596 research outputs found

    Earth resources: A continuing bibliography with indexes (issue 52)

    Get PDF
    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Application Methodology for the generation of 3D thermal models using UAV Photogrammety and dual sensors for mining/industrial facilities inspection

    Get PDF
    ABSTRACT: Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.The authors wish to express their gratitude to the "ConcepciĂłn Arenal" Grant Programme of the University of Cantabria and to the Government of Cantabria for the financial support provided for the development of the research activities

    Methodology for high resolution spatial analysis of the physical flood susceptibility of buildings in large river floodplains

    Get PDF
    The impacts of floods on buildings in urban areas are increasing due to the intensification of extreme weather events, unplanned or uncontrolled settlements and the rising vulnerability of assets. There are some approaches available for assessing the flood damage to buildings and critical infrastructure. To this point, however, it is extremely difficult to adapt these methods widely, due to the lack of high resolution classification and characterisation approaches for built structures. To overcome this obstacle, this work presents: first, a conceptual framework for understanding the physical flood vulnerability and the physical flood susceptibility of buildings, second, a methodological framework for the combination of methods and tools for a large-scale and high-resolution analysis and third, the testing of the methodology in three pilot sites with different development conditions. The conceptual framework narrows down an understanding of flood vulnerability, physical flood vulnerability and physical flood susceptibility and its relation to social and economic vulnerabilities. It describes the key features causing the physical flood susceptibility of buildings as a component of the vulnerability. The methodological framework comprises three modules: (i) methods for setting up a building topology, (ii) methods for assessing the susceptibility of representative buildings of each building type and (iii) the integration of the two modules with technological tools. The first module on the building typology is based on a classification of remote sensing data and GIS analysis involving seven building parameters, which appeared to be relevant for a classification of buildings regarding potential flood impacts. The outcome is a building taxonomic approach. A subsequent identification of representative buildings is based on statistical analyses and membership functions. The second module on the building susceptibility for representative buildings bears on the derivation of depth-physical impact functions. It relates the principal building components, including their heights, dimensions and materials, to the damage from different water levels. The material’s susceptibility is estimated based on international studies on the resistance of building materials and a fuzzy expert analysis. Then depth-physical impact functions are calculated referring to the principal components of the buildings which can be affected by different water levels. Hereby, depth-physical impact functions are seen as a means for the interrelation between the water level and the physical impacts. The third module provides the tools for implementing the methodology. This tool compresses the architecture for feeding the required data on the buildings with their relations to the building typology and the building-type specific depth-physical impact function supporting the automatic process. The methodology is tested in three flood plains pilot sites: (i) in the settlement of the Barrio Sur in MaganguĂ© and (ii) in the settlement of La Peña in Cicuco located on the flood plain of Magdalena River, Colombia and (iii) in a settlement of the city of Dresden, located on the Elbe River, Germany. The testing of the methodology covers the description of data availability and accuracy, the steps for deriving the depth-physical impact functions of representative buildings and the final display of the spatial distribution of the physical flood susceptibility. The discussion analyses what are the contributions of this work evaluating the findings of the methodology’s testing with the dissertation goals. The conclusions of the work show the contributions and limitations of the research in terms of methodological and empirical advancements and the general applicability in flood risk management.