,696 13,696 7 
MD5 320,597 

(22.1%) 
1280 (9.3%) 389 (2.8%) 2 (28.6%) 

SHA-1 356,702 
(24.6%) 

1280 (9.3%) 457 (3.3%) 2 (28.6%) 
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the MD5 module, the full height of the device is included in the configuration bitstream.  This ex-

plains the discrepancy between the 28.6% bitstream filesize and 2.8% area actually used by the re-

configurable module.  As expected, the partial bitstreams of the Virtex-II Pro FPGAs are much larg-

er than required. 

For comparison, the same application was implemented on a Virtex-4 FPGA.  While the se-

lected Virtex-4 device was not available to configure, bitstreams were generated nonetheless.  The 

Virtex-II Pro user constraints file was modified to accommodate the change in device, including 

LOC constraints and resource RANGE constraints.  Additionally, the Virtex-II Pro bus macros 

were replaced with Virtex-4 bus macros.  The EAPR design flow was then followed as outlined by 

Figure 4-2. 

As previously discussed, since the height of the configuration frame in Virtex-4 devices are 

shorter, the partial bitstream filesize should more closely represent the number of resources actually 

being reconfigured.  Table 4-II verifies this prediction by listing the MD5 partial bitstream as 3.7% 

of a full bitstream more closely representing the 2.8% slice utilization.  Since the Virtex-4 has nearly 

twice the available resources of the Virtex-II Pro, the possible savings in configuration time is even 

more dramatic at 96.3%. 

The Virtex-II Pro bitstream filesizes can also be compared to the Virtex-4 bitstream filesizes.  

 
 

Table 4-II: Virtex-4 Bitstream and Area Sizes 
 xc4vfx60-11ff672, 16CLB configuration frame 
 Bitstream 

Filesize 
(bytes) 

Area Allocated 
(slices) 

Area Used 
(slices) 

Full Device 2,625,438 25,280 25,280 
MD5 95,962 (3.7%) 1,280 (5.1%) 405 (1.6%) 
SHA-1 97,619 (3.7%) 1,280 (5.1%) 472 (1.9%) 
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When comparing the filesizes of the partial bitstreams for the MD5 algorithm, it is obvious that the 

Virtex-4 has a more efficient bitstream.  As proven by Table 4-I, a smaller bitstream decreases the 

reconfiguration time.  In comparing the two MD5 bitstream filesizes, the Virtex-4 can conceivably 

reconfigure the approximate same number of resources 30% quicker than the Virtex-II Pro.  Actual 

reconfigurations with a Virtex-4 need to be performed to verify these predictions. 

4.5 Chapter Summary 

A simple application of switching between two hash algorithms was demonstrated to suc-

cessfully exhibit the benefits of partial reconfiguration.  For systems that require more modules than 

spatial resources allow, partial reconfiguration is a viable option.  Partial reconfiguration reduces the 

bitstream filesize when compared to a full reconfiguration.  Additionally, partial reconfiguration al-

lows applications to switch without interrupting the static portion of the FPGA. 

The Virtex-4 was proven more efficient than the Virtex-II Pro for partial reconfiguration.  

By decreasing the size of the bitstream, the Virtex-4 requires less time to reconfigure the same ap-

proximate number of resources.  This savings in time may be particularly useful for systems that de-

pend upon the configuration time such as a repetitive intrinsic evolution process utilizing GAs.  Ad-

ditional work includes verifying the predictions in the savings of configuration time in the Virtex-4 

device. 
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CHAPTER 5 
DYNAMIC PROCESSOR ALLOCATION STRATEGIES 

In the previous chapter, partial reconfiguration was shown to time-multiplex between two 

different modules utilizing the same hardware resources.  Another application that exploits the re-

duced reconfiguration granularity and the time multiplexing of partial reconfiguration is a scalable 

architecture for video processing.  Within a scalable architecture, generic processing elements (PE) 

are implemented for use between multiple video processing functions such as Discrete Cosine 

Transform (DCT) [Lee et al. 2006a] and motion estimation [Lee et al. 2006b].  If a user requires va-

rying degrees of video quality, partial reconfiguration can be used to add and remove PEs while the 

overall process continues to run.  Huang et al. [2008]  implement such an architecture as a two-level 

scalable architecture using partial reconfiguration.  On one level, the architecture modifies the num-

ber of Processing Elements (PE) allocated to the DCT video processing function.  On the second 

level, the architecture modifies the precision with which the DCT function is processed. 

