
61

AR2T: Implementing a Truly SRAM-based FPGA On-Line Concurrent Testing

Manuel G. Gericota, Gustavo R. Alves
Department of Electrical Engineering

ISEP
Rua Dr. António Bernardino de Almeida

4200-072 Porto - PORTUGAL
{mgg, galves}@dee.isep.ipp.pt

Miguel L. Silva, José M. Ferreira
Dep. of Electrical and Computer Engineering

FEUP
Rua Dr. Roberto Frias

4200-465 Porto - PORTUGAL
{mlms, jmf}@fe.up.pt

Abstract

The new partial and dynamic reconfigurable features
offered by new generations of SRAM-based FPGAs may
be used to improve the dependability of reconfigurable
hardware platforms through the implementation of on-line
concurrent testing / fault-tolerance mechanisms.
However, such mechanisms call for the development of
new test strategies that do not interfere with the current
system functionality.

The AR2T (Active Replication and Release for Testing)
technique is a set of procedures that enables the
implementation of a truly non-intrusive structural on-line
concurrent testing approach, detecting and avoiding
permanent faults and correcting errors due to transient
faults. The experimental results presented prove the
effectiveness of these solutions.

In relation to a previous technique proposed by the
authors as part of the DRAFT FPGA concurrent test
methodology, AR2T extends the range of circuits that can
be replicated, by introducing a small replication aid
block.

1. Introduction♦♦♦♦

The advent of a new kind of SRAM-based FPGAs
(Field Programmable Gate Arrays), capable of
implementing fast run-time partial reconfiguration (e. g.
the Virtex family from Xilinx [1]) and enabling the
dynamic customisation of hardware functions to a
particular system or application concurrently with system
operation, considerably reinforced the advantages of using
complex configurable logic devices in reconfigurable
computing platforms.

Unfortunately, the smaller submicron scales used in the
manufacturing of these devices increase the threat of

♦ This work is supported by an FCT program under contract

POCTI/33842/ESE/2000

electromigration, due to higher electronic current density
in metal traces. Also, the corresponding lower threshold
voltages make them more susceptible to gamma particle
radiation. Radiation interference is much more likely with
larger dies, increasing the probability of failure [2, 3].
After large periods of operation, certain defects, namely
those related to small manufacturing imperfections not
detected by production testing, become exposed, emerging
as either stuck-at (permanent) or transient faults [4].

An FPGA fault tolerance mechanism should be able to
cover permanent and transient faults. In the case of
permanent faults, and after the faulty elements
(Configurable Logic Blocks - CLBs - or routing resources)
are located, the FPGA can be reconfigured to exclude their
usage. Previously unused FPGA resources can replace
these faulty elements, improving dependability with a very
small hardware redundancy. For transient faults, on-line
partial reconfiguration enables the recovery of errors in
the on-chip configuration memory cells, that modify the
logic functionality, namely Single Event Upsets (SEU).
Such upsets manifest themselves as permanent faults
because of the change in functionality, and they cannot be
recovered by traditional transient fault recovery
techniques, such as rollback or roll-forward. However, the
cause of the failure is actually transient [5].

A higher system dependability level can therefore only
be achieved through the continuous testing of all FPGA
resources throughout system lifetime, and by the
introduction of fault tolerance features. In [6] a scanning
methodology to dynamically test the CLBs in an FPGA
was proposed, accompanied by the evaluation of the
strategy adopted to implement the rotation and test
schemes. This methodology guarantees that the whole
FPGA is tested, if at least one unused CLB is available in
the current implementation. The functionality of the CLBs
currently being used by a given application is relocated in
one of the CLBs already tested. After being successfully
tested, unused CLBs remain available as spare blocks that
may be used to replace other resources found defective,
enabling the introduction of fault tolerance features,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143395979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62

provided that a pool of spare resources is continuously
available to replace those eventually found defective. The
replication of active CLBs, i.e. CLBs that are part of a
functional block actually being used by the system, in
order to release them for testing, was at the core of that
approach. Their function had to be relocated in CLBs
previously tested, in a way that had to be completely
transparent for the system.

