53 research outputs found

    Empathetic media and living media

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Beyond the limits of digital interaction: should animals play with interactive environments?

    Full text link
    Our digital world evolves towards ubiquitous and intuitive scenarios, filled with interconnected and transparent computing devices which ease our daily activities. We have approached this evolution of technology in a strictly human-centric manner. There are, however, plenty of species, among them our pets, which could also profit from these technological advances. A new field in Computer Science, called Animal-Computer Interaction (ACI), aims at filling this technological gap by developing systems and interfaces specifically designed for animals. This paper envisions how ACI could be extended to enhance the most natural animal behavior: play. This work explains how interactive environments could become playful scenarios where animals enjoy, learn and interact with technology, improving their wellbeingThis work is partially funded by the Spanish Ministry of Science and Innovation under the National R&D&I Program within the project CreateWorlds (TIN2010-20488). The work of Patricia Pons is supported by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU13/03831). It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d’Educació, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catalá (APOSTD/2013/013). We also thank the Valencian Society for the Protection of Animals and Plants (SVPAP) for their cooperation.Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Beyond the limits of digital interaction: should animals play with interactive environments?. ACM. http://hdl.handle.net/10251/65361

    Animal-Computer Interaction (ACI): changing perspective on HCI, participation and sustainability

    Get PDF
    In the spirit of this year’s conference theme ‘changing perspectives’, this paper invites the CHI community to glance at interaction design through the lense of Animal-Computer Interaction (ACI). In particular, I argue that such a perspective could have at least three benefits: strengthening HCI as a discipline; broadening participation in Interaction Design; and supporting CHI’s commitment to sustainability. I make the case that, far from being a niche research area, ACI is directly relevant to and even encompasses HCI. Thus ACI research firmly belongs at CHI

    Developing a depth-based tracking systems for interactive playful environments with animals

