261 research outputs found

    PlinyCompute: A Platform for High-Performance, Distributed, Data-Intensive Tool Development

    Full text link
    This paper describes PlinyCompute, a system for development of high-performance, data-intensive, distributed computing tools and libraries. In the large, PlinyCompute presents the programmer with a very high-level, declarative interface, relying on automatic, relational-database style optimization to figure out how to stage distributed computations. However, in the small, PlinyCompute presents the capable systems programmer with a persistent object data model and API (the "PC object model") and associated memory management system that has been designed from the ground-up for high performance, distributed, data-intensive computing. This contrasts with most other Big Data systems, which are constructed on top of the Java Virtual Machine (JVM), and hence must at least partially cede performance-critical concerns such as memory management (including layout and de/allocation) and virtual method/function dispatch to the JVM. This hybrid approach---declarative in the large, trusting the programmer's ability to utilize PC object model efficiently in the small---results in a system that is ideal for the development of reusable, data-intensive tools and libraries. Through extensive benchmarking, we show that implementing complex objects manipulation and non-trivial, library-style computations on top of PlinyCompute can result in a speedup of 2x to more than 50x or more compared to equivalent implementations on Spark.Comment: 48 pages, including references and Appendi

    Improving variability of applications using adaptive object-models

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Universidade do Porto. Faculdade de Engenharia. 201

    A Context-Oriented Extension of F#

    Get PDF
    Context-Oriented programming languages provide us with primitive constructs to adapt program behaviour depending on the evolution of their operational environment, namely the context. In previous work we proposed ML_CoDa, a context-oriented language with two-components: a declarative constituent for programming the context and a functional one for computing. This paper describes the implementation of ML_CoDa as an extension of F#.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    Towards multilingual programming environments

    Get PDF
    Software projects consist of different kinds of artifacts: build files, configuration files, markup files, source code in different software languages, and so on. At the same time, however, most integrated development environments (IDEs) are focused on a single (programming) language. Even if a programming environment supports multiple languages (e.g., Eclipse), IDE features such as cross-referencing, refactoring, or debugging, do not often cross language boundaries. What would it mean for programming environment to be truly multilingual? In this short paper we sketch a vision of a system that integrates IDE support across language boundaries. We propose to build this system on a foundation of unified source code models and metaprogramming. Nevertheless, a number of important and hard research questions still need to be addressed

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    The load shedding advisor: An example of a crisis-response expert system

    Get PDF
    A Prolog-based prototype expert system is described that was implemented by the Network Operations Branch of the NASA Goddard Space Flight Center. The purpose of the prototype was to test whether a small, inexpensive computer system could be used to host a load shedding advisor, a system which would monitor major physical environment parameters in a computer facility, then recommend appropriate operator reponses whenever a serious condition was detected. The resulting prototype performed significantly to efficiency gains achieved by replacing a purely rule-based design methodology with a hybrid approach that combined procedural, entity-relationship, and rule-based methods

    Language-integrated provenance in Haskell

    Get PDF
    Scientific progress increasingly depends on data management, particularly to clean and curate data so that it can be systematically analyzed and reused. A wealth of techniques for managing and curating data (and its provenance) have been proposed, largely in the database community. In particular, a number of influential papers have proposed collecting provenance information explaining where a piece of data was copied from, or what other records were used to derive it. Most of these techniques, however, exist only as research prototypes and are not available in mainstream database systems. This means scientists must either implement such techniques themselves or (all too often) go without. This is essentially a code reuse problem: provenance techniques currently cannot be implemented reusably, only as ad hoc, usually unmaintained extensions to standard databases. An alternative, relatively unexplored approach is to support such techniques at a higher abstraction level, using metaprogramming or reflection techniques. Can advanced programming techniques make it easier to transfer provenance research results into practice? We build on a recent approach called language-integrated provenance, which extends language-integrated query techniques with source-to-source query translations that record provenance. In previous work, a proof of concept was developed in a research programming language called Links, which supports sophisticated Web and database programming. In this paper, we show how to adapt this approach to work in Haskell building on top of the Database-Supported Haskell (DSH) library. Even though it seemed clear in principle that Haskell's rich programming features ought to be sufficient, implementing language-integrated provenance in Haskell required overcoming a number of technical challenges due to interactions between these capabilities. Our implementation serves as a proof of concept showing how this combination of metaprogramming features can, for the first time, make data provenance facilities available to programmers as a library in a widely-used, general-purpose language. In our work we were successful in implementing forms of provenance known as where-provenance and lineage. We have tested our implementation using a simple database and query set and established that the resulting queries are executed correctly on the database. Our implementation is publicly available on GitHub. Our work makes provenance tracking available to users of DSH at little cost. Although Haskell is not widely used for scientific database development, our work suggests which languages features are necessary to support provenance as library. We also highlight how combining Haskell's advanced type programming features can lead to unexpected complications, which may motivate further research into type system expressiveness

    Language-integrated provenance by trace analysis

    Get PDF
    Language-integrated provenance builds on language-integrated query techniques to make provenance information explaining query results readily available to programmers. In previous work we have explored language-integrated approaches to provenance in Links and Haskell. However, implementing a new form of provenance in a language-integrated way is still a major challenge. We propose a self-tracing transformation and trace analysis features that, together with existing techniques for type-directed generic programming, make it possible to define different forms of provenance as user code. We present our design as an extension to a core language for Links called LinksT, give examples showing its capabilities, and outline its metatheory and key correctness properties.Comment: DBPL 201
    corecore