In this paper, a new set of replication procedures, called
AR2T (Active Replication and Release for Testing), is
presented. These procedures enable the implementation of
a new replication and release for testing mechanism,
capable of replicating active CLBs, concurrently with —
but not affecting — system operation. Furthermore, they
also enable the correction of errors due to transient faults
in the associated configuration memory. The
corresponding implementation does not require the usage
of any FPGA I/O pins, since it reuses the IEEE 1149.1
Boundary Scan (BS) infrastructure [7] to access the
configuration resources and to control the replication
process.

This paper is organised as follows: recently proposed
approaches to the test of SRAM-based FPGAs are first
reviewed, followed by an overview of the problems faced
when trying to implement a truly on-line testing
mechanism. The following section details the AR2T
procedures and their implementation. Some practical
restrictions to their application are analysed and the
possibilities offered for error recovery are also considered.
Finally, directions for further research are introduced.

2. Background

Many different approaches based on off-line or on-line
testing strategies have been proposed by different authors
to test and diagnose FPGA faults.

An off-line Built-In Self-Test (BIST) technique is
presented in [8-10], which exploits the reprogrammability
of FPGAs in order to set up the BIST logic. A fixed
number of reconfiguration test sessions are required after
which the circuit is reconfigured for normal operation.
Therefore, testability is achieved without any area
overhead or performance penalty.

An off-line testing methodology based on a non-BIST
approach, targeted to test the FPGA CLBs, is presented in
[11, 12]. After a specific test configuration is set up, the
FPGA Input/Output Blocks (IOBs) are used to support the
external application of test vectors and to capture the test
responses. In order to achieve 100% fault coverage at
CLB level, different test configurations are programmed
and specific sets of test vectors used in each case. Based
on the same principles, a fault diagnosis method is present
on [13]. Using a classical divide-to-conquer strategy,

extensive work on the structural testing of FPGA Look-Up
Tables (LUT) and interconnections was also presented in
[14, 15].

These approaches are restricted to manufacturing test,
since they require the device to be off-line. This is
unsatisfactory in highly fault-sensitive, mission-critical
applications, since fault-detection latency increases greatly
as a result of the off-line approach.

In order to overcome these limitations, on-line testing
and diagnosis methods based on a scanning methodology
were presented in [4, 16]. The idea underlying these
methods is to have only a relatively small portion of the
chip being tested off-line (instead of the whole chip as in
previous proposals), while the remaining part continues its
normal on-line operation. Testing is accomplished by
sweeping the test functions across the entire FPGA. The
functionality of a small number of FPGA elements is
replicated on another portion of the device, before being
taken off-line and tested. Then, another set of elements
undergoes the same process, spanning the whole device.
However, in [4] a modification in the FPGA cells structure
is required to implement the replication mechanism. On
the other hand, in [16] the whole system must be stopped
in order to replicate an entire CLB column. Since
reconfiguration is performed through the BS
infrastructure, reconfiguration time is long, and it seems
likely that halting the system will disturb its operation.

In [6, 17] some of the previous concepts were reused to
establish an on-line FPGA testing approach that eliminated
the two drawbacks that were referred. A much smaller unit
of test − the CLB − was targeted and its replication
accomplished without halting the system, even when the
CLB is active. However, the technique was very restrictive
concerning the sort of circuits that could be replicated.

In this paper, improvements on this replication
technique are presented. Further to their replication
function, the AR2T procedures also enable the correction
of transient faults in the configuration memory.

Since the IEEE 1149.1 infrastructure is (re)used to
access the FPGA configuration memory, in order to
replicate and release for testing each CLB, we get the
additional benefit of a reduced overhead at board level,
since no other resources are used.

This approach can also be extended to the replication
and release for testing of groups of interconnections,
which proved to be easier to handle than CLBs.

3. Replicating active elements

The release for testing of active CLBs requires their
replication in CLBs already tested and available, in a way
completely transparent to the implemented application(s).
This task is not trivial due to two major issues: i)

63

configuration memory organisation, and ii) internal state
information.

The configuration memory is partitioned into one-bit
wide vertical frames grouped into larger units called
columns. To each CLB column corresponds a
configuration column, with multiple frames, which mixes
internal CLB configuration and state information, and
column routing and interconnect information.