    Full text link
    © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM. Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology (p. 59). http://dx.doi.org/10.1145/2832932.2837007.[EN] Digital games for animals within Animal Computer Interaction are usually single-device oriented, however richer interactions could be delivered by considering multimodal environments and expanding the number of technological elements involved. In these playful ecosystems, animals could be either alone or accompanied by human beings, but in both cases the system should react properly to the interactions of all the players, creating more engaging and natural games. Technologically-mediated playful scenarios for animals will therefore require contextual information about the game participants, such as their location or body posture, in order to suitably adapt the system reactions. This paper presents a depth-based tracking system for cats capable of detecting their location, body posture and field of view. The proposed system could also be extended to locate and detect human gestures and track small robots, becoming a promising component in the creation of intelligent interspecies playful environments.Work supported by the Spanish Ministry of Economy and Competitiveness and funded by the EDRF-FEDER (TIN2014-60077-R). The work of Patricia Pons has been supported by a national grant from the Spanish MECD (FPU13/03831). Alejandro Catalá also received support from a VALi+d fellowship from the GVA (APOSTD/2013/013). Special thanks to our cat participants, their owners, and our feline caretakers and therapistsPons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Developing a depth-based tracking systems for interactive playful environments with animals. ACM. https://doi.org/10.1145/2832932.2837007SJan Bednarik and David Herman. 2015. Human gesture recognition using top view depth data obtained from Kinect sensor.Excel. - Student Conf. Innov. Technol. Sci. IT, 1--8.Hrvoje Benko, Andrew D. Wilson, Federico Zannier, and Hrvoje Benko. 2014. Dyadic projected spatial augmented reality.Proc. 27th Annu. ACM Symp. User interface Softw. Technol. - UIST '14, 645--655.Alper Bozkurt, David L Roberts, Barbara L Sherman, et al. 2014. Toward Cyber-Enhanced Working Dogs for Search and Rescue.IEEE Intell. Syst. 29, 6, 32--39.Rita Brugarolas, Robert T. Loftin, Pu Yang, David L. Roberts, Barbara Sherman, and Alper Bozkurt. 2013. Behavior recognition based on machine learning algorithms for a wireless canine machine interface.2013 IEEE Int. Conf. Body Sens. Networks, 1--5.Adrian David Cheok, Roger Thomas K C Tan, R. L. Peiris, et al. 2011. Metazoa Ludens: Mixed-Reality Interaction and Play for Small Pets and Humans.IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans41, 5, 876--891.Amanda Hodgson, Natalie Kelly, and David Peel. 2013. Unmanned aerial vehicles (UAVs) for surveying Marine Fauna: A dugong case study.PLoS One8, 11, 1--15.Gang Hu, Derek Reilly, Mohammed Alnusayri, Ben Swinden, and Qigang Gao. 2014. DT-DT: Top-down Human Activity Analysis for Interactive Surface Applications.Proc. Ninth ACM Int. Conf. Interact. Tabletops Surfaces - ITS '14, 167--176.Brett R Jones, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2013. IllumiRoom: Peripheral Projected Illusions for Interactive Experiences.Proc. SIGCHI Conf. Hum. Factors Comput. Syst. - CHI '13, 869--878.Brett Jones, Lior Shapira, Rajinder Sodhi, et al. 2014. RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units.Proc. 27th Annu. ACM Symp. User Interface Softw. Technol. - UIST '14, 637--644.Cassim Ladha, Nils Hammerla, Emma Hughes, Patrick Olivier, and Thomas Ploetz. 