5.1 Video Compression Overview 

Video compression is used by applications to reduce the size of the information for either 

transmission or storage.  Lossless video compression techniques reduce the size in such a way that 

the original content may be reconstructed perfectly from the compressed information.  Lossy video 

compression techniques, on the other hand, cannot reconstruct the original video perfectly; during 

the compression, some information is discarded or lost.  The goal of lossy techniques is to maximize 

the compression ratio while minimizing perceptible or objectionable differences between the com-

pressed and original videos.  Since videos are merely a sequence of still images referred to as frames, 
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video compression may be understood generally by exploring common image compression tech-

niques. 

One such common image compression technique includes the specification by the Joint 

Photographic Experts Group (JPEG).  The first step in JPEG compression is to partition the image 

into 8x8pixel blocks, as seen in Figure 5-1.  Each of these blocks then is transformed into a frequency 

domain representation by an 8x8 DCT.  Frequency information is useful in the compression process 

since lower frequencies correspond to highly perceptible features in the image whereas the higher 

frequencies are less perceptible.  DCT produces 64 frequency-domain coefficients from the 64 spa-

tial pixels of each 8x8 block.  If lower quality is acceptable, some of the higher frequency coefficients 

may be discarded to produce blocks of various sizes, such as 7x7 or 1x1.  Following DCT, the quan-

tization process favors the lower frequency coefficients by encoding them with a higher degree of 

precision than the higher frequency coefficients.  After quantization, most of the higher frequency 

 
 

 
Figure 5-1: Generic Image Compression Method 
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DCT coefficients become zero.  A run-length coding method capitalizes on this trend by grouping a run 

of zero-valued coefficients together, compressing the image bitstream.  Variable-length coding usually 

follows, converting commonly occurring symbols representing quantized DCT coefficients or runs 

of zero-valued coefficients with shorter length code words.  On average, variable-length coding fur-

ther reduces the image bitstream size. 

5.2 Scalable Architecture for DCT and Motion Estimation 

The scalable architecture is designed for applications that vary in required quality and, thus, 

dynamically control the parameters of video processing functions.  For example, a user may not re-

quire full quality of a video signal.  As such, the proposed architecture may compensate by imple-

menting PEs that provide partial precision of its calculations of the DCT computation to reduce 

dynamic power consumption.  Similarly, when a user requires higher quality video, full precision PEs 

may be implemented.  Additionally, the compression ratio may be a parameter to the video 

processing function that varies with time.  To compensate for higher compression ratios, the scala-

ble architecture may reduce the number of PEs allocated to the DCT function.  A direct benefit of 

removing PEs from operation is, again, a reduction in dynamic power consumption. 

One alternative to partial reconfiguration is to implement some control logic to facilitate the 

precision of the PE and enable or disable the PEs from operation.  Such an implementation, while it 

may equally reduce dynamic power consumption, requires a greater number of FPGA resources.  A 

tradeoff is apparent between the time to reconfigure the FPGA with partial bitstreams and the space 

to implement logic to switch between precisions and number of PEs.  An additional benefit of par-

tial reconfiguration that switching logic cannot provide is the ability to reallocate its resources to 

other functions.  In the case of DCT and Motion Estimation (ME), the PE for each function is suf-
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ficiently different that simple logic cannot switch between the two types of PEs without incurring 

significant resource overheads.  The scalable architecture exploits the power of partial reconfigura-

tion by reconfiguring unused DCT PEs to other types of PEs for video processing functions that 

may benefit from the extra processing power.  As an example, motion estimation is considered as 

another video processing function that may benefit from unused DCT processing elements. 

