

Edinburgh Research Explorer

Language-integrated provenance by trace analysis

Citation for published version:
Fehrenbach, S & Cheney, J 2019, Language-integrated provenance by trace analysis. in Proceedings of
The 17th International Symposium on Database Programming Languages. ACM, New York, pp. 74-84, 17th
International Symposium on Database Programming Languages, Phoenix, United States, 23/06/19.
https://doi.org/10.1145/3315507.3330198

Digital Object Identifier (DOI):
10.1145/3315507.3330198

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of The 17th International Symposium on Database Programming Languages

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/224804148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3315507.3330198
https://www.research.ed.ac.uk/portal/en/publications/languageintegrated-provenance-by-trace-analysis(d17b419a-77b4-491f-ab16-03b65860c773).html

Language-integrated provenance by trace analysis

Stefan Fehrenbach
University of Edinburgh

United Kingdom
stefan.fehrenbach@gmail.com

James Cheney
University of Edinburgh and The Alan Turing Institute

United Kingdom
jcheney@inf.ed.ac.uk

Abstract

Language-integrated provenance builds on language-inte-
grated query techniques to make provenance information
explaining query results readily available to programmers.
In previous work we have explored language-integrated ap-
proaches to provenance in Links and Haskell. However,
implementing a new form of provenance in a language-in-
tegrated way is still a major challenge. We propose a self-
tracing transformation and trace analysis features that, to-
gether with existing techniques for type-directed generic
programming, make it possible to define different forms
of provenance as user code. We present our design as an
extension to a core language for Links called LinksT, give
examples showing its capabilities, and outline its metatheory
and key correctness properties.

CCS Concepts • Information systems → Data prove-

nance; • Software and its engineering → Functional

languages;

Keywords language-integrated provenance, language-inte-
grated query, query normalization, provenance

ACM Reference Format:

Stefan Fehrenbach and James Cheney. 2019. Language-integrated
provenance by trace analysis. In Proceedings of the 17th ACM SIG-

PLAN International Symposium on Database Programming Lan-

guages (DBPL ’19), June 23, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 24 pages. https://doi.org/10.1145/3315507.3330198

1 Introduction

Provenance tracking has been heavily investigated as ameans
of making database query results explainable [4, 8], for ex-
ample to explain where in the input some output data came
from (where-provenance) or what input records justify the
presence of some output record (lineage, why-provenance).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DBPL ’19, June 23, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6718-9/19/06. . . $15.00
https://doi.org/10.1145/3315507.3330198

Many prototype implementations of provenance-tracking
have been developed as ad hoc extensions to (or middleware
layers wrapping) ordinary relational database systems [3, 25],
typically by augmenting the data model with additional an-
notations and propagating them through the query using an
enriched semantics. This approach, however, inhibits reuse
and uptake of these techniques since a special (and usually
not maintained) variant of the database system must be used.
Installing, maintaining and using such research prototypes
is not for the faint of heart.
We advocate a language-based approach to provenance,

building on language-integrated query [9, 18, 20]. In language-
integrated query, database queries are embedded in a pro-
gramming language as first-class citizens, not uninterpreted
strings, and thus benefit from typechecking and other lan-
guage services. In language-integrated provenance, we aim to
support provenance-tracking techniques by modifying the
behavior of queries at the language level to track their own
provenance. These modified queries can then be used with
unmodified, mainstream database systems. To date, Fehren-
bach and Cheney [14] have demonstrated the capabilities of
language-integrated provenance in Links, a Web and data-
base programming language, and Stolarek and Cheney [26]
adapted this approach to work with Dsh, an existing lan-
guage-integrated query library in Haskell [28]. In both
cases, where-provenance and lineage are supported as rep-
resentative forms of provenance.

However, both approaches explored so far have drawbacks.
Our previous implementations of language-integrated prove-
nance in Links are ad hoc language extensions, requiring
nontrivial changes to the Links front-end and runtime. It
is not obvious how to support both extensions at once, and
supporting additional extensions would likewise require a
major intervention to the language. In Dsh, we were able
to support both forms of provenance at once, but did need
to make superficial changes to Dsh and carry out nontriv-
ial type-level programming to make our translations pass
Haskell’s typechecker. Thus, in both cases, we feel there
is significant room for improvement, to make it easier to
develop new forms of provenance without ad hoc language
extensions or subtle type-level programming.
In this paper, we present a core language design called

LinksT that extends the query language core of Links (a vari-
ant of the Nested Relational Calculus [5]) with several power-
ful programming constructs. These include well-studied con-
structs for type-directed generic programming (e.g. Typerec

https://doi.org/10.1145/3315507.3330198
https://doi.org/10.1145/3315507.3330198

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

and typecase) [16], extended to support generic program-
ming with record types [10]. In addition, we propose novel
primitives for constructing and analyzing query traces (fol-
lowing [7]). We will show that these features suffice to define
forms of provenance programmatically, using the following
recipe. Given a query q, we first transform it to a self-tracing
query qT. We can then compose qT with a trace analysis func-
tion f P, which is simply an ordinary LinksT function that
makes use of the type and trace analysis capabilities. Each
form of provenance we support can be defined as a trace
analysis function, and can be applied to queries of any type.
Thus, f P ◦qT defines the intended query result together with
the desired provenance. Finally, we normalize f P ◦ qT to a
Nrc expression, which can be further translated to Sql and
evaluated efficiently on a mainstream database by the ex-
isting language-integrated query implementation in Links
[9]. Normalization effectively deforests the traces that would
be produced by qT if we were to execute it directly; thus,
executing the normalized Nrc query is typically much faster
than executing qT and then f P separately would be.
Our main contributions are as follows.
• We show via examples (Section 4) how a programmer
can use type and trace analysis constructs to define
different modifications of query behavior, for example
to extract where-provenance and lineage from traces.
• We present the language design of LinksT. We infor-
mally introduce the novel trace constructors in Sec-
tion 3 and present syntax and type system details in
Section 5. This includes traces and trace analysis oper-
ations, and reviews the already-studied type-directed
generic programming features from previous work.
• We then present the self-tracing transformation (Sec-
tion 6) and the extended rewrite rule system needed for
normalization, and outline the proofs of type preserva-
tion and correctness for these components (Section 7).

We have a preliminary implementation, but the main contri-
butions of this paper concern the design and theory, and a
full-scale implementation in Links is future work.

2 The problem

As explained earlier, in previous work we have investigated
different ways of implementing where-provenance and lin-
eage on top of existing language-integrated query systems,
namely Links and Dsh. In both cases, given a query q, we
wish to construct another query qP that provides both the
ordinary query results of q and additional annotations that
provide some form of information about how query results
relate to the input data. Preferably, the transformed query
should still be in the same query language as that handled
by the existing language-integrated query system, so that
this implementation can be reused to generate efficient Sql
queries. Of course, in a typed programming language, we
also expect the generated query to be well-typed.

Agencies

(oid) name based_in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

ExternalTours

(oid) name destination type price (in £)

3 EdinTours Edinburgh bus 20
4 EdinTours Loch Ness bus 50
5 EdinTours Loch Ness boat 200
6 EdinTours Firth of Forth boat 50
7 Burns’s Islay boat 100
8 Burns’s Mallaig train 40

BoatToursQueryResult

name phone

EdinTours 412 1200
EdinTours 412 1200
Burns’s 607 3000

Figure 1. Example database and boat tours query result.

For example, for where-provenance, we wish to construct
query qwhere in which each data field in the query result
is annotated with a source location in the input database,
which we typically implement as a tuple (R,A, i) consisting
of a relation name R, attribute name A, and row identifier
(or primary key value) i . Likewise, for lineage, we wish to
construct a query qlineage in which each output record is an-
notated with a collection of references (R, i) to input records
that help “witness” or “justify” the presence of the output
record.
As a running example, consider the following boat tours

query (in Links syntax). It uses nested for comprehensions
to iterate over two tables, filtering by type and joining on
the name columns. It returns a list of records (pairs of field
name and value separated by commas and enclosed in angle
brackets) containing the agencies names and phone numbers.
See Figure 1 for an example input database and result.

for (e <- externalTours) where (e.type == "boat")

for (a <- agencies) where (a.name == e.name)

[⟨name = e.name, phone = a.phone⟩]

The where-provenance translation of this query should
annotate the field value Burns’s in the result with where-
provenance annotation (ExternalTours, name, 7), and the lin-
eage translation should annotate the row (Burns’s, 607 3000)
with lineage annotation [(Agencies,2), (ExternalTours,7)].
(Note that in lineage, the annotation of each row is a collec-
tion of input row references; both Links and Dsh can already
handle such nested query results [9, 28].)
In our previous work, we have implemented these trans-

lations either by directly changing the language implemen-
tation (in Links), or by making nontrivial modifications to

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

a language-integrated query library (in Dsh). While this
work shows that it is possible to provide (reasonably effi-
cient) language-integrated provenance via source-to-source
translation of queries, both approaches are still nontrivial
interventions to an existing implementation, and so develop-
ing new forms of provenance, or variations on existing ones,
is still a considerable challenge.