2013. Dog's Life: Wearable Activity Recognition for Dogs.Proc. 2013 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. - UbiComp'13, 415.Shang Ping Lee, Adrian David Cheok, Teh Keng Soon James, et al. 2006. A mobile pet wearable computer and mixed reality system for human--poultry interaction through the internet.Pers. Ubiquitous Comput. 10, 5, 301--317.Clara Mancini, Janet van der Linden, Jon Bryan, and Andrew Stuart. 2012. Exploring interspecies sensemaking: Dog Tracking Semiotics and Multispecies Ethnography.Proc. 2012 ACM Conf. Ubiquitous Comput. - UbiComp '12, 143--152.Clara Mancini. 2011. Animal-computer interaction: a manifesto.Mag. Interact. 18, 4, 69--73.Clara Mancini. 2013. Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability.CHI '13 Ext. Abstr. Hum. Factors Comput. Syst., 2227--2236.Steve North, Carol Hall, Amanda Roshier, and Clara Mancini. 2015. HABIT: Horse Automated Behaviour Identification Tool -- A Position Paper.Proc. Br. Hum. Comput. Interact. Conf. - Anim. Comput. Interact. Work., 1--4.Mikko Paldanius, Tuula Kärkkäinen, Kaisa Väänänen-Vainio-Mattila, Oskar Juhlin, and Jonna Häkkilä. 2011. Communication technology for human-dog interaction: exploration of dog owners' experiences and expectations.Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2641--2650.Patricia Pons, Javier Jaen, and Alejandro Catala. Multimodality and Interest Grabbing: Are Cats Ready for the Game?Submitt. to Int. J. Human-Computer Stud. Spec. Issue Anim. Comput. Interact. (under Rev).Patricia Pons, Javier Jaen, and Alejandro Catala. 2014. Animal Ludens: Building Intelligent Playful Environments for Animals.Proc. 2014 Work. Adv. Comput. Entertain. Conf. - ACE '14 Work., 1--6.Patricia Pons, Javier Jaen, and Alejandro Catala. 2015. Envisioning Future Playful Interactive Environments for Animals. InMore Playful User Interfaces, Anton Nijholt (ed.). Springer, 121--150.Rui Trindade, Micaela Sousa, Cristina Hart, Nádia Vieira, Roberto Rodrigues, and João França. 2015. Purrfect Crime.Proc. 33rd Annu. ACM Conf. Ext. Abstr. Hum. Factors Comput. Syst. - CHI EA '15, 93--96.Jessica van Vonderen. 2015. Drones with heat-tracking cameras used to monitor koala population. Retrieved July 1, 2015 from http://www.abc.net.au/news/2015-02-24/drones-to-help-threatened-species-koalas-qut/6256558Alexandra Weilenmann and Oskar Juhlin. 2011. Understanding people and animals: the use of a positioning system in ordinary human-canine interaction.Proc. 2011 Annu. Conf. Hum. factors Comput. Syst. - CHI '11, 2631--2640.Chadwick A. Wingrave, J. Rose, Todd Langston, and Joseph J. Jr. LaViola. 2010. Early explorations of CAT: canine amusement and training.CHI '10 Ext. Abstr. Hum. Factors Comput. Syst., 2661--2669.Kyoko Yonezawa, Takashi Miyaki, and Jun Rekimoto. 2009. Cat@Log: sensing device attachable to pet cats for supporting human-pet interaction.Proc. Int. Conf. Adv. Comput. Enterntainment Technol. - ACE '09, 149--156.2013. ZOO Boomer balls. Retrieved July 1, 2015 from https://www.youtube.com/watch?v=Od_Lm8U5W4