Partial reconfiguration also allows dynamic resource management to increase the capability 

of an FPGA device.  Whereas a smaller FPGA device is limited in logic resources, it may use partial 

reconfiguration to implement a time-multiplexed pipeline of video processing functions.  Whereas 

more time is required, a smaller FPGA becomes capable of producing video equal in quality to a 

much larger FPGA device.  This time multiplexing between functions on a small scale demonstrates 

the capability that partial reconfiguration enables for FPGAs. 

5.3 Scalable Architecture Implementation 

Using the Xilinx Early Access Partial Reconfiguration (EAPR) design flow [Xilinx 2006], the 

scalable architecture is implemented on the Xilinx Virtex-4 SX35 Video Starter Kit. The scalable ar-

chitecture previously described naturally allows each PE to reside within a separate reconfiguration 

area for modification of its configuration without disturbing the remaining portion of the FPGA—

meaning that the system clocks do not stop and the rest of the FPGA can continue to function.  

Figure 5-2 shows an implementation of the scalable architecture with the locations of the eight re-

configuration areas. 

Partial reconfiguration allows flexibility in selecting the quality of precision of a specific PE 

along with the total number of PEs allocated to the DCT application.  Each reconfigurable region is 

able to implement one PE.  In 8x8 2D-DCT computations, for example, each reconfigurable area is 
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configured to contain one PE each, totaling 8 PEs.  In 1x1 computations, one reconfigurable area 

contains one PE while the other 7 reconfigurable areas are made available to other video functions 

such as motion estimation.  In the scalable architecture, three types of PEs are designed: a full preci-

sion DCT PE, a partial precision DCT PE, and an Empty PE.  The Empty PE allows those reconfi-

guration areas not being used by video processing functions to contain no switching logic to reduce 

dynamic power consumption. 

Since the Full Precision PE is the largest of the three configurations, its resource require-

ments determine the boundaries of the reconfiguration areas.  The Virtex-4 architecture has a confi-

guration frame resolution of 16 CLBs in height—reduced from the Virtex-II architecture whose 

configuration frame resolution includes the entire height of the device [Lysaght et al. 2006].  There-

fore, the reconfiguration areas span the minimum of 32 slices in height, whereas the width of each 

reconfiguration area is minimized to encompass its specific PE design, making each of the Slices with-

in Area values listed in Table 5-I a multiple of 32. 

 
Figure 5-2: Location of 8 PEs on a V4SX35 device [Huang et al. 2008] 
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A partial bitstream is generated for each reconfiguration area and for each type of PE.  For 

example, 24 partial bitstreams are generated in the implementation of 8 reconfiguration areas and 3 

types of PEs.  Table 5-I lists the area size, resource utilization, and bitstream filesizes for each of the 

Full Precision PE partial bitstreams generated.  Since the Full Precision PE has the largest resource 

utilization, larger than the Partial Precision or Empty PEs, its bitstream sizes are the upper bounds 

for all types of PEs.  For comparison, a bitstream filesize of an Empty PE is 10,586 bytes. 

Before partial bitstreams are used, the FPGA is initialized first with a full bitstream.  In de-

signing the initial full bitstream, the user determines the most useful combination of type and num-

ber of PEs to be the initial configuration of the FPGA—full or partial precision and the type of 

DCT, 1x1, 2x2, etc.  The size of the initial bitstream is always 1,712,614 bytes, regardless of whether 

all 8 Full Precision PEs are implemented or only 1 Full Precision PE with 7 Empty PEs are imple-

mented.  In comparison to a full bitstream, partial bitstream filesizes are significantly smaller and 

reducing the storage space required for the various bitstreams.  The results show that the filesize of a 

Full Precision PE bitstream is about 1.6% of a full bitstream.  As demonstrated in CHAPTER 4, this 

decrease in bitstream filesize proportionally decreases the reconfiguration time. 

