331,306 research outputs found

    THERMODYNAMIC ANALYSIS OF SYNTHESIS GAS AND HIGHER HYDROCARBONS PRODUCTION FROM METHANE

    Get PDF
    This chapter focused on thermodynamic chemical equilibrium analysis using method of direct minimization of Gibbs free energy for all possible methane reactions with oxygen (partial oxidation of methane), carbon dioxide (CO2 reforming of methane), steam (steam reforming of methane), and autothermal reforming. Effects of feed ratios (methane to oxygen, carbon dioxide, and/or steam feed ratio), reaction temperature, and system pressure on equilibrium composition, conversion, and yield were studied. In addition, operating regions of carbon and no carbon formation were also considered at various reaction temperatures and feed ratios in the equilibrium system. It was found that the reaction temperature above 1100 K and CH4/CO2 ratio unity were favorable for synthesis gas production for methane – carbon dioxide reaction. The Carbon Dioxide Oxidative Coupling of Methane reaction to produce ethane and ethylene is less favorable thermodynamically. In addition, steam reforming of methane is the most suitable for hydrogen production from methane with low coke formation from thermodynamic point of view

    Identifying thermogenic and microbial methane in deep water Gulf of Mexico Reservoirs

    Get PDF
    The Gulf of Mexico (GOM) produces 5% of total U.S. dry gas production (USEIA, 2016). Despite this, the proportion of microbial and thermogenic methane in discovered and producing fields from this area is still not well understood. Understanding the relative contributions of these sources in subsurface environments is important to understanding how and where economically substantial amounts of methane form. In addition, this information will help identify sources of environmental emissions of hydrocarbons to the atmosphere. We apply stable isotopes including methane clumped-isotope measurements to solution and associated gases from several producing fields in the U.S. Gulf of Mexico to estimate the proportions, properties and origins of microbial and thermogenic endmembers. Clumped isotopes of methane are unique indicators of whether methane is at thermodynamic isotopic equilibrium or affected by kinetic processes. The clumped methane thermometer can provide insights into formation temperatures and/or into kinetic processes such as microbial methanogenesis, early catagenetic processes, mixing, combinatorial processes, and diffusion. In this data set, we find that some fluids have clumped isotope methane apparent temperatures consistent with the methane component being produced solely by the thermogenic breakdown of larger organic molecules at substantially greater temperatures than those reached in shallow reservoirs. A portion of these reservoirs with hot clumped isotope methane temperatures are consistent with exhibiting a kinetic isotope effect. Other reservoirs have clumped isotope methane apparent temperatures, and other isotopic and molecular proportions, consistent with mixtures of microbial and thermogenic methane. We show that in certain cases the evidence is most consistent with formation of the microbial methane in the current reservoir. However, in other cases the methane is produced at significantly shallower depths and is then transported to greater depths as a result of post generation burial of methane bearing sedimentary sequences to the current reservoir conditions. For the first time, we show that methane of an unambiguously purely microbial origin (i.e. those that do not contain obvious contributions of thermogenic methane) is dominantly generated at temperatures less than 60 °C, despite burial to greater depths. This finding suggests that, while microorganisms are able to generate methane at temperatures up to 105 °C under laboratory conditions (Brock, 1985), in the Gulf of Mexico, microbial methane is dominantly produced in the 20–60 °C window

    Estimation of advective methane flux in gas hydrate potential area offshore SW Taiwan and its tectonic implications

    Get PDF
    With the discoveries of Bottom Simulating Reflectors (BSRs), large and dense chemosynthetic communities and rapid sulfate reductions in pore space sediments, gas hydrates may exist in offshore southwestern Taiwan. Methane concentrations in pore space sediments have been measured to investigate if fluids and gases are derived from dissociation of gas hydrates. Very high methane concentrations and very shallow depths of sulfate methane interface (SMI) imply the high methane flux underneath the seafloor. Linear sulfate gradients, low total organic carbon (TOC) have been combined to describe the process of anaerobic methane oxidation (AMO) and calculate the iffusive methane flux in Chuang et al. (2010). However, the appearance of concave (or non-linear) profiles of sulfate in some cores might indicate advective fluid flows. Hence, the methane flux may be much greater under advective conditions. In this study, numerical transport-reaction models were applied to calculate the methane flux including diffusion and advection of dissolved sulfate and methane and the anaerobic methane oxidation of methane. According to the modeled results of three giant piston cores (MD05-2911, MD05-2912 and MD05-2913) collected during the r/v Marion Dufresne cruise in 2005, gas bubbling or bioirrigation may occur in these site. Values of the methane flux ranging from 1.91 to 5.17 mmol m-2yr-1 and upward fluid flow velocities around 0.05-0.13 cm yr-1 are related to different geologic structures in the active continental margin. Site MD05-2912 is located on the Tainan Ridge where anticlines and blind thrusts are the dominate structures. Site MD052911 is on the Yung-An Ridge characterized by emergent and imbricate thrusts

    The Effects of Dissolved Methane upon Liquid Argon Scintillation Light

    Get PDF
    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.Comment: 18 pages, 11 figures Updated to match published versio

    Widespread abiotic methane in chromitites

    Get PDF
    Recurring discoveries of abiotic methane in gas seeps and springs in ophiolites and peridotite massifs worldwide raised the question of where, in which rocks, methane was generated. Answers will impact the theories on life origin related to serpentinization of ultramafic rocks, and the origin of methane on rocky planets. Here we document, through molecular and isotopic analyses of gas liberated by rock crushing, that among the several mafic and ultramafic rocks composing classic ophiolites in Greece, i.e., serpentinite, peridotite, chromitite, gabbro, rodingite and basalt, only chromitites, characterized by high concentrations of chromium and ruthenium, host considerable amounts of 13C-enriched methane, hydrogen and heavier hydrocarbons with inverse isotopic trend, which is typical of abiotic gas origin. Raman analyses are consistent with methane being occluded in widespread microfractures and porous serpentine- or chlorite-filled veins. Chromium and ruthenium may be key metal catalysts for methane production via Sabatier reaction. Chromitites may represent source rocks of abiotic methane on Earth and, potentially, on Mars

    The vertical transport of methane from different potential emission types on Mars

    Get PDF
    The contrasting evolutionary behavior of the vertical profile of methane from three potential release scenarios is analysed using a global circulation model with assimilated temperature profiles. Understanding the evolving methane distribution is essential for interpretation of future retrievals of the methane vertical profile taken by instruments on the ExoMars Trace Gas Orbiter spacecraft. We show that at methane release rates constrained by previous observations and modelling studies, discriminating whether the methane source is a sustained or instantaneous surface emission requires at least ten sols of tracking the emission. A methane source must also be observed within five to ten sols of the initial emission to distinguish whether the emission occurs directly at the surface or within the atmosphere via destabilization of metastable clathrates. Assimilation of thermal data is shown to be critical for the most accurate back-tracking of an observed methane plume to its origin
    corecore