    Designing technologies for playful interspecies communication

    Get PDF
    This one-day workshop examines how we might use technologies to support design for playful interspecies communication and considers some of the potential implications. Here we explore aspects of playful technology and reflect on what opportunities computers can provide for facilitating communication between species. The workshop's focal activity will be the co-creation of some theoretical systems designed for specific multi-species scenarios. Through our activities, we aim to pave the way for designing technology that promotes interspecies communication, drawing input not only from ACI practitioners but also from those of the broader HCI and animal science community, who may be stakeholders in facilitating, expanding, and/or redefining playful technology

    Animal Ludens: Building Intelligent Playful Environments for Animals

    Full text link
    © ACM (2014). This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in {Source Publication}, http://dx.doi.org/10.1145/2693787.2693794Looking for effective ways to understand how animals interact with computer-mediated systems, Animal-Computer Interaction (ACI) research should rely on the most natural and intrinsic behavior among the majority of living species: play. Animals are naturally motivated towards playing. Playful environments are, therefore, a promising scenario in which to start developing animal-centered ecosystems, and there are plenty of circumstances where playful environments could help to improve animals well-being. However, developing a custom system for each possible context remains unfeasible, and more appealing solutions are required. If playful environments were equipped with intelligent capabilities, they could learn from the animals behavior and automatically adapt themselves to the animals needs and preferences by creating engaging playful activities for different purposes. Hence, this work will define intelligent playful environments for animals and explain how Ambient Intelligence (AmI) can contribute to create adaptable playful experiences for animals in order to improve their quality of life.This work was partially funded by the Spanish Ministry of Science and Innovation under the National R&D&I Program within the project CreateWorlds (TIN2010-20488). It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d'Educació, Cultura i Esport (Generalitat Valenciana) awarded to Alejandro Catalá (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat Politecnica de Valencia under the 'Beca de Excelencia" program, and currently by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU13/03831).Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2014). Animal Ludens: Building Intelligent Playful Environments for Animals. ACM. https://doi.org/10.1145/2693787.2693794SAlfrink, K., Peer, I. van, Lagerweij, H., Driessen, C., Bracke, M., and Copier, M. Pig Chase. Playing with Pigs project. 2012. www.playingwithpigs.nl.Amat, M., Camps, T., Brech, S. Le, and Manteca, X. Separation anxiety in dogs: the implications of predictability and contextual fear for behavioural treatment. Animal Welfare 23, 3 (2014), 263--266.Barker, S. B. and Dawson, K. S. The effects of animal-assisted therapy on anxiety ratings of hospitalized psychiatric patients. Psychiatric services 49, 6 (1998), 797--801.Bateson, P. and Martin, P. Play, Playfulness, Creativity and Innovation. Cambridge University Press, 2013.Bekoff, M. and Allen, C. Intentional communication and social play: how and why animals negotiate and agree to play. In Animal play: Evolutionary, comparative, and ecological perspectives. Cambridge University Press, 1997.Burghardt, G. M. The genesis of animal play. Testing the limits. MIT Press, 2006.Catalá, A., Jaén, J., Pons, P., and García-Sanjuan, F. Playful Creativity: Playing to Create Games on Surfaces. In A. Nijholt, ed., Playful User Interfaces. Springer Singapore, Singapore, 2014, 293--315.Catalá, A., Pons, P., Jaén, J., Mocholí, J. A., and Navarro, E. A meta-model for dataflow-based rules in smart environments: Evaluating user comprehension and performance. Science of Computer Programming 78, 10 (2013), 1930--1950.Cheok, A. D., Tan, R. T. K. C., Peiris, R. L., et al. Metazoa Ludens: Mixed-Reality Interaction and Play for Small Pets and Humans. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 41, 5 (2011), 876--891.Costello, B. and Edmonds, E. A Study in Play, Pleasure and Interaction Design. Proceedings of the 2007 conference on Designing pleasurable products and interfaces, (2007), 76--91.Csikszentmihalyi, M. Beyond Boredom and Anxiety. The Experience of Play in Work and Games. Jossey-Bass Publishers, 1975.Filan, S. L. and Llewellyn-Jones, R. H. Animal-assisted therapy for dementia: a review of the literature. International psychogeriatrics / IPA 18, 4 (2006), 597--611.Huizinga, J. Homo ludens. 1985.Kamioka, H., Okada, S., Tsutani, K., et al. Effectiveness of animal-assisted therapy: A systematic review of randomized controlled trials. Complementary therapies in medicine 22, 2 (2014), 371--390.Lee, S. P., Cheok, A. D., James, T. K. S., et al. A mobile pet wearable computer and mixed reality system for human--poultry interaction through the internet. Personal and Ubiquitous Computing 10, 5 (2006), 301--317.Mancini, C., van der Linden, J., Bryan, J., and Stuart, A. Exploring interspecies sensemaking: Dog Tracking Semiotics and Multispecies Ethnography. Proceedings of the 2012 ACM Conference on Ubiquitous Computing - UbiComp '12, ACM Press (2012), 143--152.Mancini, C. Animal-computer interaction: a manifesto. Magazine interactions 18, 4 (2011), 69--73.Mancini, C. Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability. CHI '13 Extended Abstracts on Human Factors in Computing Systems, ACM Press (2013), 2227--2236.Mankoff, D., Dey, A. K., Mankoff, J., and Mankoff, K. Supporting Interspecies Social Awareness: Using peripheral displays for distributed pack awareness. Proceedings of the 18th annual ACM symposium on User interface software and technology, (2005), 253--258.Matsuzawa, T. The Ai project: historical and ecological contexts. Animal cognition 6, 4 (2003), 199--211.McGrath, R. E. Species-appropriate computer mediated interaction. Proceedings of the 27th international conference extended abstracts on Human factors in computing systems - CHI EA '09, ACM Press (2009), 2529--2534.Norman, D. A. The invisible computer. MIT Press, Cambridge, MA, USA, 1998.Noz, F. and An, J. Cat Cat Revolution: An Interspecies Gaming Experience. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2011), 2661--2664.Paldanius, M., Kärkkäinen, T., Väänänen-Vainio-Mattila, K., Juhlin, O., and Häkkilä, J. Communication technology for human-dog interaction. Proceedings of the 2011 annual conference on Human factors in computing systems - CHI '11, ACM Press (2011), 2641--2650.Pons, P., Catala, A., and Jaen, J. Customizing smart environments: a tabletop approach. Journal of Ambient Intelligence and Smart Environments, in press.Rumbaugh, D. M. Language learning by a chimpanzee: the Lana Project. Academic Press, 1977.Schwartz, S. Separation anxiety syndrome in cats: 136 cases (1991--2000). Journal of the American Veterinary Medical Association 220, 7 (2002), 1028--1033.Schwartz, S. Separation anxiety syndrome in dogs and cats. Journal of the American Veterinary Medical Association 222, 11 (2003), 1526--1532.Solomon, O. What a Dog Can Do: Children with Autism and Therapy Dogs in Social Interaction. Ethos: Journal of the Society for Psychological Anthropology 38, 1 (2010), 143--166.Teh, K. S., Lee, S. P., and Cheok, A. D. Poultry. Internet: a remote human-pet interaction system. CHI '06 Extended Abstracts on Human Factors in Computing Systems, (2006), 251--254.Weilenmann, A. and Juhlin, O. Understanding people and animals. Proceedings of the 2011 annual conference on Human factors in computing systems - CHI '11, ACM Press (2011), 2631--2640.Weiser, M. The computer for the 21st century. Scientific American 265, 3 (1991), 94--104.Wingrave, C. A., Rose, J., Langston, T., and LaViola, J. J. J. Early explorations of CAT: canine amusement and training. CHI '10 Extended Abstracts on Human Factors in Computing Systems, (2010), 2661--2669.Young, J., Young, N., Greenberg, S., and Sharlin, E. Feline Fun Park: A Distributed Tangible Interface for Pets and Owners. 2013. https://www.youtube.com/watch?v=HB5LsSYkhCc

    Animal-Computer Interaction: the emergence of a discipline

    Get PDF
    In this editorial to the IJHCS Special Issue on Animal-Computer Interaction (ACI), we provide an overview of the state-of-the-art in this emerging field, outlining the main scientific interests of its developing community, in a broader cultural context of evolving human-animal relations. We summarise the core aims proposed for the development of ACI as a discipline, discussing the challenges these pose and how ACI researchers are trying to address them. We then introduce the contributions to the Special Issue, showing how they illustrate some of the key issues that characterise the current state-of-the-art in ACI, and finally reflect on how the journey ahead towards developing an ACI discipline could be undertaken