If we wish to provide the necessary query transformation
capability using high-level programming constructs, then
we face two significant challenges. First, transforming the
query expression in the direct approaches considered so far
relies on fairly heavyweight metaprogramming capabilities,
and type-safe metaprogramming by reflection over object
languages with binding constructs (such as comprehensions
in queries) is a significant challenge. Based on prior work on
general forms of provenance such as traces [1, 7] or prove-
nance polynomials [15], we might hope to avoid the need
for heavyweight metaprogramming by computing a single,
general form of query trace once and for all, and specializing
it to different forms of provenance later. However, this raises
the question of how to design a suitable tracing framework
and how to provide appropriate language constructs that
can specialize traces to different forms of provenance, in a
type-safe and efficient way. (In particular, we cannot sim-
ply reuse the provenance polynomials/semirings framework
since it is not able to capture where-provenance [8].)
Second, and related to the previous point, we need to

change not only the query behavior but also the query result

type. Specifically, in the type of qwhere, each field is replaced
with a record consisting of the ordinary data value and its
where-provenance annotation, whereas in qlineage, each el-
ement of a collection in the query result type becomes a
pair consisting of the original data and a collection of input
row references. In previous implementations, we have added
this behavior to the typechecker directly (in Links), or (in
Dsh) used type families [6] to define the effect of the where-
provenance or lineage transformations at the type level. In
the case of Dsh, this necessitated subtle changes to the Dsh
library, as well as defining evidence translations at the type
and term levels to convince Haskell’s typechecker that our
definitions were type-correct.
Thus, in both Links and Dsh, our previous work has

shown that it is possible to implement language-integrated
provenance, but the need to manipulate both query expres-
sions and their types makes this more difficult than we might
hope. Our goal, therefore, is to identify a small set of lan-
guage features that addresses all of the above needs well:
we would like to be able to customize the query behavior
to handle multiple forms of provenance, while retaining the
existing benefits demonstrated by previous implementations
of language-integrated provenance: specifically type-safety
and efficient query generation.

TRACE = λa.Typerec a (Trace Bool, Trace Int, Trace String,

λe e'.[e'], λr r'.⟨r'⟩, λb t.t)

Figure 2. The type-level function TRACE.

3 Query traces

In this section we describe what our traces look like through
a series of examples. We show how to rewrite expressions to
compute their own trace in Section 6. As described earlier,
the intent is to compose a trace analysis function with a
self-tracing query and normalize to deforest the trace and
only compute the parts that we actually need.

The trace keyword causes a query expression to be traced.
For example, trace 2+3 has type Trace Int and evaluates
to OpPlus⟨l=Lit 2,r=Lit 3⟩. Here, OpPlus represents an
addition operation and its argument is a record of the left
and right subtraces, and Lit is the constructor for traces of
literal values. Traces of records are just records of traces,
and traces of lists are just lists of traces, e.g., tracing the
singleton list of the singleton record [⟨answer=42⟩] results
in [⟨answer=Lit 42⟩].
In general, the trace of an expression with type A has a

type where every base type is replaced by the traced version
of the base type, but all list and record constructors stay the
same.We can express this in LinksT directly as the type-level
function TRACE defined in Figure 2. We capitalize type-level
entities (except variables) and trace constructors, and write
type-level functions in all uppercase. Typerec folds over a
type, in this case the type variable a. It uses its first three
arguments for base types (in our case replacing Boolwith
Trace Bool, etc.). The next argument is used if the argument
is a list type and applied to the original element type and the
recursively transformed element type. The next arguments
work similarly for records and trace types.

Tables are typed as lists of records. Their traces reveal
that they are not constants in the query however. Values
originating from tables aremarkedwith the Cell constructor.
For example, the trace of the agencies table looks like this:

[⟨oid=Cell⟨tbl="agencies",col="oid",row=1,val=1⟩,

name=Cell⟨tbl="agencies",col="name",row=1,val="EdinTours"⟩,

based_in=Cell⟨tbl="agencies",col="based_in",row=1,val="Edinburgh"⟩

phone=Cell⟨tbl="agencies",col="phone",row=1,val="412 1200"⟩⟩,

⟨oid=Cell⟨tbl="agencies",col="oid",row=2,val=2⟩,

name=Cell⟨tbl="agencies",col="name",row=2,val="Burns's"⟩,

based_in=Cell⟨tbl="agencies",col="based_in",row=2,val="Glasgow"⟩

phone=Cell⟨tbl="agencies",col="phone",row=2,val="607 3000"⟩⟩]

Conditional expressions record the trace of the condition
as well as the trace of the eventually produced result. Poly-
morphic operations such as == record the type they were
applied to. The trace of a for comprehension carries both
the element type of the input collection and subtraces of
both the input and the output. For example, the following
query is a convoluted way to get ["Edinburgh"].

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

for (a <- table "agencies" ...) where (a.name == "EdinTours")

[a.based_in]

Its trace is shown below. We treat where (M) N as syntac-
tic sugar for if M then N else [].

[If⟨cond=OpEq String

⟨l=For ⟨oid:Int,name:String,...⟩

⟨in=⟨oid=Cell⟨tbl="agencies",col="oid",...⟩,

name=Cell⟨tbl="agencies",col="name",...⟩,

based_in=Cell⟨tbl="agencies",...⟩

phone=Cell⟨tbl="agencies",col="phone",...⟩⟩,

out=Cell⟨tbl="agencies",...⟩,

r=Lit "EdinTours"⟩,

out=For ⟨oid:Int,name:String,based_in:String,phone:String⟩

⟨in=⟨oid=Cell⟨tbl="agencies",col="oid",...⟩,

name=Cell⟨tbl="agencies",col="name",...⟩,

based_in=Cell⟨tbl="agencies",...⟩

phone=Cell⟨tbl="agencies",col="phone",...⟩⟩,

out=Cell⟨tbl="agencies",col="based_in",row=1,

val="Edinburgh"⟩⟩⟩⟩]

Note that the variable a does not appear explicitly in the
trace. Rather, wherever a variable in an expression would
produce a value, we record the subtrace of the value in the
trace. Also note that the trace of this singleton list is still
a singleton list, and the comprehension marker appears on
the (singleton) element. This is a significant deviation from
previous work on tracing queries [7] which will make trace
analysis much easier as trace analysis functions will not have
to deal with variable binding.

4 Trace analysis

Trace analysis functions need to be flexible enough to work
with queries of any type and any shape. The shape of a
query, and thus the depth of its trace, are not even neces-
sarily known until runtime of the program. Therefore trace
analysis functions need to be polymorphic and recursive.
In the following we use Λ for term-level type abstraction,
fix to define recursive values, typecase to branch on types,
and tracecase to branch on trace constructors. We will also
use generic record operations to work with records of any
number and type of fields. We will describe these in more
detail in Section 5.

4.1 Where-provenance

Where-provenance annotates every cell of a query result
with information about where in the database the value
was copied from. Figure 3 shows the wherep trace analysis
function and helpers. On the type level, WHERE replaces every
base type by a record with fields for the value, table, column,
and row number. For any type a, wherep takes a trace and
returns a where-provenance–annotated value. T() wraps
type-level computation, as explained later. To recover where-
provenance from a trace, wherep distinguishes three cases:
did the traced expression have a list type, a record type, or a

W = λa:Type.⟨val:a, tbl:String, col:String, row:Int⟩

WHERE = λa:Type.Typerec a (W Bool, W Int, W String,

λ_ b.List b, λ_ r.Record r, λ_ b.b)

wherep : ∀a.T(TRACE a) -> T(WHERE a)

wherep = fix (wherep:∀a.T(TRACE a) -> T(WHERE a)).Λa:Type.

typecase a of

List b => λxs.for (x <- xs) [wherep b x]

Record r => λx.rmapr wherep x

Trace b => λx.tracecase x of

Lit y => fake b y

If y => wherep (Trace b) y.out

For c y => wherep (Trace b) y.out

Cell y => y

OpPlus y => fake Int (value (Trace Int) x)

OpEq c y => fake Bool (value (Trace c) x)

fake : ∀a.T(a) -> T(W a)

fake = Λa.λx:T(a).⟨val=x,tbl="facts",col="alternative",row=-1⟩

Figure 3. The wherep trace analysis function and supporting
definitions.

base type. In case of a list type, wemap wherep over the list of
subtraces. (We use a comprehension here, but Links handles
higher-order functions like map and filter just fine.) In case
of a record type, we use rmap to map wherep over the fields
of the record of subtraces. In case the original expression
was of some base type A, the trace has type Trace A, which
we further analyze using tracecase. If the trace constructor
is Lit the value was a constant in the query and we need to
mark it with fake provenance. In the If and For cases, we
continue extracting where-provenance from their output. If
the trace constructor is Cell, the value originated from the
database and already carries the table and column names and
row number. Finally, we associate fake where-provenance
with the results of operators, whose value is computed by
the value trace analysis function (see Section 4.2).