 
 

Table 5-I: Full Precision PE Implementation Results 
 Slices within Area 

(Slice Utilization)
Bitstream Filesize 

in bytes 
PE0 320 (94.38%) 22,306 
PE1 384 (95.05%) 27,794 
PE2 384 (84.38%) 28,306 
PE3 384 (92.97%) 28,158 
PE4 320 (91.25%) 22,306 
PE5 384 (88.54%) 27,354 
PE6 384 (87.76%) 27,618 
PE7 384 (95.57%) 27,654 
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Table 5-II lists a comparison between one non-partial reconfiguration scenario and two par-

tial reconfiguration scenarios.  In the case of non-partial reconfiguration, a full bitstream needs to be 

generated and stored for each 2D-DCT configuration.  For example, a full bitstream of 1,712,614 

bytes is required for a 1x1 Full Precision DCT configuration.  To implement an 8x8 Full Precision 

DCT function, another full bitstream is required.  To implement a 4x4 Full Precision DCT function 

with 4 Motion Estimation PEs, a third full bitstream is required.  For three distinct hardware ar-

rangements, 4.90 MB of storage space is required.  To switch between each of these hardware ar-

rangements, the entire FPGA is reconfigured, stopping all video processing elements.  The shortest 

configuration time needed to switch between hardware arrangements is equal to the worst time at 17 

ms.  The configuration time is estimated based on the timing of SelectMAP interface using conti-

 
 

Table 5-II: Size and Configuration Times of Bitstreams [Huang et al. 2008] 
  Bitstream 

Filesize 
Configuration 

Time 

N
on

-P
R

 1x1 Full 2D-DCT 1,712,614 bytes 17 ms 
4x4 DCT & 4 ME PEs 1,712,614 bytes 17 ms 
8x8 Full 2D-DCT 1,712,614 bytes 17 ms 

3 H/W Arrangements 4.90 MB 17 ms/17 ms 
(Best/Worst) 

    

P
R

 

Initial (8x8) 1,712,614 bytes 17 ms 
8 Full Precision PEs 8 × 28,306 bytes 8 × 0.283 ms 
8 Partial Precision PEs 8 × 28,306 bytes 8 × 0.283 ms 
8 Empty PEs 8 × 10,586 bytes 8 × 0.106 ms 

16 H/W Arrangements 2.15 MB 0.106/2.265 ms 
(Best/Worst) 

P
R

 

Initial (8x8) 1,712,614 bytes 17 ms 
8 Full Precision PEs 8 × 28,306 bytes 8 × 0.283 ms 
8 Partial Precision PEs 8 × 28,306 bytes 8 × 0.283 ms 
8 Empty PEs 8 × 10,586 bytes 8 × 0.106 ms 
8 Motion Estimation PEs 8 × 28,306 bytes 8 × 0.283 ms 

80 H/W Arrangements 2.36 MB 0.106/2.265 ms 
(Best/Worst) 
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nuous data loading as previously shown in Section 2.4.1.4: 

cclk
config f

bytesT 1)3( ⋅+= , (5-1) 

Here, bytes  is the number of bytes of the bitstream stored in the external PROM and cclkf  is the 

clock frequency of the SelectMAP configuration clock set to 100 MHz in the estimations in Table 

5-II. 

In an implementation of the scalable architecture using partial reconfiguration, a user stores 

one full-device bitstream and all partial bitstreams on an external ROM.  In calculating the storage 

requirements, the worst-case Full Precision PE partial bitstream filesize— 28,306 bytes— is used for 

partial bitstream totals.  The total space required for implementing the initial bitstream and all three 

types of 2D-DCT PEs—Full, Partial, and Empty—is approximately 2.15 MB.  In comparison to the 

non-pr implementation shown in Table 5-II, partial reconfiguration results in a 2.3-fold decrease in 

storage whereas the number of distinct hardware arrangements possible is increased 5.3-fold.  Addi-

tionally, switching between these hardware arrangements does not disturb logic residing outside of 

the reconfiguration areas.  The shortest configuration time to switch between arrangements is 0.106 

ms by implementing one Empty PE, for example, to switch from 8x8 DCT to 7x7 DCT.  The long-

est configuration time is estimated to be 2.265 ms to switch, for example, from 8x8 Partial Precision 

to 8x8 Full Precision, which is much less than the 17 ms required by a full bitstream. 