    Envisioning Future Playful Interactive Environments for Animals

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-981-287-546-4_6Play stands as one of the most natural and inherent behavior among the majority of living species, specifically humans and animals. Human play has evolved significantly over the years, and so have done the artifacts which allow us to play: from children playing tag games without any tools other than their bodies, to modern video games using haptic and wearable devices to augment the playful experience. However, this ludic revolution has not been the same for the humans’ closest companions, our pets. Recently, a new discipline inside the human–computer interaction (HCI) community, called animal–computer interaction (ACI), has focused its attention on improving animals’ welfare using technology. Several works in the ACI field rely on playful interfaces to mediate this digital communication between animals and humans. Until now, the development of these interfaces only comprises a single goal or activity, and its adaptation to the animals’ needs requires the developers’ intervention. This work analyzes the existing approaches, proposing a more generic and autonomous system aimed at addressing several aspects of animal welfare at a time: Intelligent Playful Environments for Animals. The great potential of these systems is discussed, explaining how incorporating intelligent capabilities within playful environments could allow learning from the animals’ behavior and automatically adapt the game to the animals’ needs and preferences. The engaging playful activities created with these systems could serve different purposes and eventually improve animals’ quality of life.This work was partially funded by the Spanish Ministry of Science andInnovation under the National R&D&I Program within the projects Create Worlds (TIN2010-20488) and SUPEREMOS (TIN2014-60077-R), and from Universitat Politècnica de València under Project UPV-FE-2014-24. It also received support from a postdoctoral fellowship within theVALi+d Program of the Conselleria d’Educació, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catalá (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat Politècnica de València under the “Beca de Excelencia” program and currently by an FPU fellowship from the Spanish Ministry of Education, Culture, and Sports (FPU13/03831).Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Envisioning Future Playful Interactive Environments for Animals. En More Playful User Interfaces: Interfaces that Invite Social and Physical Interaction. Springer. 121-150. https://doi.org/10.1007/978-981-287-546-4_6S121150Alfrink, K., van Peer, I., Lagerweij H, et al.: Pig Chase. Playing with Pigs project. (2012) www.playingwithpigs.nlAmat, M., Camps, T., Le, Brech S., Manteca, X.: Separation anxiety in dogs: the implications of predictability and contextual fear for behavioural treatment. Anim. Welf. 23(3), 263–266 (2014). doi: 10.7120/09627286.23.3.263Barker, S.B., Dawson, K.S.: The effects of animal-assisted therapy on anxiety ratings of hospitalized psychiatric patients. Psychiatr. Serv. 49(6), 797–801 (1998)Bateson, P., Martin, P.: Play, Playfulness, Creativity and Innovation. Cambridge University Press, New York (2013)Bekoff, M., Allen, C.: Intentional communication and social play: how and why animals negotiate and agree to play. In: Bekoff, M., Byers, J.A. (eds.) Animal Play Evolutionary. Comparative and Ecological Perspectives, pp. 97–114. Cambridge University Press, New York (1997)Burghardt, G.M.: The Genesis of Animal Play. Testing the Limits. MIT Press, Cambridge (2006)Catalá, A., Pons, P., Jaén, J., et al.: A meta-model for dataflow-based rules in smart environments: evaluating user comprehension and performance. Sci. Comput. Prog. 78(10), 1930–1950 (2013). doi: 10.1016/j.scico.2012.06.010Cheok, A.D., Tan, R.T.K.C., Peiris, R.L., et al.: Metazoa ludens: mixed-reality interaction and play for small pets and humans. IEEE Trans. Syst. Man. Cybern.—Part A Syst. Hum. 41(5), 876–891 (2011). doi: 10.1109/TSMCA.2011.2108998Costello, B., Edmonds, E.: A study in play, pleasure and interaction design. In: Proceedings of the 2007 Conference on Designing Pleasurable Products and Interfaces, pp. 76–91 (2007)Csikszentmihalyi, M.: Beyond Boredom and Anxiety. The Experience of Play in Work and Games. Jossey-Bass Publishers, Hoboken (1975)Filan, S.L., Llewellyn-Jones, R.H.: Animal-assisted therapy for dementia: a review of the literature. Int. Psychogeriatr. 18(4), 597–611 (2006). doi: 10.1017/S1041610206003322García-Herranz, M., Haya, P.A., Alamán, X.: Towards a ubiquitous end-user programming system for smart spaces. J. Univ. Comput. Sci. 16(12), 1633–1649 (2010). doi: 10.3217/jucs-016-12-1633Hirskyj-Douglas, I., Read, J.C.: Who is really in the centre of dog computer interaction? In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Hu, F., Silver, D., Trude, A.: LonelyDog@Home. In: International Conference Web Intelligence Intelligent Agent Technology—Workshops, 2007 IEEE/WIC/ACM IEEE, pp. 333–337, (2007)Huizinga, J.: Homo Ludens. Wolters-Noordhoff, Groningen (1985)Kamioka, H., Okada, S., Tsutani, K., et al.: Effectiveness of animal-assisted therapy: a systematic review of randomized controlled trials. Complement. Ther. Med. 22(2), 371–390 (2014). doi: 10.1016/j.ctim.2013.12.016Lee, S.P., Cheok, A.D., James, T.K.S., et al.: A mobile pet wearable computer and mixed reality system for human–poultry interaction through the internet. Pers. Ubiquit. Comput. 