4.2 Value

The value trace analysis function is the inverse to tracing.
It recovers a plain value from a trace by recomputing values
from operators’ subtraces and otherwise throwing away all
tracing information. It is defined in Appendix A.

4.3 Lineage

This implementation of lineage aims to emulate the behavior
of LinksL, a variant of Linkswith built-in support for lineage
[14]. This is complicated by the fact that lineage annotations
in LinksL are on rows (or more generally, list elements) but
tracing information in LinksT is on cells. We need to collect
annotations from the trace leaves and pull them up to the
nearest enclosing list constructor.

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

L = λa:Type.⟨data: a, lineage: [⟨table: String, row: Int⟩⟩

LINEAGE = λa:Type.Typerec a (Bool, Int, String,

λ_ b.List (L b), λ_ r.Record r, λ_ b.b)

lineage : ∀a.T(TRACE a) -> T(LINEAGE a)

lineage = fix (lineage:∀a.T(TRACE a) -> T(LINEAGE a)).Λa:Type.

typecase a of

List b => λts.for (t <- ts)

[⟨data = lineage b t,

lineage = linnotation b t⟩]

Record r => λx.rmapr lineage x

Trace b => λx.value (Trace b) x

linnotation : ∀a.T(TRACE a) -> [⟨table: String, row: Int⟩]

linnotation = fix (linnotation: ...).Λa:Type.

typecase a of

List b => λts.for (t <- ts) linnotation b t

Record r => λx.rfoldRmap (λ_.[⟨table:String, row:Int⟩]) r (++) []

(rmapr linnotation x)

Trace b => λt.tracecase t of

Lit c => []

If i => linnotation (TRACE b) i.out

For c f => linnotation (TRACE c) f.in ++

linnotation (TRACE b) f.out

Cell r => [⟨table = r.table, row = r.row⟩]

OpEq c e => linnotation (TRACE c) e.left ++

linnotation (TRACE c) e.right

OpPlus p => linnotation (TRACE Int) p.left ++

linnotation (TRACE Int) p.right

Figure 4. The lineage trace analysis function and support-
ing definitions.

The LINEAGE type function changes list types to carry a
list of annotations. On the value level, the implementation
is split into two functions: lineage and linnotation, as
shown in Figure 4. The lineage function matches on the
type of its argument and makes (recursive) calls to lineage,
linnotation, and value as appropriate to combine annota-
tions and values. The linnotation function does the actual
work of computing lineage annotations from traces. The
case for lists concatenates the lineage annotations obtained
by calling linnotation on the list elements. In the case for
records, we first use rmap to map linnotation over the
record, then we use rfold to flatten the record of lists of
lineage annotations into a single list. Trace constructors
have lineage annotations as follows. Literals do not have
lineage. Conditional expressions have the lineage of their
result. Comprehensions are the interesting case, where we
combine lineage annotations from the input with lineage an-
notations from the output. Each table cell has the expected
initial singleton annotation consisting of its table’s name
and its row number. Finally, the operators just collect their
arguments’ annotations.

There is an issue with this implementation of lineage: we
collect duplicate annotations. Consider the following query:

for (x <- table "xs" ⟨a: Int, b: Bool⟩) [x.a]

We just project a table to one of its columns. The lineage
of every element of the result should be one of the rows in
the table. If we apply the lineage trace analysis function to
the trace of the above query (at the appropriate type) and
normalize, we get this query expression:

for (x <- table "xs" ⟨a: Int, b: Bool⟩)

[⟨data=x.a, lineage=[⟨tbl="xs",row=x.oid⟩] ++

[⟨tbl="xs",row=x.oid⟩] ++ [⟨tbl="xs",row=x.oid⟩]⟩]

The lineage is correct, but there is too much of it. Instead of
having one annotation with table and row, we have the same
annotation three times. In fact, a similar query on a table
with n columns, would produce n + 1 annotations. Looking
at the trace expression below, we can see the problem.

for (x <- table "xs" ⟨a: Int, b: Bool⟩)

[For ⟨in=⟨a=Cell ⟨tbl="xs", col="a", row=x.oid, val=x.a⟩,

b=Cell ⟨tbl="xs", col="b", row=x.oid, val=x.b⟩⟩,

out=Cell ⟨tbl="xs", col="a", row=x.oid, val=x.a⟩⟩]

The record case combines the annotations from all of the
fields, which interacts badly with the tracing of tables, which
puts annotations on all of the fields. There are at least two
solutions to this problem that preserve tracing at the level of
cells. The ad-hoc solution is to introduce a set union operator
M ∪ N with a special normalization rule that reduces to just
M ifM and N are known to be equal statically. The proper
solution would be to support set and multiset semantics for
different portions of the same query and generate Sql queries
that eliminate duplicates where necessary.

4.4 Normalization and query generation

To compute the where-provenance of the earlier boat tour
agencies query (let’s call it Q), we can specialize the wherep
trace analysis function to the traced type of Q and apply it
to the traced query itself as follows:

wherep (TRACE [⟨name:String,phone:String⟩]) (trace Q)

We have seen that traces can get quite big and trace analysis
functions contain features with no obvious counterpart in
Sql. The rest of this paper shows how exactly tracing works,
describes the language in detail, and discusses normalization
to nested relational calculus, which we can further translate
to Sql. In the end, all of the trace construction and trace
analysis code will be eliminated and the above code will
result in a simple query like the following.

SELECT e.name AS name_val, 'externalTours' AS name_tbl,

'name' AS name_col, e.oid AS name_row,

a.phone AS phone_val, 'agencies' AS phone_tbl,

'phone' AS phone_col, a.oid AS phone_row

FROM agencies AS a, externaltours AS e

WHERE a.name = e.name AND e.type = 'boat'

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

Note that Links flattens nested records into top-level columns
and only reassembles records when fetching the results [9].

5 Links
T
syntax & static semantics

The syntax of LinksT is summarized in Figure 5. LinksT
is a simplification of the core language for Links queries
introduced by Lindley and Cheney [18]. Links employs row
typing to typecheck record expressions; row variables can be
used to quantify over parts of record types. The core Links
calculus of [18] also covers ordinary Links code and the
type-and-effect system used to ensure query expressions
only perform operations that are possible on the database.
We omit these aspects as well as more recent extensions such
as algebraic effects and handlers [17] and session types [19].

In addition to the core query language constructs, LinksT
draws heavily on the λML

i calculus [16], which supports inten-
sional polymorphism, that is, the capability to analyze types
at run time (typecase) and define types by recursion on the
structure of other types (Typerec). Analogous capabilities
are also provided for rows, similar to the type-level record
computation used in Ur/Web [10].
We use a single context Γ for both type variables α and

term variables x . In addition to the usual kinds Type and→,
we have Row, the kind of rows. We distinguish type and row
constructors from types and rows (again following λML

i). The
difference is that constructors can be subject to type analysis
(e.g. typecase), and can contain type-level computation (e.g.
Typerec), but unlike types, cannot employ polymorphism.
Constructors include base type constructors, type variables
(we write ρ for type variables with kind Row), type-level
functions and application, list, record, and trace type con-
structors, as well as Typerec to analyze type constructors.
Types do not include any computation, but constructors can
be embedded into types using T(C). More often than not,
types and constructors are either equivalent or it is obvious
from the context which we are talking about, so we will
write, e.g., Bool to mean either the type, or the constructor
Bool∗. We write [A] and [C] for list types and constructors
and ⟨R⟩ and ⟨S⟩ for record types and constructors.

Because type constructors can contain nontrivial computa-
tion due to Typerec, Rmap and type-level lambda-abstraction,
LinksT employs equivalence judgments for types, rows, and
their constructors. The more interesting of the type-level
computation rules are shown in Figure 6. The full set of equiv-
alence rules and type-level computation rules are relegated to
in the appendix due to space limitations. We conjecture that
type equivalence and typechecking are decidable for LinksT
(they are for λML

i) but this remains to be fully investigated.
Most of the typing rules are standard. Themore interesting

rules can be found in Figure 7. We require that all tables have
an oid column and otherwise only contain fields of base
types. We can map a sufficiently polymorphic function over
a record using rmap. This is reflected on the type level with

the row type constructor Rmap. We can fold a homogeneous
record into a single value using rfold. Note that we do not
specify the order of folding, so it is best to use a commutative
combining function. The rule for typecase is standard, but
the improved rule by Crary et al. [13] would work as well.
The most representative introduction and elimination

rules for the Trace type can be found in Figure 8. The con-
structors for comprehensions and polymorphic operators
carry type information. This type information is brought
back in scope when analyzing traces using typecase: the
respective branches bind both a type and a term variable.