The configuration process is a sequential mechanism
that spans through some (or eventually all) CLB
configuration columns. When replicating an active CLB
more than one column may be affected, since its input and
output signals (as well as those in its replica) may cross
several columns before reaching its source or destination.
Any partial reconfiguration action must therefore ensure
that the signals from the replicated CLB are not broken
before being totally re-established from its replica. Also
important, to avoid output glitches, the functionality of the
CLB replica must be perfectly stable before its outputs are
connected to the system. The only possible solution is to
divide the replication process in two phases, as illustrated
in figure 1.

1st phase 2nd phase
- Routing array

replicated
CLB

CLB
replica

replicated
CLB

CLB
replica

In

In

In

In Out

Out Out

Out

Figure 1. Two-phase CLB replication process
In the first phase, the internal configuration of the CLB

is replicated and the inputs of both CLBs are placed in
parallel. Due to the low-speed characteristics of the
reconfiguration (BS) interface, the reconfiguration time is
relatively long when compared with the system speed of
operation. Therefore, the outputs of the CLB replica will
be perfectly stable before being connected to the circuit, in
the second phase. Both CLBs must remain in parallel for
at least one system clock cycle to avoid output glitches.
Notice that rewriting the same configuration data does not
generate any transient signals, so this process does not
affect the remaining resources covered by the rewriting of
the configuration frames that are needed to carry out the
replication.

Another major requirement for the success of the
replication process is the correct transferring of state
information. If the current CLB function is purely
combinational, a simple read-modify-write configuration
procedure will suffice to accomplish the replication
process. However, in the case of a sequential function, the
internal state information must be preserved and no writes
could be lost during the copying process. In the Virtex
FPGA family, it is possible to read the value of a register,
but not to perform a direct write operation. Moreover,

when dealing with active CLBs, state information may
change between the read and write of a register, causing a
coherency problem. By this reason, no time gap between
the two operations may exist. The solution to this problem
depends on the type of implementation. In this paper we
study three different implementation cases:

1. synchronous free-running clock circuits;
2. synchronous gated-clock circuits, and;
3. asynchronous circuits.
When dealing with synchronous free-running clock

circuits, the two-phase replication process that was
previously described may solve this problem. Between the
first and the second phase, the CLB replica has the same
inputs as the replicated CLB and all its four Flip-Flops
(FFs) acquire the state information, even if the system
frequency of operation is an order of magnitude lower than
the BS test infrastructure frequency used for
reconfiguration purposes. Several experiments made using
this class of circuits have shown the effectiveness of this
method. No loss of state information or the presence of
output glitches was observed. This method is also effective
when dealing with asynchronous circuits like the ripple
counter illustrated in figure 2, if the slowest “clock” period
(CLKn) is higher than the time interval between the first
and the second phases.

D Q D QD Q

A0 A1 An

CLK1 CLKnCLK0

Figure 2. Ripple Counter
Despite the effectiveness of this solution, its usefulness

is very restricted. A broad range of applications use
synchronous gated-clock circuits, instead of free-running
clocks, where input acquisition is controlled by the clock
enable signal. In such cases, we cannot assure that this
signal will be active during the replication process and that
the value present at the input of the replica FFs will be
captured. Setting this signal as part of the replication
process is not viable either, since the value present at the
input of the replica FFs, at this time, could be different
from its last capture by the replicated FFs, and a
coherency problem would arise. Furthermore, the state of
FFs could be updated during the execution of the
replication process.

To solve this problem we used a replication aid block,
which manages the transference of the state value from the
replicated FFs to the replica FFs, while enabling their
update by the circuit at any moment, without losing the
new state information or delaying the replication process.
The whole replication scheme is represented in figure 3.
By reasons of simplicity, only one logic cell is
represented. Each CLB comprises four of these cells,

64

which, for this purpose, can be considered individually. In
figure 4 is shown the flow diagram of the replication
process.