10(5), 301–317 (2006). doi: 10.1007/s00779-005-0051-6Leo, K., Tan, B.: User-tracking mobile floor projection virtual reality game system for paediatric gait and dynamic balance training. In: Proceedings of the 4th International Convention on Rehabilitation Engineering and Assistive Technology pp. 25:1–25:4 (2010)Mancini, C.: Animal-computer interaction: a manifesto. Mag. Interact. 18(4), 69–73 (2011). doi: 10.1145/1978822.1978836Mancini, C.: Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability. CHI ’13 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2227–2236 (2013)Mancini, C., van der Linden, J.: UbiComp for animal welfare: envisioning smart environments for kenneled dogs. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 117–128 (2014)Mancini, C., Harris, R., Aengenheister, B., Guest, C.: Re-centering multispecies practices: a canine interface for cancer detection dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing System, pp. 2673–2682 (2015)Mancini, C., van der Linden, J., Bryan, J., Stuart, A.: Exploring interspecies sensemaking: dog tracking semiotics and multispecies ethnography. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing—UbiComp ’12. ACM Press, New York, pp. 143–152 (2012)Mankoff, D., Dey, A.K., Mankoff, J., Mankoff, K.: Supporting interspecies social awareness: using peripheral displays for distributed pack awareness. In: Proceedings of the 18th Annual ACM Symposium on User interface Software and Technology, pp. 253–258 (2005)Maternaghan, C., Turner, K.J.: A configurable telecare system. In: Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments—PETRA ’11. ACM Press, New York, pp. 14:1–14:8 (2011)Matsuzawa, T.: The Ai project: historical and ecological contexts. Anim. Cogn. 6(4), 199–211 (2003). doi: 10.1007/s10071-003-0199-2McGrath, R.E.: Species-appropriate computer mediated interaction. CHI ‘09 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2529–2534 (2009)Mocholí, J.A., Jaén, J., Catalá, A.: A model of affective entities for effective learning environments. In: Innovations in Hybrid Intelligent Systems, pp. 337–344 (2007)Nijholt, A. (ed.): Playful User Interfaces. Springer, Singapore (2014)Norman, D.A.: The invisible computer. MIT Press, Cambridge (1998)Noz, F., An, J.: Cat cat revolution: an interspecies gaming experience. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2661–2664 (2011)Paldanius, M., Kärkkäinen, T., Väänänen-Vainio-Mattila, K., et al.: Communication technology for human-dog interaction: exploration of dog owners’ experiences and expectations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New York, pp. 2641–2650 (2011)Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Pons, P., Jaén, J., Catalá, A.: Animal ludens: building intelligent playful environments for animals. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Resner, B.: Rover@Home: Computer Mediated Remote Interaction Between Humans and Dogs. M.Sc. thesis, Massachusetts Institute of Technology, Cambridge (2001)Ritvo, S.E., Allison, R.S.: Challenges related to nonhuman animal-computer interaction: usability and “liking”. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Robinson, C., Mncini, C., Van Der Linden, J., et al.: Canine-centered interface design: supporting the work of diabetes alert dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3757–3766 (2014)Rumbaugh, D.M.: Language Learning by a Chimpanzee: The LANA Project. Academic Press, New York (1977)Rumbaugh, D.M.: Apes and their future in comparative psychology. Eye Psi Chi 18(1), 16–19 (2013)Rumbaugh, D.M., Gill, T.V., Brown, J.V., et al.: A computer-controlled language training system for investigating the language skills of young apes. Behav. Res. Methods Instrum. 5(5), 385–392 (1973)Schwartz, S.: Separation anxiety syndrome in cats: 136 cases (1991–2000). J. Am. Vet. Med. Assoc. 220(7), 1028–1033 (2002). doi: 10.2460/javma.2002.220.1028Schwartz, S.: Separation anxiety syndrome in dogs and cats. J. Am. Vet. Med. Assoc. 222(11), 1526–1532 (2003)Solomon, O.: What a dog can do: children with autism and therapy dogs in social interaction. Ethos J. Soc. Psychol. Anthropol. 38(1), 143–166 (2010). doi: 10.1111/j.1548-1352.2010.01085.xTeh, K.S., Lee, S.P., Cheok, A.D.: Poultry. Internet: a remote human-pet interaction system. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems, pp. 251–254 (2006)Väätäjä, H., Pesonen, E.: Ethical issues and guidelines when conducting HCI studies with animals. In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems, pp. 2159–2168 (2013)Väätäjä, H.: Animal welfare as a design goal in technology mediated human-animal interaction—opportunities with haptics. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Weilenmann, A., Juhlin, O.: Understanding people and animals. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’11. ACM Press, New York, pp. 2631–2640 (2011)Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)Westerlaken, M., Gualeni, S., Geurtsen, A.: Grounded zoomorphism: an evaluation methodology for ACI design. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Westerlaken, M., Gualeni, S.: Felino: the philosophical practice of making an interspecies videogame. Philosophy of Computer Games Conference, pp. 1–12 (2014)Wingrave, C.A., Rose, J., Langston, T., LaViola, J.J.J.: Early explorations of CAT: canine amusement and training. In: CHI ’10 Extended Abstracts on Human Factors in Computing Systems, pp. 2661–2669 (2010