6 The self-tracing transformation

The self-tracing transformation turns a normalized query
expression into an expression that produces a trace of its
own execution. As seen in Figure 9, most cases are straight-
forward. Variables inside a self-tracing query refer to their
subtrace directly. Tables are the only source of Cell trace
constructors. Comprehensions and conditionals need to dis-
tribute a trace constructor over a subtrace of any shape in-
cluding lists and record types. We accomplish this with the
meta-level helper function dist. It takes a type, an expression
with a hole H in it, and a value of the given type and tra-
verses lists and records until it reaches the leaves and wraps
the expression with the hole around them. Alternatively, we
could have written dist as a Links function with the type

dist: ∀a. (∀b. Trace b -> Trace b) -> TRACE a -> TRACE a

but using it requires a lot of boilerplate code for handling
impossible cases, so we prefer the definition in Figure 9.
With these definitions in hand, we check that the self-

tracing transformation preserves well-formedness. Note that
the type-level function TRACE is needed to state these prop-
erties. Proof details are in the appendix.

Lemma 10. For all types C that can appear in query types

(base types, list types, closed record types), all expressions k
with a hole H that have type Trace D assuming the hole H
has type Trace D, and all expressions M of type TRACE C ,
dist (TRACE C,k,M) has type TRACE C .

Theorem 11. If Γ ⊢ M : A then for all C , if Γ ⊢ A = T(C)
then ⟦Γ⟧ ⊢ ⟦M⟧ : T(TRACEC), where Γ is a context that maps

all term variables to closed records with fields of base type and

M is a plain Links query term in normal form.

7 Normalization

Our ultimate goal is to translate LinksT queries — including
provenance extraction by trace analysis — to Sql. We know
from previous work [9, 12, 18, 29] that Nrc expressions,
extended with sum types and higher-order functions, can
be translated to Sql as long as their return type is nested
relational. In this section, we extend query normalization to
deal with the new features for tracing and trace analysis.

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

Contexts Γ F · | Γ,α : K | Γ,x : A
Kinds K F Type | Row | K1 → K2

Constructors C,D F Bool∗ | Int∗ | String∗ | α | λα : K .C | C D | List∗ C | Record∗ S | Trace∗ C
| Typerec C (CB ,CI ,CS ,CL,CR ,CT)

Row Constructors S F · | l : C; S | ρ | Rmap C S

Types A,B F T(C) | Bool | Int | String | A→ B | List A | Record R | Trace A | ∀α : K .A
Rows R F · | l : A;R
Expressions L,M,N F c | x | λx : A.M | M N | Λα : K .M | M C | fix f : A.M

| if L thenM else N | M + N | M == N | ⟨⟩ | ⟨l = M ;N ⟩ | M .l
(Collections) | [] | [M] | M ++N | for (x ← M) N | table n ⟨R⟩
(Traces) | LitM | IfM | For C M | CellM | OpEq C M | OpPlusM
(Trace Analysis) | tracecaseM of (x .ML,x .MI ,α .x .MF ,x .MC ,α .x .ME ,x .MP)
(Type Analysis) | typecase C of (MB ,MI ,MS , β .ML, ρ.MR , β .MT) | rmapS L M | rfoldS L M N

Figure 5. The syntax of LinksT.

(λα : K .C) D { C[α B D]
Rmap C · { ·

Rmap C (l : D; S) { (l : C D; Rmap C S)

Typerec Bool (CB , . . .) { CB

Typerec [D] (. . . ,CL, . . .) { CL D (Typerec D (. . . ,CL, . . .))

Typerec ⟨S⟩ (. . . ,CR , . . .) {

CR S (Rmap (λα .Typerec α (. . . ,CR , . . .)) S)

Figure 6. Constructor and row constructor computation.

We show progress and preservation which imply the ex-
istence of a partial normalization function. Unlike standard
progress and preservation, we do not normalize to values, but
to a normal form that includes table references and residual
query code which is ultimately translated to Sql queries.
We cannot show strong normalization, since we require

recursive functions to be able to analyze arbitrary queries.

7.1 Reduction rules

LinksT uses the same general approach to normalization as
plain Links [9]. We define a relation{ between terms. Most
rules are standard. Figure 12 shows the β-rules for the new
LinksT features. Since constructors can appear in terms, e.g.,
typecase, we also need to normalize constructors. We use the
same rules as for type-level computation (Figure 6). We also
need to add commuting conversions to, e.g., lift if-then-else
out of tracecase, to expose additional β reductions. The full
rules can be found in the appendix in Figures 26, 31, 32, 33.
Unlike plain Links, we allow recursion in queries and

unroll fixpoints as necessary. It is up to the programmer to
ensure that their functions terminate. Record map and record
fold inspect their row constructor argument only. Record
map evaluates to a new record where we apply the given

function to each field’s type and value. Record fold applies
the given function to the accumulator and every record field’s
value successively. We evaluate tracecase and typecase by
reducing to the appropriate branch and substituting terms
and constructors for term and type variables.

7.2 Preservation

To prove preservation we will need several substitution lem-
mas. Substitution of variables in terms, type variables in
types, and type variables in terms are standard for λML

i [13,
21]. We additionally need variants for row constructors: sub-
stitution of row variables in types and substitution of row
variables in terms. We also need standard context manip-
ulation lemmas for weakening and swapping the order of
unrelated variables. For details, see Appendix C.1.

Nowwe can prove that the reduction relation{ preserves
the kinds of constructors and the types of terms.

Lemma 13. For all type constructors C and row constructors

S , contexts Γ, and kinds K , if Γ ⊢ C : K and C { C ′, then
Γ ⊢ C ′ : K and if Γ ⊢ S : K and S { S ′, then Γ ⊢ S ′ : K .

The proof is straightforward by induction on the kinding
derivation. For details, see Section C.6.

Lemma 14 (Preservation). For all termsM andM ′, contexts
Γ, and types A, if Γ ⊢ M : A andM { M ′, then Γ ⊢ M ′ : A.

The proof is by induction on the typing derivation Γ ⊢
M : A. The cases for record map and record fold require
type equivalence under type-level computation. The cases
for typecase require the more exotic substitution lemmas
from before. See Section C.7 for the proof.

7.3 Normal form

The goal of normalization is to perform partial evaluation of
those parts of the program that are independent of database

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

Γ ⊢ M : B Γ ⊢ A = B

Γ ⊢ M : A
· ⊢ R : Row

Γ ⊢ table n ⟨oid : Int;R⟩ : [⟨oid : Int;R⟩]
Γ ⊢ M : ∀α : Type.T(α) → T(C α) Γ ⊢ N : T(Record∗ S)

Γ ⊢ rmapS M N : T(Record∗ (Rmap C S))

Γ ⊢ L : T(C) → T(C) → T(C) Γ ⊢ M : T(C) Γ ⊢ N : T(Record∗ (Rmap (λα .α → C) S))

Γ ⊢ rfoldS L M N : T(C)

Γ ⊢ C : Type
Γ,α : Type ⊢ B : Type β, ρ,γ < Dom(Γ) Γ ⊢ MB : B[α B Bool∗] Γ ⊢ MI : B[α B Int∗] Γ ⊢ MS : B[α B String∗]

Γ, β : Type ⊢ ML : B[α B List∗ β] Γ, ρ : Row ⊢ MR : B[α B Record∗ ρ] Γ,γ : Type ⊢ MT : B[α B Trace∗ γ]
Γ ⊢ typecase C of (MB ,MI ,MS , β .ML , ρ.MR ,γ .MT) : B[α B C]

Figure 7. Term formation Γ ⊢ M : A.

Γ ⊢ c : Int
Γ ⊢ Lit c : Trace Int

Γ ⊢ M : ⟨cond : Trace Bool, out : Trace A⟩
Γ ⊢ IfM : Trace A

Γ ⊢ C : Type Γ ⊢ M : ⟨in : T(TRACE C), out : Trace A⟩
Γ ⊢ For C M : Trace A

Γ ⊢ M : ⟨tbl : String, col : String, row : Int, val : A⟩
Γ ⊢ CellM : Trace A

Γ ⊢ C : Type Γ ⊢ M : ⟨l : T(TRACE C), r : T(TRACE C)⟩
Γ ⊢ OpEq C M : Trace Bool

Γ ⊢ M : Trace A Γ,xL : A ⊢ ML : B Γ,xI : ⟨cond : Trace Bool, then : Trace A⟩ ⊢ MI : B
Γ,αF : Type,xF : ⟨in : T(TRACE αF), out : Trace A⟩ ⊢ MF : B Γ,xC : ⟨tbl : String, col : String, row : Int, val : A⟩ ⊢ MC : B

Γ,αE : Type,xE : ⟨l : T(TRACE αE), r : T(TRACE αE)⟩ ⊢ ME : B Γ,xP : ⟨l : Trace Int, r : Trace Int⟩ ⊢ MP : B
Γ ⊢ tracecaseM of (xL .ML ,xI .MI ,αF .xF .MF ,xC .MC ,αE .xE .ME ,xP .MP) : B

Figure 8. Trace introduction and elimination rules (some Lit cases and OpPlus omitted).

values. In particular, we look to eliminate all language con-
structs which we cannot translate to Sql. The LinksT normal
form (Figure 15) describes what terms look like after exhaus-
tive application of the rewriting rules. It appears we were
not successful, seeing that record map and fold, tracecase,
and typecase are all still present. However, the normal form
grammar splits constructors into normal constructors C and
neutral constructors E, and row constructors into normal
row constructors S and neutral row constructorsU .