FF_OUT

CC D Q

D Q

CE

R

0
1

BY_C

Logic

D Q

CE

R

0
1

Logic

1
0

RESET
CLK

CE

LOGIC_OUT

Replication aid block

Replica cell

Replicated cell

from the
circuit

to the
circuit

Figure 3. Synchronous gated-clock circuit
replication scheme

Begin

Connect CEs and the temporary
transfer signals FF_OUT and

LOGIC_OUT to the replication aid
block, and place the remaining input

signals in parallel

BY_C="HIGH"
CC="HIGH"

CC="LOW"

Place in parallel the CE inputs of
both logic cells

Disconnect all signals from the
replication aid block

Place the outputs of both logic
cells in parallel

Disconnect the inputs of the
replicated logic cell

End

> 2 CLK pulse
N

Y

>1CLK pulse
N

Y

BY_C="LOW"

Disconnect the outputs of the
replicated logic cell

Figure 4. Replication process sequence
algorithm

The 2:1 multiplexer present in the replication aid block
is controlled by the clock enable signal (CE) of the
replicated FF. If this signal is not active, the output of the
replicated FF (FF_OUT) is applied to the input of the
replica FF, through a multiplexer controlled by the bypass
control signal (BY_C). A clock enable signal, generated
by the replication aid block (capture control signal - CC),
forces the replica FF to hold the transferred value. The
replica FF acquires the state information present in the
replicated FF. If the CE signal is active or is activated
during this process, the multiplexer selects the
LOGIC_OUT signal and applies it to the input of the
replica FF, which is updated at the same time and with the
same value as the replicated FF, guaranteeing state
coherency. Figure 5 shows the waveform simulation of a

state transfer and update during the replication process.
No loss of information is verified during this process.

The state
is acquired

The state
is updated

Replication process

Figure 5. Simulation of a state transfer and
update

The control signals CC and BY_C are configuration
memory bits whose values are driven through
reconfiguration of the configuration memory. BY_C
directs the state signal to the input of the replica FF, while
CC enables its acquisition. It is therefore possible to
control the whole replication process through the BS
infrastructure, and as such no extra pins are required. Each
replication aid block occupies one CLB slice, therefore
two extra CLBs will be needed to implement this process
since four of these blocks are required to replicate the four
logic cells of a CLB. The FF included in the CC net is
there simply as a consequence of the structure of the CLB
slice, and does not play any role in the process.

After the state has been transferred, the input signals
involved in the process are placed in parallel, all the
signals to and from the replication aid block are
disconnected, and the outputs are also placed in parallel.
After at least one clock cycle the outputs of the replicated
block are disconnected and then also the inputs. The CLB
is released and is ready to be tested. Each of these steps
(corresponding to a square in the flow diagram shown in
figure 4) implies a new reconfiguration file. A total of 9
files are needed just to get the replication done, instead of
the only 3 needed when dealing with free-running clock
circuits. However, in most cases, their size is much
smaller. To change the value of CC and/or BY_C only one
configuration frame is needed, which is around 2 Kbit
(220 µs for a 20 MHz BS test frequency).

Practical experiments performed using a Virtex
XCV200 over the ITC’99 Benchmark Circuits from the
Politécnico di Torino [18] demonstrated the effectiveness
of our approach. The average number of bits needed to
replicate each CLB using this strategy, including
configuration and command frames, was around 230 Kbit.
At an operation frequency of the BS infrastructure of
20MHz, the mean time for a complete replication of a
CLB was 24 ms. Therefore, the replication of all CLBs of
a XCV200 device (array size =28x42=1176 CLBs) will
require 28 seconds, with only one CLB replicated at a
time.

65

The ITC’99 Benchmark Circuits are purely
synchronous with only one single-phase clock signal
present. However, this approach is also applicable to
multiple clock/multiple phase circuits, since only one
clock signal is involved in the replication process at a
time, provided that the slowest “clock” period is higher
than the duration of the replication process.

This method is also effective when dealing with
asynchronous circuits, where D latches are used instead of
FFs. In this case, the CE signal is replaced in the latch by
the input control signal. Data present in the D input is
stored in the gated D latch when the input control signal
changes from ‘1’ to ‘0’. The same replication aid block is
used and the same replication sequence is applied. The
register present in the replication aid block may be
configured as a latch, instead as a FF, if this is preferred or
if no adequate clock signal is available.

The same two-phase procedure is effective on the
replication and release for testing of local and global
active interconnections. The interconnections to be
replicated are first duplicated to establish an alternative
path, and then disconnected, being free for testing.