    Microbial content generation for natural terrains in computer games

    Get PDF
    Procedural content generation (PCG) has been applied since several decades to fulfill various game-related design needs. Besides bio-inspired methods, living (non-human) organisms were used in computer games for various purposes, such as behavior generation, data gathering, and player education. No living organisms were used for the generation of virtual terrains in games. Such an approach to terrain generation could benefit from morphological similarity between natural terrains and colonies of microbial organisms, real-time development of terrains over time, and educational opportunities. We successfully executed an experiment in which we used growing bacterial and fungal cultures for generating naturally appearing virtual terrains in real-time. Concludingly, we confirm the feasibility of using living organisms in real-time non-behavioral PCG and reflect on its potential impact.Computer Systems, Imagery and Medi

    Distribución geográfica del género Anastrepha en la provincia de Cotopaxi.

    Get PDF
    The research was carried out from 2014 to 2020. The general objective was to know the geographical distribution of the species of fruit flies of the genus Anastrepha in Cotopaxi Province. To identify, it was evaluated in hosts and species captured in McPhaill traps. To monitor, McPhaill traps were used, which serves as a food attractant; the hydrolyzed protein was used, prepared based on the following proportions of ingredients for 1 lt of mixture: Hydrolyzed Protein 50 to 100 cc (5 to 10%), granules Borax 30 g (3%), and Water 920 to 870 cc. 250 cc .of the mixture is placed in each trap, and the trap is placed on the fruit trees. The collection of data and specimens was carried out every seven days. Once the samples of both specimens and fruits were obtained, the laboratory proceeded as follows: a) The fruits that enter the laboratory (maturation area) were weighed and placed in the hatching chamber, 5 cm of sand and covered with mesh, in a sheltered and ventilated place. b) Once they have hatched or reached their adult stage where flies reach all the optimal characteristics for their identification at the species level. c) To identify and classify the different Anastrepha species, the specific dichotomous keys for the identification of fruit flies by Fernández, Tigrero, Sagacarpa, and Korytkowski were used. Both the fruit flies collected from the traps and those from the hatching chambers were identified at a morphological level, and particular emphasis was placed on the female genitalia, considering necessary to investigate in this field due to the few studies carried out in the country and the importance that has taken over fruit growing for export purposes in Cotopaxi province. In Cotopaxi province, nine species of fruit flies of the genus Anastrepha were identified captured in traps placed on cultivated plants and backyard plants, which are: Anastrepha fraterculus, Anastrepha striata, Anastrepha distincta, Anastrepha leptozona, Anastrepha obliqua, Anastrepha serpentina, Anastrepha atrox, Anastrepha pickeli, and Anastrepha sp. In the fruit trees that are hosts of fruit flies of the Anastrepha genus: "Capulí" (Prunus salicifolia), Peach (Prunus persica), "Guaba" (Inga edulis), Guava (Psidium guajava), Blackberry (Rubus ulmifolius), Orange (Citrus x sinensis), Star apple (Chrysophyllum cainito) and Sour orange (Citrus × aurantium).La investigación se realizó entre los años 2014 al 2020. El objetivo general fue Conocer la distribución geográfica de las especies de moscas de la fruta del género Anastrepha en la Provincia de Cotopaxi. Para la identificación se evaluó en hospedantes y especies capturadas entrampas McPhaill. Para el monitoreo se utilizaron trampas McPhaill la cual sirve como atrayente alimenticio, se utilizó la proteína hidrolizada, la cual se preparó en base a las siguientes proporciones de ingredientes para 1 lt de mezcla: Proteína Hidrolizada 50 a 100 cc (5 a 10 %), Bórax granulado 30 g (3 %) y Agua 920 a 870 cc., en cada trampa se coloca 250 cc de la mezcla y la trampa se coloca en los árboles frutales. La colecta de datos y especímenes se realizó cada siete días. Una vez obtenida las muestras tanto de especímenes como de frutos se procedió de la siguiente manera en el laboratorio: a) Los frutos al ingresar al laboratorio (Área de maduración) se los peso y se ubicó en la cámara eclosionadora, 5 cm de arena y cubiertas con malla, en un lugar abrigado y ventilado. b) Una vez eclosionado o llegado a su estado adulto y en esta etapa las moscas alcanzan todas las características óptimas para su identificación a nivel de especie. c) Para la identificación y clasificación de las diferentes especies de Anastrepha se empleó las claves dicotómicas específicas de identificación de moscas de la fruta de Fernández, Tigrero, Sagacarpa y de Korytkowski. Tanto las moscas de la fruta recolectadas de las trampas como los provenientes de las cámaras eclocionadoras se identificaron a nivel morfológico y se puso especial énfasis en la genitalia femenina, considerandose necesario indagar en este campo, debido los escasos estudios realizados en el país y a la importancia que ha tomado la fruticultura con fines de exportación en la provincia de Cotopaxi. En la provincia de Cotopaxi se identificaron nueve especies de moscas de la fruta del género Anastrepha capturadas en trampas colocadas en plantas cultivadas y plantas traspatio las cuales son: Anastrepha fraterculus, Anastrepha striata, Anastrepha distincta, Anastrepha leptozona, Anastrepha obliqua, Anastrepha serpentina, Anastrepha atrox, Anastrepha pickeli y Anastrepha sp. En los frutales que son hospedantes de moscas de la fruta del género Anastrepha tenemos ocho: Capulí (Prunus salicifolia), Durazno (Prunus pérsica), Guaba (Inga edulis), Guayaba (Psidium guajava), Mora (Rubus ulmifolius), Naranja (Citrus x sinensis), Caimito (Chrysophyllum cainito) y Naranja agria (Citrus × aurantium). La distribución geográfica de especies emergidas en hospedantes tenemos que Anastrepha fraterculus se encuentra en los Cantones de: Salcedo, Pujili, Sigchos y La Mana; Anastrepha serpentina se encuentra en Saquisili y Anastrepha striata se encuentra en Pujilí. La distribución geográfica de las especies capturadas en trampas tenemos que Anastrepha fraterculus se encuentra distribuida en los Cantones de: Pangua, Latacunga, Pujili, Salcedo, Sigchos y La Mana; Anastrepha leptozona se encuentra en: Pangua, Pujili y La Mana; Anastrepha striata se encuentra en Pangua, Pujili y La Mana; Anastrepha sp., se encuentra en: Pangua, Latacunga y Pujili; Anastrepha distincta se encuentra en: Pangua y La Mana; Anastrepha obliqua se encuentra en: Pangua y Pujili; Anastrepha serpentina se encuentra en Pangua y La Mana; Anastrepha pickeli se encuentra en Sigchos y Anastrepha atrox se encuentra en Pangua. De las especies identificadas en hospedantes y capturadas en las trampas McPhaill. la de mayor distribución geográfica es Anastrepha fraterculus debido a su alta población y distribución en la zona de estudio
    corecore