Remark 16. Neutral constructors E and neutral row construc-

tors U always contain at least one free type variable α or ρ
and those are the only base cases for their respective sort.

We will later use the above to show that some term forms
are impossible within queries. Queries do not contain free
type variables, so E andU collapse into nothing, and terms
built from E andU (like rmap) cannot appear.

Similarly, terms are split into normal termsM and neutral
terms F . The latter are stuck on a free variable x , a stuck
constructor E, or a stuck row constructor U . We will later
argue that inside a query all variables are references to tables
and therefore restricted to be base types or records with fields
of base types. This means they cannot be functions or trace
constructors and therefore record map, record fold, tracecase,
and typecase do not actually appear in normal form queries.

7.4 Progress

Progress states that well typed terms either already are in the
normal form described in the previous section or that there is
a further reduction step possible. Reduction preserves typing,
so we can keep reducing until we reach normal form and
thus obtain a partial normalization function.
Like preservation, progress is split into two lemmas: one

for constructors and row constructors and one for terms.

Lemma 17. All well-kinded type constructorsC and row con-

structors S , are either in normal form, or there is a type con-

structor C ′ with C { C ′, or row constructor S ′ with S { S ′.

The proof is straightforward by induction on the kinding
derivations of C and S (see Section C.8).

Lemma 18 (Progress). For all well-typed termsM , eitherM
is in normal form, or there is a termM ′ withM { M ′.

The proof (see Section C.9) is by induction on the typing
derivation ofM . Most nontrivial cases have three parts: re-
duce in subterms via congruence rules; a β-rule applies; or a
commuting conversion applies.

7.5 Normal terms with query types are NRC

LinksT normal form still includes language constructs such
as typecase, which do not have an obvious Sql counterpart.
In this section, we will argue that these cannot actually occur

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

⟦x⟧ = x

⟦c⟧ = Lit c

⟦M + N ⟧ = OpPlus ⟨l = ⟦M⟧, r = ⟦N ⟧⟩

⟦M == (N : T(C))⟧ = OpEq C ⟨l = ⟦M⟧, r = ⟦N ⟧⟩

⟦⟨l = M⟩⟧ = ⟨l = ⟦M⟧⟩

⟦M .l⟧ = ⟦M⟧.l

⟦[]⟧ = []

⟦[M]⟧ = [⟦M⟧]

⟦M ++N ⟧ = ⟦M⟧ ++ ⟦N ⟧

⟦table n ⟨l : C⟩⟧ = for (y ← table n ⟨l : C⟩)

[⟨l = Cell⟨tbl = n, col = l , row = y.oid, val = y.l⟩⟩]

⟦for (x ← M : D) N : T(C)⟧ = for (x ← ⟦M⟧)

dist (TRACE C, For D ⟨in = x , out = H⟩, ⟦N ⟧)

⟦if L thenM else N : T(C)⟧ = if value (Trace Bool) ⟦L⟧

then dist (TRACE C, If⟨cond = ⟦L⟧, out = H⟩, ⟦M⟧)

else dist (TRACE C, If⟨cond = ⟦L⟧, out = H⟩, ⟦N ⟧)

dist (⟨l : C⟩,k, r) = ⟨l = dist (C,k, r .l)⟩

dist ([C],k, l) = for (x ← l) [dist (C,k,x)]

dist (Trace C,k, t) = k[H B t]

Figure 9. The self-tracing transformation.

fix f .M { M[f B fix f .M]
(Λα .M) C { M[α B C]

rmap(li :Ci) M N { ⟨li = (M Ci) N .li ⟩

rfold(li :Ci) L M N { L N .l1 (L N .l2 . . . (L N .ln M) . . .)

tracecase LitM of (x .ML , . . .) { ML[x B M]
tracecase For C M of (. . . ,αx .MF , . . .) { MF [α B C,x B M]

typecase Bool of (MB , . . .) { MB

typecase [C] of (. . . , β .ML , . . .) { ML[β B C]
typecase ⟨S⟩ of (. . . , ρ.MR , . . .) { MR [ρ B S]

Figure 12. Normalization β-rules.

in a query. Queries are closed expressions with nested rela-
tional type. Inside a query, all variables refer to tables. This
is captured in the following definition of query contexts.

Definition 19 (Query context).
• The empty context · is a query context.
• The context Γ,x : ⟨li : Ai ⟩ is a query context, if Γ is a
query context, x is not bound in Γ already, and each
type Ai is a base type.

The LinksT normal form includes neutral terms F , which
include record map and fold, tracecase, and typecase. With
the following Lemma, we will further restrict which terms F
can appear in queries to just variables x and projections x .l .

Lemma 20. A term in neutral form F that is well-typed in a

query context Γ, is of the form x or x .l .

Proof. By induction on the typing derivation. The term can-
not be a record fold or typecase, because those necessarily
contain a (row) type variable (Remark 16), which is unbound
in the query context Γ (Definition 19). It cannot be a term ap-
plication, type application, or tracecase, because the term in
function position or the scrutinee, by IH, is of the form x or
x .l , both of which are ill-typed given that the query context Γ
does not contain function types, polymorphic types, or trace
types. Projections P .l are of the form F .l or (rmapU M N).l .
The former case reduces by IH to x .l or x .l ′.l , the first of
which is okay, and the second is ill-typed. The latter case is
impossible, because U necessarily contains a row variable
and would therefore be ill-typed. This leaves variables x and
projections of variables x .l . □

Finally, we can use this to show that query terms in LinksT
normal form are actually in nested relational calculus already.

Theorem 22. If M is a term in normal form with a nested

relational type in a query context Γ, then M is in the nested

relational calculus (Figure 21).

The proof (Section C.11) is by induction on the typing
derivation, making use of query contexts (Definition 19),
Remark 16, and Lemma 20.

From here, we can use previous work such as query shred-
ding [9] or flattening [28] to produce Sql.

8 Related work

Extracting provenance from traces is not a new idea [2, 7,
22]. What makes our work different is that traces and trace
analysis are defined in the language itself. In combination
with query normalization, this makes LinksT the first, to
our knowledge, system that can execute user-defined query
trace analysis on the database.

The traces in LinksT take inspiration from work on slicing

of database queries and programs [7, 23, 24]. Compared to
theirs, our traces contain less information. Some information
would be easy to add, like concatenation operations or pro-
jections. Other information requires changing the structure
of traces in a more invasive way. In particular, our traces
are cell-level only and do not include information about the
binding structure of queries. We also trace only after a first
normalization phase, so traces do not include information
about, e.g., functions in the original query code. Expression-
shaped traces with explicit representation of variables like
those proposed by Cheney et al. [7], seem to make writing
well-typed analysis functions more difficult.

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

Normal constructors C F E | Bool∗ | Int∗ | String∗ | λα : K .C | List∗ C | Record∗ S | Trace∗ C
Neutral constructors E F α | E C | Typerec E (CB ,CI ,CS ,CL,CR ,CT)
Normal row constructors S F U | · | l : C; S
Neutral row constructors U F ρ | l : C;U | Rmap C U
Normal terms M,N F F | c | λx : A.M | Λα : K .M | if H thenM else N | M + N | ⟨⟩ | ⟨l = M ;N ⟩

| [] | [M] | M ++N | for (x ← T) N | table n ⟨R⟩
| LitM | IfM | For C M | CellM | OpEq C M | OpPlusM

Neutral terms F F x | P .l | F M | F C | rfoldU L M N | rmapU M N
| tracecase F of (x .ML,x .MI ,α .x .MF ,x .MC ,α .x .ME ,x .MP)
| typecase E of (MB ,MI ,MS , β .ML, ρ.MR , β .MT)

Neutral conditional H F F | M == N
Neutral projection P F F | rmapU M N
Neutral table T F F | table n ⟨R⟩

Figure 15. LinksT normal form.

Types A F Bool | Int | String | [A] | ⟨l : A⟩
Terms M, N , L F c | x | ⟨l = M⟩ | M .l | M + N | M == N

| if L then M else N | table n ⟨l : A⟩
| [] | [M] | M ++N | for (x ← N) M

Figure 21. Target normal form for queries: Nrc.

Müller et al. [22] trace query execution and show how
non-standard interpretations of the Sql semantics produce
where-provenance and lineage instead of query results. They
decompose traces into a static part that resembles the shape
of the query, and a dynamic part which records control-
flow decisions made by the database during query execution.
Their work extends to Sql features like grouping and aggre-
gation that are not implemented in Links, let alone traced
in LinksT. Unlike in LinksT, alternative interpretation of
queries happens after a trace has been recorded. Thus it is
not possible for the database to optimize, for example, filters
based on provenance information.
LinksT builds on λML

i [21]. The λr calculus of Crary et
al. [13] improves on λML

i in making runtime type informa-
tion explicit, avoiding passing types where unnecessary, and
improving the ergonomics of the typecase typing rule by
refining types in context. An actual implementation would
benefit from these improvements.