5.4 Scalable Architecture Hardware Arrangements 

As seen in Table 5-II, the addition of eight motion estimation PE bitstreams only increases 

the storage requirement by 0.21 MB.  For a 1.1-fold increase in storage overhead, the capability of 

the FPGA is increased 5-fold, expanding the number of possible hardware arrangements from 16 to 
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80.  Table 5-III lists all 80 hardware arrangements possible with the Full Precision, Partial Precision, 

Empty, and Motion Estimation PEs. 

As indicated by the first row of Table 5-III, the Full Precision DCT function can vary from 

1x1 to 8x8, where Empty PEs fill up the unutilized PE locations.  Since the number of PEs are va-

ried with the DCT function, this results in 8 unique hardware arrangements.  When the Motion Es-

timation PE is used in conjunction with the Full Precision, and the Empty PEs fill the unutilized PE 

locations, Row 2 shows that one Motion Estimation PE may be implemented while a 7x7 Full Preci-

sion DCT function is implemented, resulting in one hardware arrangement.  Row 3 shows that a 6x6 

Full Precision DCT function leaves available two PE locations where Motion Estimation may use 

both or Motion Estimation may use one and an Empty PE may occupy the other, resulting in two 

 
 

Table 5-III: Partial Reconfiguration Hardware Arrangements for 8 PE Locations 

 Variable Unique H/W  
Arrangements 

Full Precision filled w/ Empty PEs DCT [1x1–8x8] 8 

Full Precision and 
Motion Estimation (ME) 

PEs filled w/ Empty 
PEs 

7x7 DCT ME PE [1] 1 
6x6 DCT ME PEs [1–2] 2 
5x5 DCT ME PEs [1–3] 3 
4x4 DCT ME PEs [1–4] 4 
3x3 DCT ME PEs [1–5] 5 
2x2 DCT ME PEs [1–6] 6 
1x1 DCT ME PEs [1–7] 7 

Partial Precision filled w/ Empty PEs DCT [1x1–8x8] 8 

Partial Precision and 
Motion Estimation (ME) 

PEs filled w/ Empty 
PEs 

7x7 DCT ME PE [1] 1 
6x6 DCT ME PEs [1–2] 2 
5x5 DCT ME PEs [1–3] 3 
4x4 DCT ME PEs [1–4] 4 
3x3 DCT ME PEs [1–5] 5 
2x2 DCT ME PEs [1–6] 6 
1x1 DCT ME PEs [1–7] 7 

No DCT—Motion Estimation Only ME PEs [1–8] 8 
TOTAL 80 
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hardware arrangements.  Rows 4-8 list the remaining Full Precision DCT arrangements with the cor-

responding number of Motion Estimation PEs that may be implemented and the hardware ar-

rangement possible. 

The next 8 rows of the table duplicate the possible hardware arrangements when implement-

ing Partial Precision DCT functions.  The last row of the table lists an additional 8 hardware ar-

rangements possible when neither Full or Partial Precision DCT function is used and only Motion 

Estimation PEs are used.  Similar to the Full and Partial PEs, the number of Motion Estimation PEs 

that may be implemented at any one time ranges from 1 to 8, which also results in 8 unique hard-

ware arrangements, increasing the total to 80. 

5.5 Chapter Summary 

The scalable architecture exploits all of the benefits of partial reconfiguration discussed in 

Section 1.4.  Any change made by partial reconfiguration to the type or number of PEs for the DCT 

function does not affect the other video compression functions.  Since partial reconfiguration re-

duces the reconfiguration granularity, adding small-sized partial bitstreams increases the capability of 

the FPGA without large storage requirements.  As demonstrated, a 1.63 MB bitstream must be gen-

erated and stored for each hardware arrangement when not using partial reconfiguration.  Without 

the use of partial reconfiguration, 16 hardware arrangements require 16 full-device bitstreams total-

ing 26.13 MB.  By using partial reconfiguration, 16 hardware arrangements require 1 full-device bit-

stream and 24 partial bitstreams only totaling 2.15 MB. 