The LUTs in the CLB can also be configured as
memory modules (RAMs) for user applications. However,
the extension of this on-line replication concept to the
replication of LUT/RAMs is not viable. The content of the
LUT/RAMs could be read and written through the
configuration memory, but if there is a write attempt
during the replication interval, there is no possible
mechanism, other than to stop the system, capable of
ensuring the coherency of the values, as stated in [5].
Furthermore, since frames span an entire column of CLB
slices, the same LUT bit in all of them is updated with a
single write command. We must ensure that either all the
remaining data in the slice is constant, or it is also
modified externally through partial reconfiguration. Even
if not being replicated, LUT/RAMs should not lie in any
column that could be affected by the replication
procedure. However, while it is not possible to replicate
LUTs configured as RAMs, nothing prevents the structural
testing of the RAM mode of the LUTs when testing the
CLBs.

This method could be used to replicate more than one
CLB at a time, depending on the overall test strategy. This
will improve the scalability of the process, which is
important if we are dealing with large FPGAs. However,
problems due to the limited number of interconnections
available limit the number of CLBs able to be replicated at
each time.

4. Error recovery

The replication procedure used with synchronous free-
-running clock circuits did not perform a true state

transference operation, but rather an acquisition of the
values present at the input of the replica FFs, which are the
same as those present at the input of the replicated FFs.
Therefore, the acquired state information is correct,
despite any fault that may affect the replicated CLB FFs.
As a consequence, and after the replication process, the
outputs of the CLB replica always display the correct
values, automatically correcting any faulty behaviour. On
the other hand, when replicating synchronous gated-clock
circuits (or asynchronous circuits), a truly state
transference operation is performed. Therefore, if a
permanent fault in the replicated CLB affects the value
held by one of the FFs (or latches), this fault is propagated
to the replica CLB and will remain active until that FF (or
latch) is updated. The fault in the replicated CLB will be
detected during the subsequent test phase and possibly the
CLB will be flagged as defective, meaning that it will not
be used again in a later reconfiguration.

Depending on the method used to create the
reconfiguration files, the replication procedure can recover
errors caused by transient faults in the on-chip
configuration memory cells that modify the circuit
function. A typical example of such errors is SEUs in
space environments. Since Virtex FPGAs enable readback
operations, a completely automatic read-modify-write
procedure could be implemented to replicate the CLBs
using local processing resources. In this case, any transient
fault in the configuration memory is not corrected, being
propagated to the replica. On the other hand, if the
reconfiguration files are generated from the initial
configuration file stored in an external memory, any error
due to SEUs is corrected when affected blocks are
replicated.

5. Behaviour of routing resources

The successful testing of the CLB replica assures its
good functionality, but the replicated CLB might be faulty.
When the inputs and outputs of both CLBs are placed in
parallel, we may be interconnecting nodes with different
voltage levels. Due to the impedance of the routing
switches, this apparent “short-circuit” behaves as a voltage
divider, limiting the current flow in the interconnection.
Therefore, no damage results to the FPGA, as proved by
extensive experimental essays. Since we are dealing with
digital circuits, the analog value resulting from the voltage
divider leads to a well defined value (logic 0 or logic 1)
when it goes through a buffer during the routing, or at the
input of the next CLB or IOB. No logic value instability
was observed during the essays.

Each CLB has three associated routing arrays: two
local arrays (input and output) and one global array. The
routing resources in these arrays may be unidirectional or
bi-directional, as indicated in figure 6. No routing

66

resources are available in the local arrays to establish
direct interconnections with other CLBs, so the
interconnections required by the replication process can
only be done through the global routing array. Between
local and global routing arrays only unidirectional routing
resources are available.

Input routing array

Output routing array

Slice 1 CLB

Global
routing array

Slice 1

Figure 6. CLB routing resources
Since no fault at any of the replicated CLB inputs may

propagate backwards, the logic values present at the inputs
of the replica CLB will not be affected by the
interconnection, even if the replicated CLB is faulty. As
such, all CLB replica inputs will always reflect the correct
values.

This is also true when replicating active
interconnections where faults in the replicated net are
automatically corrected when the replication takes place.
The test of interconnections could also be achieved using
the same method described in [6], with CLBs under test
being replaced by a set of wires under test.

6. Conclusion

The set of procedures presented in this paper enables
the implementation of a truly on-line testing mechanism
that, reusing the standard BS infrastructure and the novel
partial dynamic reconfiguration features of recent FPGA
devices, improves reconfigurable hardware systems
dependability in a way that is completely transparent to the
system operation.