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203In vielen StĂ€dten nehmen die Auswirkungen von Hochwasser auf GebĂ€ude aufgrund immer extremerer Wetterereignisse, unkontrollierbarer Siedlungsbauten und der steigenden VulnerabilitĂ€t von BesitztĂŒmern stetig zu. Es existieren zwar bereits AnsĂ€tze zur Beurteilung von WasserschĂ€den an GebĂ€uden und Infrastrukturknotenpunkten. Doch ist es bisher schwierig, diese Methoden großrĂ€umig anzuwenden, da es an einer prĂ€zisen Klassifizierung und Charakterisierung von GebĂ€uden und anderen baulichen Anlagen fehlt. Zu diesem Zweck sollen in dieser Arbeit erstens ein Konzept fĂŒr ein genaueres VerstĂ€ndnis der physischen VulnerabilitĂ€t von GebĂ€uden gegenĂŒber Hochwasser dargelegt, zweitens ein methodisches Verfahren zur Kombination der bestehenden Methoden und Hilfsmittel mit dem Ziel einer großrĂ€umigen und hochauflösenden Analyse erarbeitet und drittens diese Methode an drei Pilotstandorten mit unterschiedlichem Ausbauzustand erprobt werden. Die Rahmenbedingungen des Konzepts grenzen die Begriffe der VulnerabilitĂ€t, der physischen VulnerabilitĂ€t und der physischen AnfĂ€lligkeit gegenĂŒber Hochwasser ein und erörtern deren Beziehung zur sozialen und ökonomischen VulnerabilitĂ€t. Es werden die Merkmale der physischen AnfĂ€lligkeit von GebĂ€uden gegenĂŒber Hochwasser als Bestandteil der VulnerabilitĂ€t definiert. Das methodische Verfahren umfasst drei Module: (i) Methoden zur Erstellung einer GebĂ€udetypologie, (ii) Methoden zur Bewertung der AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude jedes GebĂ€udetyps und (iii) die Kombination der beiden Module mit Hilfe technologischer Hilfsmittel. Das erste Modul zur GebĂ€udetypologie basiert auf der Klassifizierung von Fernerkundungsdaten und GIS-Analysen anhand von sieben GebĂ€udeparametern, die sich fĂŒr die Klassifizierung von GebĂ€uden bezĂŒglich ihres Risikopotenzials bei Hochwasser als wichtig erweisen. Daraus ergibt sich ein Ansatz zur GebĂ€udeklassifizierung. Die anschließende Ermittlung reprĂ€sentativer GebĂ€ude beruht auf statistischen Analysen und Zugehörigkeitsfunktionen. Das zweite Modul zur AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude beruht auf der Ableitung von Funktion von Wasserstand und physischer Einwirkung. Es setzt die relevanten GebĂ€udemerkmale, darunter Höhe, Maße und Materialien, in Beziehung zum erwartbaren Schaden bei unterschiedlichen WasserstĂ€nden. Die MaterialanfĂ€lligkeit wird aufgrund internationaler Studien zur Festigkeit von Baustoffen sowie durch Anwendung eines Fuzzy-Logic-Expertensystems eingeschĂ€tzt. Anschließend werden Wasserstand-Schaden-Funktionen unter Einbeziehung der HauptgebĂ€udekomponenten berechnet, die durch unterschiedliche WasserstĂ€nde in Mitleidenschaft gezogen werden können. Funktion von Wasserstand und physischer Einwirkung dienen hier dazu, den jeweiligen Wasserstand und die physischen Auswirkung in Beziehung zueinander zu setzen. Das dritte Modul stellt die zur Umsetzung der Methoden notwendigen Hilfsmittel vor. Zur UnterstĂŒtzung des automatisierten Verfahrens dienen Hilfsmittel, die die GebĂ€udetypologie mit der Funktion von Wasserstand und physischer Einwirkung fĂŒr GebĂ€ude in Hochwassergebieten kombinieren. Die Methoden wurden anschließend in drei hochwassergefĂ€hrdeten Pilotstandorten getestet: (i) in den Siedlungsgebieten von Barrio Sur in MaganguĂ© und (ii) von La Pena in Cicuco, zwei Überschwemmungsgebiete des Magdalenas in Kolumbien, und (iii) im Stadtgebiet von Dresden, das an der Elbe liegt. Das Testverfahren umfasst die Beschreibung der DatenverfĂŒgbarkeit und genauigkeit, die einzelnen Schritte zur Analyse der. Funktion von Wasserstand und physischer Einwirkung reprĂ€sentativer GebĂ€ude sowie die Darstellung der rĂ€umlichen Verteilung der physischen AnfĂ€lligkeit fĂŒr Hochwasser. In der Diskussion wird der Beitrag dieser Arbeit zur Beurteilung der Erkenntnisse der getesteten Methoden anhand der Ziele dieser Dissertation analysiert. Die Folgerungen beleuchten abschließend die Fortschritte und auch Grenzen der Forschung hinsichtlich methodischer und empirischer Entwicklungen sowie deren allgemeine Anwendbarkeit im Bereich des Hochwasserschutzes.