With respect to reducing configuration time, the best-case reconfiguration time of a full-

device reconfiguration scheme is estimated to be 17 ms.  The worst-case reconfiguration time in the 

partial reconfiguration implementation is decreased significantly to 2.265 ms.  An additional 8 partial 
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bitstreams totaling 221 KB further increases the capability of the FPGA to 80 hardware arrange-

ments.  When compared to the non-partial reconfiguration option, partial reconfiguration increases 

the capability of the FPGA with a significant decrease in reconfiguration time while maintaining sim-

ilar storage requirements. 
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CHAPTER 6 
CONCLUSION 

Whereas the vast majority of FPGA fault-handling is deterministic, either by depending 

upon knowledge of the fault location or providing alternative solutions prior to the fault occurring, 

this thesis develops and optimizes techniques of active regeneration of lost functionality.  Consider-

ing the experiments repairing the 3-bit adder in CHAPTER 3, many of these deterministic methods 

could repair the FPGA circuit given the simulation model.  For example, the Incremental Rerouting 

method discussed in Section 2.3.1.1 could shift the LUTs away from the fault towards one of the 

two available spares.  Since the simulation only considers the logic portion of the application, mod-

ifying the input values of the appropriate LUTs would take negligible time.  Moreover, as long as 

spare LUTs are provided the success of these deterministic methods would remain constant while 

the complexity of the application increases. 

Nonetheless, methods incorporating GAs are stochastic processes so their results are not de-

terministic.  GAs perform best when solving problems whose solution quality can be definitively 

assessed yet the paths to obtain such solutions cannot be precisely defined.  Although the standard 

GA was improved, the best implementation shown in CHAPTER 3 could repair a simple 3-bit ad-

der only 5% of the time.  Additionally, the computational time required to generate a complete re-

pair is significantly larger than that required by an Incremental Rerouting algorithm.  Since FPGA 

fault-detection techniques are available, the solution to a specific fault scenario can be determined,  

as used by Emmert et al. [2007].  As discussed in Section 2.3.1.3, improvements in the performance 

of GAs have been observed when considering the location of a fault—an improvement that this 

thesis does not make. 
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The simulations used only consider the logical portion of the FPGA application.  Future 

work includes incorporating routing information into the simulator to consider the limited number 

of routing channels on an FPGA device.  This addition for evaluating the fitness of individuals with-

in the population would result in additional computation complexity for the GA.  Since the success 

of GAs is heavily dependant upon the simplicity of the circuit, increasing the complexity of the ap-

plication would amplify its limitations compared to deterministic approaches.  The limitations of the 

GA, however, are offset by its ability to exploit faulty resources.  Whereas an incremental rerouting 

algorithm can only bypass faulty PLBs, possibly leaving behind some functional aspects, a GA can 

provide a solution that uses the faulty PLB in a constructive manner.  This makes the GA fault-

handling method more amenable to more difficult fault scenarios, including the case where more 

faults exist than there are spare PLBs. 

Solutions derived in simulated environments may not easily translate to the actual faulty de-

vice.  In lieu of simulations, intrinsic evolution creates individuals with genetic operators and tests 

them directly on the FPGA device to obtain its fitness value.  Research has manipulated the FPGA 

bitstream directly [Oreifej et al. 2007], eliminating the need to create an object-oriented chromosome 

representation.  Crossover and mutation may have more success manipulating a string of bits rather 

than the object-oriented chromosome utilized by the simulations herein.  Additionally if the repair 

area is small relative to the device, intrinsic evolution would benefit from the shorter reconfiguration 

times of partial reconfiguration, as each repair process requires configuring the FPGA a number of 

times equal to the population size multiplied by the number of generations.  CHAPTER 4 also ben-

efits from this reduction in configuration time whereas CHAPTER 5 mandates this reduction to im-

plement a dynamic architecture for video processing where time is critical to the operation of the 

application. 
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The size of the reconfigurable area directly affects the configuration time.  The partial recon-

figuration design flow for ISE 6.3i enables reconfigurable areas to reside on the FPGA device.  Since 

the configuration frame of the Virtex-II extends the entire height of the device, each reconfigurable 

area must also extend the entire height of the device, whereas its width may be variable which makes 

it a partial configuration instead of a full configuration.  Modules whose width is less than the entire 

device will generate partial bitstreams with reduced configuration times. 