LinksT features generic record programming in the form
of record mapping and folding. Ur/Web [11] features “first
class, type-level names and records” [10]. Its generic and
metaprogramming features seem suitable for our needs, but
Ur/Web currently lacks the advanced query normalization
features we require. Type inference for LinksT is an open
problem. Type inference for Ur/Web is undecidable. How-
ever, Chlipala [10] claims that heuristics work well-enough
in practice to mostly avoid proof terms and complex type
annotations. Maybe this could be a model for LinksT, too.

While we present this work as an extension of Links
and its query normalization rules, it is conceivable that one
could similarly extend other systems such as the flattening
transformation implemented in Dsh [28], or the tagless final
implementation of query shredding by Suzuki et al. [27].

9 Conclusions

Language-integrated support for queries and their prove-
nance seems promising, but currently requires nontrivial
interventions in the language implementation or sophisti-
cated metaprogramming capabilities. In this paper, we take a
step towards making language-integrated provenance easily
customizable by factoring provenance translations into a self-
tracing transformation (that can be implemented once and
for all) and generic programming and trace analysis capa-
bilities (that can be used to implement different provenance
transformations). Nevertheless, our work so far is a founda-
tional language design and more remains to be done to make
it practical. We have not said anything about typechecking
or inference or, more generally, how LinksT interfaces with
the rest of Links. The expressiveness and generality of our
approach to traces needs to be tested further, by using it
to implement other forms of provenance. Conversely, the
features of LinksT may have further applications beyond
provenance, like the row-generic programming techniques
employed by Ur/Web. In particular, even without traces
and trace analysis, our results extend the theory of conser-
vativity for Nrc queries to normalization of typecase and
typerec constructs (albeit in the presence of nonterminat-
ing fixedpoint computations). Sharpening these results to
ensure termination of trace analysis functions would also be
an interesting challenge.

Acknowledgments This work was supported by a Google
Faculty Research Award and ERC Consolidator Grant Skye
(grant number 682315).

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

References

[1] Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2012.
A Core Calculus for Provenance. In Principles of Security and Trust.
Springer, 410–429.

[2] Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2013. A
core calculus for provenance. Journal of Computer Security 21 (2013),
919–969. https://doi.org/10.3233/JCS-130487 Full version of a POST
2012 paper.

[3] Bahareh Arab, Dieter Gawlick, Venkatesh Radhakrishnan, Hao Guo,
and Boris Glavic. 2014. A Generic Provenance Middleware for Queries,
Updates, and Transactions. In 6th USENIX Workshop on the Theory

and Practice of Provenance (TaPP 2014). USENIX Association. https:
//www.usenix.org/conference/tapp2014/agenda/presentation/arab

[4] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2001. Why
and Where: A Characterization of Data Provenance. In ICDT 2001

(LNCS). Springer, 316–330. https://doi.org/10.1007/3-540-44503-X_20
[5] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong.

1995. Principles of Programming with Complex Objects and Collection
Types. Theor. Comp. Sci. 149, 1 (1995), 3–48.

[6] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
2005. Associated Type Synonyms. In ACM SIGPLAN International Con-

ference on Functional Programming. https://doi.org/10.1145/1086365.
1086397

[7] James Cheney, Amal Ahmed, and Umut A. Acar. 2014. Database
Queries that Explain their Work. In Proceedings of the 16th Interna-

tional Symposium on Principles and Practice of Declarative Programming

(PPDP 2014). ACM, 271–282. https://doi.org/10.1145/2643135.2643143
[8] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Prove-

nance in Databases: Why, How, and Where. Foundations and Trends
in Databases 1, 4 (April 2009), 379–474. https://doi.org/10.1561/
1900000006

[9] James Cheney, Sam Lindley, and Philip Wadler. 2014. Query Shred-
ding: Efficient Relational Evaluation of Queries over Nested Mul-
tisets. In Proceedings of the 2014 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD 2014). ACM, 1027–1038.
https://doi.org/10.1145/2588555.2612186

[10] Adam Chlipala. 2010. Ur: Statically-typed Metaprogramming with
Type-level Record Computation. In Proceedings of the 31st ACM SIG-

PLAN Conference on Programming Language Design and Implemen-

tation (PLDI 2010). ACM, 122–133. https://doi.org/10.1145/1806596.
1806612

[11] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming
the Web. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL 2015). ACM,
153–165. https://doi.org/10.1145/2676726.2677004

[12] Ezra Cooper. 2009. The Script-Writer’s Dream: How to Write Great
SQL in Your Own Language, and Be Sure It Will Succeed. In DBPL

2009. LNCS, Vol. 5708. Springer, 36–51. https://doi.org/10.1007/
978-3-642-03793-1_3

[13] Karl Crary, Stephanie Weirich, and Greg Morrisett. 2002. Inten-
sional polymorphism in type-erasure semantics. Journal of Func-

tional Programming 12, 6 (2002), 567–600. https://doi.org/10.1017/
S0956796801004282

[14] Stefan Fehrenbach and James Cheney. 2018. Language-integrated
provenance. Science of Computer Programming 155 (2018), 103 – 145.
https://doi.org/10.1016/j.scico.2017.08.009 Selected and Extended pa-
pers from the International Symposium on Principles and Practice of
Declarative Programming 2016.

[15] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Prove-
nance Semirings. In Proceedings of the Twenty-sixth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems. ACM,
31–40. https://doi.org/10.1145/1265530.1265535

[16] Robert Harper and Greg Morrisett. 1995. Compiling Polymorphism
Using Intensional Type Analysis. In Proceedings of the 22nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL 1995). ACM, 130–141. https://doi.org/10.1145/199448.199475
[17] Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with

Rows and Handlers. In Proceedings of the 1st International Workshop

on Type-Driven Development (TyDe 2016). ACM, New York, NY, USA,
15–27. https://doi.org/10.1145/2976022.2976033

[18] Sam Lindley and James Cheney. 2012. Row-based Effect Types for
Database Integration. In Proceedings of the 8th ACM SIGPLANWorkshop

on Types in Language Design and Implementation (TLDI 2012). ACM,
91–102. https://doi.org/10.1145/2103786.2103798

[19] Sam Lindley and J. GarrettMorris. 2017. Lightweight functional session
types. In Behavioural Types: from Theory to Tools. River Publishers.
https://doi.org/10.13052/rp-9788793519817

[20] Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Reconcil-
ing Object, Relations and XML in the .NET Framework. In Proceedings

of the 2006 ACM SIGMOD International Conference on Management of

Data (SIGMOD 2006). ACM, 706–706. https://doi.org/10.1145/1142473.
1142552

[21] Greg Morrisett. 1995. Compiling with types. Ph.D. Dissertation.
Carnegie Mellon University. https://www.cs.cmu.edu/~rwh/theses/
morrisett.pdf

[22] Tobias Müller, Benjamin Dietrich, and Torsten Grust. 2018. You Say
’What’, I Hear ’Where’ and ’Why’: (Mis-)Interpreting SQL to Derive
Fine-grained Provenance. Proceedings of the VLDB Endowment 11, 11
(July 2018), 1536–1549. https://doi.org/10.14778/3236187.3236204

[23] Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. 2012.
Functional Programs that Explain their Work. In Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming

(ICFP 2012). ACM, 365–376. https://doi.org/10.1145/2364527.2364579
[24] Wilmer Ricciotti, Jan Stolarek, Roly Perera, and James Cheney. 2017.

Imperative Functional Programs That Explain Their Work. Proceedings
of the ACM on Programming Languages 1, ICFP, Article 14 (Aug. 2017),
28 pages. https://doi.org/10.1145/3110258

[25] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018.
ProvSQL: Provenance and Probability Management in PostgreSQL.
Proceedings of the VLDB Endowment 11, 12 (Aug. 2018), 2034–2037.
https://doi.org/10.14778/3229863.3236253

[26] Jan Stolarek and James Cheney. 2018. Language-integrated provenance
in Haskell. The Art, Science, and Engineering of Programming 2, 3 (4
2018). https://doi.org/10.22152/programming-journal.org/2018/2/11

[27] Kenichi Suzuki, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Fi-
nally, Safely-extensible and Efficient Language-integrated Query. In
Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evalua-

tion and Program Manipulation (PEPM 2016). ACM, 37–48. https:
//doi.org/10.1145/2847538.2847542

[28] Alexander Ulrich and Torsten Grust. 2015. The Flatter, the Bet-
ter: Query Compilation Based on the Flattening Transformation.
In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data (SIGMOD 2015). ACM, 1421–1426. https:
//doi.org/10.1145/2723372.2735359

[29] Limsoon Wong. 1996. Normal Forms and Conservative Extension
Properties for Query Languages over Collection Types. J. Comput.