Our current work focuses on the development of
computational tools to introduce a higher degree of
automation in the whole process. The final objective is to
automatically generate the reconfiguration frames from the
initial configuration file.

7. References

[1] The Programmable Logic Data Book, available at
http://www.xilinx.com

[2] F. Hanchek, S. Dutt, “Methodologies for Tolerating Cell
and Interconnect Faults in FPGAs”, IEEE Trans. on Computers,
Vol. 47, No. 1, pp. 15-33, Jan. 1998.
[3] J. Lach, H. W. Mangione-Smith, M. Potkonjak, “Low
Overhead Fault-Tolerant FPGA Systems”, IEEE Trans. on VLSI
Systems, Vol. 6, No. 2, pp. 212-221, June 1998.
[4] N. R. Shnidman, H. W. Mangione-Smith, M. Potkonjak,
“On-Line Fault Detection for Bus-Based Field Programmable
Gate Arrays”, IEEE Trans. on VLSI Systems, Vol. 6, No. 4,
pp. 656-666, Dec. 1998.
[5] W. Huang, E. J. McCluskey, “A Memory Coherence
Technique for Online Transient Error Recovery of FPGA
Configurations”, Proc. 9th ACM Int. Symp. on FPGAs, pp. 183-
192, Feb. 2001.
[6] M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira,
“DRAFT: An On-Line Fault Detection Method for Dynamic and
Partially Reconfigurable FPGAs”, Proc. 7th IEEE Int. On-Line
Testing Workshop, pp. 34-36, July 2001.
[7] IEEE Standard Test Access Port and Boundary Scan
Architecture (IEEE Std 1149.1), IEEE Std. Board, May 1990.
[8] C. Stroud, S. Konala, P. Chen, M. Abramovici, “Built-In
Self-Test of Logic Blocks in FPGAs (Finally, A Free Lunch:
BIST Without Overhead!)”, Proc. 14th IEEE VLSI Test Symp.,
pp. 387-392, April 1996.
[9] C. Stroud, E. Lee, M. Abramovici, “BIST-Based Diagnostic
of FPGA Logic Blocks”, Proc. Intl. Test Conf., pp. 539-547,
Nov. 1997.
[10] C. Stroud, S. Wijesuriya, C. Hamilton, M. Abramovici,
“Built-In Self-Test of FPGA Interconnect”, Proc. Intl. Test
Conf., pp. 404-411, Nov. 1998.
[11] W. K. Huang, F. J. Meyer, X. Chen, F. Lombardi, “Testing
Configurable LUT-Based FPGA's”, IEEE Trans. on VLSI
Systems, Vol. 6, No. 2, pp. 276-283, June 1998.
[12] W. K. Huang, F. J. Meyer, F. Lombardi, “An approach for
detecting multiple faulty FPGA logic blocks”, IEEE Trans. on
Computers, Vol. 49, No. 1, pp. 48-54, Jan. 2000.
[13] T. Inoue, S. Miyazaki, H. Fujiwara, “Universal Fault
Diagnosis for Look-up Table FPGAs”, IEEE Design and Test of
Computers, Vol. 15, Nº 1, pp. 39-44, Jan.-Mar. 1998.
[14] M. Renovell, J. M. Portal, J. Figueras, Y. Zorian, “RAM-
-Based FPGA's: A Test Approach for the Configurable Logic”,
Proc.IEEE Int. Conf. on Design, Automation and Test in
Europe, pp. 82-88, Feb. 1998.
[15] M. Renovell, J. M. Portal, J. Figueras, Y. Zorian, “Testing
the interconnect of RAM-based FPGAs”, IEEE Design and Test
of Computers, Vol. 15, Nº 1, pp. 45-50, Jan.-Mar. 1998.
[16] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, V.
Verma, “On-Line Testing and Diagnosis of FPGAs with Roving
STARs”, Proc. 5th IEEE Int. On-Line Testing Workshop, pp.
2-7, July 1999.
[17] M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira,
“Dynamic Replication: The Core of a Truly Non-Intrusive
SRAM-based FPGA Structural Concurrent Test Methodology”,
Proc. 3th IEEE Latin-American Test Workshop, pp. 70-75, Feb.
2002.
[18] Politécnico di Torino ITC’99 benchmarks, available at
http://www.cad.polito.it/tools/itc99.html