For reconfigurable modules that do not require use of the entire height of the device, the 

Early Access Partial Reconfiguration (EAPR) design flow exploits the glitchless reconfiguration 

hardware feature of Virtex-II devices to bypass this software limitation.  As such, reconfigurable 

modules may be any-sized rectangle where non-reconfigurable or static modules utilize unused re-

sources within the same column, minimizing the area utilization of the application.  Although recon-

figurable modules may only use a small portion of the device, the full-column frame forces the con-

figuration time of the reconfigurable module to remain the same.  To reduce the configuration time, 

the Virtex-4 hardware architecture reduces the size of its configuration frame from the entire device 

as in the Virtex-II family to 16 CLBs.  The capability of the EAPR design flow, therefore, is ex-

panded to support multiple reconfigurable modules within one column of resources. 

CHAPTER 4 shows how configuration times are reduced when the finer reconfiguration 

granularity offered by the EAPR software design flow is replicated by the hardware architecture as in 

the newer Virtex-4 FPGA device.  The DCT function benefits from the EAPR software design flow 

and the corresponding hardware architecture by implementing eight partial reconfiguration areas, 

four of which reside within the same columns of resources on the left side of the device whereas the 

other four reside within the same columns of resources on the right side.  The reduced area utiliza-

tion from the EAPR software design flow results in eighty unique hardware arrangements that only 
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require 2.36 MB of external storage, whereas a non-partial reconfiguration implementation requires 

130.66 MB.  The configuration time of a reduced frame results in a worst-case time of 2.265 ms and 

a best-case time of 0.106 ms, whereas a non-partial reconfiguration implementation requires 17 ms.  

Additionally, partial reconfiguration can increase the number of resources available to the video pro-

cessor as a whole by time multiplexing between various sub-processing functions, such as DCT and 

motion estimation.  Lastly, the reconfiguration process occurs without disturbing the remaining 

components of the FPGA, allowing sub-processing functions to adapt to user’s requirements inde-

pendently. 

The ideal FPGA implementation for partial reconfiguration includes utilizing a soft-core 

processor or one of the internal PowerPC processors to control the reconfiguration process.  The 

application implemented in CHAPTER 4 requires the user to configure the desired hash algorithm 

using the Xilinx tools.  Utilizing an internal processor would allow a user to simply press a key on 

the PC keyboard attached to the FPGA to select the desired hashing algorithm.  Upon selecting the 

desired hashing algorithm, the FPGA would then partially reconfigure itself to change the hash algo-

rithm.  Additionally, the SelectMAP interface could be used to decrease the observed configuration 

time from 2 seconds to 3.6μs, making the transition delay negligible to the user.  The application 

presented in CHAPTER 5 would also greatly benefit from implementing an internal processor.  In 

this implementation, a user would request a desired video quality using some communication chan-

nel and the FPGA would automatically adjust its configuration to implement the necessary sub-

functions to achieve such a quality.  Under either of these implementations, the partial reconfigura-

tion process would only need an external storage element such as an Erasable Programmable Read-

Only Memory (EPROM) or compact flash device, creating a dynamic, self-contained solution. 
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As promising as these results are, the complete capability of partial reconfiguration remains 

to be discovered.  Current implementations of genetic algorithms, for example, may require proces-

sors external to the FPGA increasing spatial requirements of fault-handling techniques for deep-

space missions where user intervention is limited or non-existent.  As software design-flows im-

prove, FPGA architectures become more integrated, and clock frequencies increase, FPGAs will 

increasingly become standalone platforms for evolvable and adaptable systems. 
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APPENDIX: 
FIGURE 1-1—PERMISSION TO REPRINT 
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