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203El impacto de las inundaciones sobre los edificios en zonas urbanas es cada vez mayor debido a la intensificaciĂłn de los fenĂłmenos meteorolĂłgicos extremos, asentamientos no controlados o no planificados y su creciente vulnerabilidad. Hay mĂ©todos disponibles para evaluar los daños por inundaciĂłn en edificios e infraestructuras crĂ­ticas. Sin embargo, es muy difĂ­cil implementar estos mĂ©todos sistemĂĄticamente en grandes ĂĄreas debido a la falta de clasificaciĂłn y caracterizaciĂłn de estructuras construidas en resoluciones detalladas. Para superar este obstĂĄculo, este trabajo se enfoca, en primer lugar, en desarrollar un marco conceptual para comprender la vulnerabilidad y susceptibilidad fĂ­sica de edificios por inudaciones, en segundo lugar, en desarrollar un marco metodolĂłgico para la combinaciĂłn de los mĂ©todos y herramientas para una anĂĄlisis de alta resoluciĂłn y en tercer lugar, la prueba de la metodologĂ­a en tres sitios experimentales, con distintas condiciones de desarrollo. El marco conceptual se enfoca en comprender la vulnerabilidad y susceptibility de las edificaciones frente a inundaciones, y su relaciĂłn con la vulnerabilidad social y econĂłmica. En Ă©l se describen las principales caracterĂ­sticas fĂ­sicas de la susceptibilidad de edificicaiones como un componente de la vulnerabilidad. El marco metodolĂłgico consta de tres mĂłdulos: (i) mĂ©todos para la derivaciĂłn de topologĂ­a de construcciones, (ii) mĂ©todos para evaluar la susceptibilidad de edificios representativos y (iii) la integraciĂłn de los dos mĂłdulos a travĂ©s herramientas tecnolĂłgicas. El primer mĂłdulo de topologĂ­a de construcciones se basa en una clasificaciĂłn de datos de sensoramiento rĂ©moto y procesamiento SIG para la extracciĂłn de siete parĂĄmetros de las edficaciones. Este mĂłdulo parece ser aplicable para una clasificaciĂłn de los edificios en relaciĂłn con los posibles impactos de las inundaciones. El resultado es una taxonomĂ­a de las edificaciones y una posterior identificaciĂłn de edificios representativos que se basa en anĂĄlisis estadĂ­sticos y funciones de pertenencia. El segundo mĂłdulo consiste en el anĂĄlisis de susceptibilidad de las construcciones representativas a travĂ©s de funciones de profundidad del impacto fĂ­sico. Las cuales relacionan los principales componentes de la construcciĂłn, incluyendo sus alturas, dimensiones y materiales con los impactos fĂ­sicos a diferentes niveles de agua. La susceptibilidad del material se calcula con base a estudios internacionales sobre la resistencia de los materiales y un anĂĄlisis a travĂ©s de sistemas expertos difusos. AquĂ­, las funciones de profundidad de impacto fĂ­sico son considerados como un medio para la interrelaciĂłn entre el nivel del agua y los impactos fĂ­sicos. El tercer mĂłdulo proporciona las herramientas necesarias para la aplicaciĂłn de la metodologĂ­a. Estas herramientas tecnolĂłgicas consisten en la arquitectura para la alimentaciĂłn de los datos relacionados a la tipologĂ­a de construcciones con las funciones de profundidad del impacto fĂ­sico apoyado en procesos automĂĄticos. La metodologĂ­a es probada en tres sitios piloto: (i) en el Barrio Sur en MaganguĂ© y (ii) en la barrio de La Peña en Cicuco situado en la llanura inundable del RĂ­o Magdalena, Colombia y (iii) en barrio Kleinzschachwitz de la ciudad de Dresden, situado a orillas del rĂ­o Elba, en Alemania. Las pruebas de la metodologĂ­a abarca la descripciĂłn de la disponibilidad de los datos y la precisiĂłn, los pasos a seguir para obtener las funciones profundidad de impacto fĂ­sico de edificios representativos y la presentaciĂłn final de la distribuciĂłn espacial de la susceptibilidad fĂ­sica frente inundaciones El discusiĂłn analiza las aportaciones de este trabajo y evalua los resultados de la metodologĂ­a con relaciĂłn a los objetivos. Las conclusiones del trabajo, muestran los aportes y limitaciones de la investigaciĂłn en tĂ©rminos de avances metodolĂłgicos y empĂ­ricos y la aplicabilidad general de gestiĂłn del riesgo de inundaciones.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 20