System Sci. 52, 3 (1996), 495 – 505. https://doi.org/10.1006/jcss.1996.
0037

https://doi.org/10.3233/JCS-130487
https://www.usenix.org/conference/tapp2014/agenda/presentation/arab
https://www.usenix.org/conference/tapp2014/agenda/presentation/arab
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/2643135.2643143
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1145/2588555.2612186
https://doi.org/10.1145/1806596.1806612
https://doi.org/10.1145/1806596.1806612
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1007/978-3-642-03793-1_3
https://doi.org/10.1007/978-3-642-03793-1_3
https://doi.org/10.1017/S0956796801004282
https://doi.org/10.1017/S0956796801004282
https://doi.org/10.1016/j.scico.2017.08.009
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/199448.199475
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://www.cs.cmu.edu/~rwh/theses/morrisett.pdf
https://www.cs.cmu.edu/~rwh/theses/morrisett.pdf
https://doi.org/10.14778/3236187.3236204
https://doi.org/10.1145/2364527.2364579
https://doi.org/10.1145/3110258
https://doi.org/10.14778/3229863.3236253
https://doi.org/10.22152/programming-journal.org/2018/2/11
https://doi.org/10.1145/2847538.2847542
https://doi.org/10.1145/2847538.2847542
https://doi.org/10.1145/2723372.2735359
https://doi.org/10.1145/2723372.2735359
https://doi.org/10.1006/jcss.1996.0037
https://doi.org/10.1006/jcss.1996.0037

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

· is well-formed

Γ ⊢ A : Type x < Dom(Γ)

Γ, x : A is well-formed

Γ is well-formed α < Dom(Γ)

Γ, α : K is well-formed

Figure 23. Well-formed contexts Γ.

Γ well-formed

Γ ⊢ Bool∗ : Type

Γ well-formed

Γ ⊢ Int∗ : Type

Γ well-formed

Γ ⊢ String∗ : Type

Γ(α) = K

Γ ⊢ α : K

Γ, α : K1 ⊢ C : K2

Γ ⊢ λα : K1 .C : K1 → K2

Γ ⊢ C : K1 → K2 Γ ⊢ D : K1

Γ ⊢ C D : K2

Γ ⊢ C : Type

Γ ⊢ List∗ C : Type

Γ ⊢ S : Row

Γ ⊢ Record∗ S : Type

Γ ⊢ C : Type

Γ ⊢ Trace∗ C : Type

Γ ⊢ C : Type Γ ⊢ CB : K Γ ⊢ CI : K Γ ⊢ CS : K Γ ⊢ CL : Type→ K → K Γ ⊢ CR : Row→ Row→ K Γ ⊢ CT : Type→ K → K

Γ ⊢ Typerec C (CB, CI , CS , CL, CR, CT) : K

Γ well-formed

Γ ⊢ · : Row

Γ ⊢ C : Type Γ ⊢ S : Row

Γ ⊢ l : C ; S : Row

Γ ⊢ C : Type→ Type Γ ⊢ S : Row

Γ ⊢ Rmap C S : Row

Figure 24. Constructor and row constructor kinding.

Γ ⊢ C : Type

Γ ⊢ T(C) : Type

Γ well-formed

Γ ⊢ Bool : Type

Γ well-formed

Γ ⊢ Int : Type

Γ well-formed

Γ ⊢ String : Type

Γ, α : K ⊢ A : Type α < Dom(Γ)

Γ ⊢ ∀α : K .A : Type

Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ A→ B : Type

Γ ⊢ A : Type

Γ ⊢ List A : Type

Γ ⊢ R : Row

Γ ⊢ Record R : Type

Γ ⊢ A : Type

Γ ⊢ Trace A : Type

Γ ⊢ S : Row

Γ ⊢ T(S) : Row

Γ well-formed

Γ ⊢ · : Row

Γ ⊢ A : Type Γ ⊢ R : Row

Γ ⊢ l : A;R : Row

Figure 25. Type and row type kinding.

A The value trace analysis function

VALUE = λa:Type.Typerec a (Bool, Int, String, λ_ b.List b, λ_ r.Record r, λc _.c)

value : ∀a.T(a) -> T(VALUE a)

value = fix (value: ∀a.T(a) -> T(VALUE a)).Λa:Type.

typecase a of

Bool => λx:Bool.x
Int => λx:Int.x
String => λx:String.x
List b => λx:List b.for (y <- x) [value b y]

Record r => λx:Record r.rmapr value x

Trace b => λx:Trace b.tracecase x of

Lit y => y

If y => value (Trace b) y.out

For c y => value (Trace b) y.out

Cell y => y.data

OpPlus y => value (Trace Int) y.left + value (Trace Int) y.right

OpEq c y => value (TRACE c) y.left == value (TRACE c) y.right

B Full formalization of Links
T

B.1 Kinding judgments

• Figure 23 gives the rules for well-typed contexts (Γ,α : K is well-formed)
• Figure 24 defines the well-formedness judgment for type constructors (Γ ⊢ C : K)
• Figure 25 defines the well-formedness judgment for types (Γ ⊢ A : K)

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

S { S ′ ⇒ l : C ; S { l : C ; S ′

C { C′ ⇒ l : C ; S { l : C′; S

C { C′ ⇒ C D { C′ D

D { D′ ⇒ C D { C D′

(λα : K .C) D { C[α B D]

C { C′ ⇒ λα : K .C { λα : K .C′

C { C′ ⇒ List∗ C { List∗ C′

C { C′ ⇒ Trace∗ C { Trace∗ C′

S { S ′ ⇒ Record∗ S { Record∗ S ′

Rmap C · { ·

Rmap C (l : D ; S) { (l : C D ; Rmap C S)

S { S ′ ⇒ Rmap C S { Rmap C S ′

C { C′ ⇒ Rmap C S { Rmap C′ S

C { C′ ⇒ Typerec C (CB, CI , CS , CL, CR, CT) { Typerec C′ (CB, CI , CS , CL, CR, CT)

CB { C′B ⇒ Typerec C (CB, CI , CS , CL, CR, CT) { Typerec C (C′B, CI , CS , CL, CR, CT)

.

.

.

Typerec Bool∗ (CB, CI , CS , CL, CR, CT) { CB
Typerec Int∗ (CB, CI , CS , CL, CR, CT) { CI

Typerec String∗ (CB, CI , CS , CL, CR, CT) { CS
Typerec List∗ D (CB, CI , CS , CL, CR, CT) { CL D (Typerec D (CB, CI , CS , CL, CR, CT))

Typerec Record∗ S (CB, CI , CS , CL, CR, CT) { CR S (Rmap (λα .Typerec α (CB, CI , CS , CL, CR, CT)) S)

Typerec Trace∗ D (CB, CI , CS , CL, CR, CT) { CT D (Typerec D (CB, CI , CS , CL, CR, CT))

Figure 26. Constructor and row constructor computation.

B.2 Type-level computation and equivalence

• Figure 26 defines the reduction relation for type and row constructors (C { C ′, S { S ′)
• Figure 27 defines equivalence for type and row constructors (Γ ⊢ C = C ′ : K , Γ ⊢ S = S ′ : K)
• Figure 28 defines type and row equivalence (Γ ⊢ A = B : K , Γ ⊢ S = S ′ : Type)

B.3 Type judgments

• Figure 29 defines the typing judgment for most of the LinksT constructs (Γ ⊢ M : A)
• Figure 30 defines the typing rules introducing and eliminating traces.

B.4 Normalization

• Figure 31 defines the main computational rules (β-rules) for normalization (M { M ′)
• Figure 32 defines commuting conversion rules for normalization (M { M ′)
• Figure 33 defines congruence rules for normalization (M { M ′)

C Proofs

C.1 Additional properties

Besides the properties stated in the main body of the paper, the following additional properties are needed:

Lemma 34 (Substitution lemmas).
1. If Γ,x : A ⊢ M : B and Γ ⊢ N : A then Γ ⊢ M[x B N] : B.

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

Γ ⊢ C : K

Γ ⊢ C = C : K

Γ ⊢ D = C : K

Γ ⊢ C = D : K

Γ ⊢ C = C′ : K Γ ⊢ C′ = C′′ : K

Γ ⊢ C = C′′ : K

Γ ⊢ C : K → K ′

Γ ⊢ λα : K .C α = C : K → K ′

Γ, α : K ⊢ C = D : K ′ α < Dom(Γ)

Γ ⊢ λα : K .C = λα : K .D : K → K ′
Γ ⊢ C = C′ : K ′ → K Γ ⊢ D = D′ : K ′

Γ ⊢ C D = C′ D′ : K

Γ ⊢ C = D : K

Γ ⊢ List∗ C = List∗ D : K

Γ ⊢ S = S ′ : K

Γ ⊢ Record∗ S = Record∗ S ′ : K

Γ ⊢ C = D : K

Γ ⊢ Trace∗ C = Trace∗ D : K

Γ ⊢ C : K Γ ⊢ D : K C { D

Γ ⊢ C = D : K

Γ well-formed

Γ ⊢ · = · : Row

Γ ⊢ C = D : Type Γ ⊢ S = S ′ : Row

Γ ⊢ (l : C ; S) = (l : D ; S ′) : Row

Γ ⊢ C = D : Type→ Type Γ ⊢ S = S ′ : Row

Γ ⊢ Rmap C S = Rmap D S ′ : Row

Γ ⊢ C = C′ : K Γ ⊢ CB = C′B : K
Γ ⊢ CI = C′I : K Γ ⊢ CS = C′S : K Γ ⊢ CL = C′L : Type→ K → K Γ ⊢ CR = C′R : Row→ Row→ K Γ ⊢ CT = C′T : Type→ K → K

Γ ⊢ Typerec C (CB, CI , CS , CL, CR, CT) = Typerec C′ (C′B, C
′
I , C

′
S , C

′
L, C

′
R, C

′
T) : K

Figure 27. Constructor and row constructor equivalence.