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    A remote sensing-guided forest inventory concept using multispectral 3D and height information from ZiYuan-3 satellite data

    Get PDF
    Increased frequencies of storms and droughts due to climate change are changing central European forestsmore rapidly than in previous decades. To monitor these changes, multispectral 3D remote sensing (RS) data canprovide relevant information for forest management and inventory. In this case study, data of the multispectral3D-capable satellite system ZiYuan-3 (ZY-3) were used in a RS-guided forest inventory concept to reduce the fieldsample size compared to the standard grid inventory. We first pre-stratified the forest area via the ZY-3 datasetinto coniferous, broadleaved and mixed forest types using object-based image analysis. Each forest type wasthen split into three height strata using the ZY-3 stereo module-derived digital canopy height model (CHM).Due to limited sample sizes, we reduced the nine to six strata. Then, for each of the six strata, we randomlyselected representative segments for inventory plot placement. We then conducted field inventories in theseplots. The collected field data were used to calculate forest attributes, such as tree species composition, timbervolume and canopy height at plot level (terrestrially measured tree height and height information from ZY-3CHM).Subsequently,wecomparedtheresultingforestattributesfromtheRS-guidedinventorywiththereferencedata from a grid inventory based only on field plots. The difference in mean timber volumes to the reference was+30.21 m3ha−1(8.99 per cent) for the RS-guided inventory with terrestrial height and−11.32 m3ha−1(−3.37per cent) with height information from ZY-3 data. The relative efficiency (RE) indicator was used to comparethe different sampling schemes. The RE as compared to a random reduction of the sample size was 1.22 forthe RS-guided inventory with terrestrial height measurements and 1.85 with height information from ZY-3 data.The results show that the presented workflow based on 3D ZY-3 data is suitable to support forest inventories byreducing the sample size and hence potentially increase the inventory frequency

    Earth resources: A continuing bibliography with indexes (issue 59)

    Get PDF
    This bibliography lists 518 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications

    Innovative Tools For Planning, Analysis, and Management of UAV Photogrammetric Surveys

    Get PDF
    The Unmanned Aerial System (UAV) is widely used in the photogrammetric surveys both for structures and small areas. The geomatics approach, for the several applications where the 3D modeling is required, focuses the attention on the metric quality of the final products of the survey. As widely known, the quality of results derives from the quality of images acquisition phase, which needs an accurate planning phase. Actually, the planning phase is typically managed using dedicated tools, adapted from the traditional aerial-photogrammetric flight plan. Unfortunately, UAV flight has features completely different from the traditional one, hence the use of UAV for photogrammetric applications today requires a growth in the planning knowledge. The basic idea of the present research work is to provide a tool for planning a photogrammetric survey with UAV, called \u201cUnmanned Photogrammetric Office\u201d (U.Ph.O.), that considers the morphology of the object, the effective visibility of its surface, in the respect of the metric precisions. The usual planning tools require the classical parameters of a photogrammetric planning: flight distance from the surface, images overlaps and geometric parameters of the camera. The created \u201cOffice suite\u201d U.Ph.O. allows a realistic planning of a photogrammetric survey, requiring additionally an approximate knowledge of the Digital Surface Model (DSM) and the attitude parameters, potentially changing along the route. The planning products will be the realistic overlapping of the images, the Ground Sample Distance (GSD) and the precision on each pixel taking into account the real geometry. The different tested procedures, the solution proposed to estimates the realistic precisions in the particular case of UAV surveys and the obtained results, are described in this thesis work, with an overview on the recently development of UAV surveys and technologies related to them

    Are we there yet? A review and assessment of archaeological passive airborne optical imaging approaches in the light of landscape archaeology

    Get PDF
    Archaeologists often rely on passive airborne optical remote sensing to deliver some of the core data for (European) landscape archaeology projects. Despite the many technological and theoretical evolutions that have characterised this field of archaeology, the dominant aerial photographic surveys, but also less common approaches to archaeological airborne reconnaissance, still suffer from many inherent biases imposed by sub-par sampling strategies, cost, instrument availability and post-processing issues. This paper starts with the concept of landscape (archaeology) and uses it to frame archaeological airborne remote sensing. After introducing the need for bias reduction when sampling an already distorted archaeological population and expanding on the ‘theory-neutral’ claim of aerial survey, the paper presents eight key characteristics that all have the potential to increase or decrease the subjectivity and bias when collecting airborne optical imagery with passive sensors. Within this setting, the paper then offers some technological-methodological reflection on the various passive airborne optical imaging solutions that landscape archaeology has come to rely upon in the past decades. In doing so, it calls into question the effectiveness and suitability of these highly subjective approaches for landscape archaeology. Finally, the paper proposes a new, more objective approach to aerial optical image acquisition with passive sensors. In the discussion, the text argues that the suggested exhaustive (or total) airborne sampling of the preserved archaeological record might transcend particular theoretical paradigms, while the data generated could span various interpretational perspectives and oppositional analytical approaches in landscape archaeology
    • 

    corecore