Γ well-formed

Γ ⊢ T(Bool∗) = Bool : Type

Γ well-formed

Γ ⊢ T(Int∗) = Int : Type

Γ well-formed

Γ ⊢ T(String∗) = String : Type

Γ ⊢ C : Type

Γ ⊢ T(List∗ C) = List T(C) : Type

Γ ⊢ S : Row

Γ ⊢ T(Record∗ S) = Record T(S) : Type

Γ ⊢ C : Type

Γ ⊢ T(Trace∗ C) = Trace T(C) : Type Γ ⊢ T (·) = · : Row

Γ ⊢ C : Type Γ ⊢ S : Row

Γ ⊢ T (l : C ; S) = (l : T (C);T (S)) : Row

Γ ⊢ C = D : Type

Γ ⊢ T(C) = T(D) : Type

Γ ⊢ S = S ′ : Row

Γ ⊢ T(S) = T(S ′) : Row

Γ ⊢ A = B : Type

Γ ⊢ List A = List B : Type

Γ ⊢ R = R′ : Row

Γ ⊢ Record R = Record R′ : Type

Γ ⊢ A = B : Type

Γ ⊢ Trace A = Trace B : Type

Γ ⊢ A = A′ : Type Γ ⊢ B = B′ : Type

Γ ⊢ A→ B = A′ → B′ : Type

Γ ⊢ A = B : Type

Γ ⊢ ∀α .A = ∀α .B : Type

Γ well-formed

Γ ⊢ · = · : Row

Γ ⊢ A = B : Type Γ ⊢ R = R′ : Row

Γ ⊢ (l : A;R) = (l : B;R′) : Row

Figure 28. Type and row type equivalence.

2. If Γ,α : K ⊢ A : K ′ and Γ ⊢ C : K then Γ[α B C] ⊢ A[α B C] : K ′[α B C].
3. If Γ, ρ : K ⊢ A : K ′ and Γ ⊢ S : K then Γ[ρ B S] ⊢ A[ρ B S] : K ′[ρ B S].
4. If Γ,α : K ⊢ M : A and Γ ⊢ C : K then Γ[α B C] ⊢ M[α B C] : A[α B C].
5. If Γ, ρ : K ⊢ M : A and Γ ⊢ S : K then Γ[ρ B S] ⊢ M[ρ B S] : A[ρ B S].

Lemma 35 (Weakening). If Γ ⊢ M : A, Γ ⊢ B : K , and x does not appear free in Γ,M , A, then Γ,x : B ⊢ M : A.

Lemma 36 (Context swap).
1. If Γ,x : Ax ,y : Ay ⊢ M : B then Γ,y : Ay ,x : Ax ⊢ M : B.
2. If Γ,x : Ax ,y : Ay ⊢ B : KB then Γ,y : Ay ,x : Ax ⊢ B : KB .

3. If Γ,α : Kα ,y : Ay ⊢ M : B and α does not appear free in Ay then Γ,y : Ay ,α : Kα ⊢ M : B.
4. If Γ,α : Kα ,y : Ay ⊢ B : KB and α does not appear free in Ay then Γ,y : Ay ,α : Kα ⊢ B : KB .

5. If Γ,x : Ax , β : Kβ ⊢ M : B then Γ, β : Kβ ,x : Ax , ⊢ M : B.
6. If Γ,x : Ax , β : Kβ ⊢ B : KB then Γ, β : Kβ ,x : Ax , ⊢ B : KB .

7. If Γ,α : Kα β : Kβ ⊢ M : B and α does not appear free in Kβ then Γ, β : Kβ ,α : Kα ⊢ M : B.
8. If Γ,α : Kα β : Kβ ⊢ B : KB and α does not appear free in Kβ then Γ, β : Kβ ,α : Kα ⊢ B : KB .

Lemma 37. For all query type constructors C and row constructors S and well-formed contexts Γ:

Γ ⊢ VALUE(TRACE C) = C

and

Γ ⊢ Rmap VALUE (Rmap TRACE S) = S

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

Σ(c) = A

Γ ⊢ c : A

Γ(x) = A

Γ ⊢ x : A

Γ ⊢ A : Type Γ, x : A ⊢ M : B x < Dom(Γ)

Γ ⊢ λx : A.M : A→ B

Γ ⊢ M : A→ B Γ ⊢ N : A

Γ ⊢ M N : B

Γ, α : K ⊢ M : A α < Dom(Γ)

Γ ⊢ Λα : K .M : ∀α : K .A

Γ ⊢ M : ∀α : K .A Γ ⊢ C : K

Γ ⊢ M C : A[α B C]

Γ ⊢ A Γ, f : A ⊢ M : A

Γ ⊢ fix f : A.M : A

Γ ⊢ L : Bool Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ if L then M else N : A

Γ ⊢ M : Int Γ ⊢ N : Int

Γ ⊢ M + N : Int

Γ ⊢ M : A Γ ⊢ N : A Γ ⊢ A : Type

Γ ⊢ M == N : Bool

· ⊢ R : Row

Γ ⊢ table n ⟨oid : Int, R⟩ : List⟨oid : Int;R⟩

Γ ⊢ A : Type

Γ ⊢ [] : List A

Γ ⊢ M : A

Γ ⊢ [M] : List A

Γ ⊢ M : List A Γ ⊢ N : List A

Γ ⊢ M ++N : List A

Γ ⊢ M : List A Γ, x : A ⊢ N : List B

Γ ⊢ for (x ← M) N : List B

Γ well-formed

Γ ⊢ ⟨⟩ : Record ()

Γ ⊢ M : A Γ ⊢ N : Record R

Γ ⊢ ⟨l = M ;N ⟩ : Record (l : A;R)

Γ ⊢ M : Record (l : A;R)

Γ ⊢ M .l : A

Γ ⊢ M : B Γ ⊢ A = B

Γ ⊢ M : A

Γ ⊢ M : ∀α : Type.T(α) → T(C α) Γ ⊢ N : T(Record∗ S)

Γ ⊢ rmapS M N : T(Record∗ (Rmap C S))

Γ ⊢ L : T(C) → T(C) → T(C) Γ ⊢ M : T(C) Γ ⊢ N : T(Record∗ (Rmap (λα .α → C) S))

Γ ⊢ rfoldS L M N : T(C)

Γ ⊢ C : Type Γ, α : Type ⊢ B : Type β, ρ, γ < Dom(Γ) Γ ⊢ MB : B[α B Bool∗] Γ ⊢ MI : B[α B Int∗]
Γ ⊢ MS : B[α B String∗] Γ, β : Type ⊢ ML : B[α B List∗ β] Γ, ρ : Row ⊢ MR : B[α B Record∗ ρ] Γ, γ : Type ⊢ MT : B[α B Trace∗ γ]

Γ ⊢ typecase C of (MB, MI , MS , β .ML, ρ .MR, γ .MT) : B[α B C]

Figure 29. Term formation Γ ⊢ M : A.

Γ ⊢ c : Bool

Γ ⊢ Lit c : Trace Bool

Γ ⊢ c : Int

Γ ⊢ Lit c : Trace Int

Γ ⊢ c : String

Γ ⊢ Lit c : Trace String

Γ ⊢ M : ⟨cond : Trace Bool, out : Trace A⟩

Γ ⊢ If M : Trace A

Γ ⊢ C : Type Γ ⊢ M : ⟨in : T(TRACE C), out : Trace A⟩

Γ ⊢ For C M : Trace A

Γ ⊢ M : ⟨table : String, column : String, row : Int, data : A⟩

Γ ⊢ Cell M : Trace A

Γ ⊢ C : Type Γ ⊢ M : ⟨left : T(TRACE C), right : T(TRACE C)⟩

Γ ⊢ OpEq C M : Trace Bool

Γ ⊢ M : ⟨left : Trace Int, right : Trace Int⟩

Γ ⊢ OpPlus M : Trace Int

Γ ⊢ M : Trace A Γ, xL : A ⊢ ML : B Γ, xI : ⟨cond : Trace Bool, then : Trace A⟩ ⊢ MI : B
Γ, αF : Type, xF : ⟨in : T(TRACE αF), out : Trace A⟩ ⊢ MF : B Γ, xC : ⟨table : String, column : String, row : Int, data : A⟩ ⊢ MC : B

Γ, αE : Type, xE : ⟨left : T(TRACE αE), right : T(TRACE αE)⟩ ⊢ ME : B Γ, xP : ⟨left : Trace Int, right : Trace Int⟩ ⊢ MP : B

Γ ⊢ tracecase M of (xL .ML, xI .MI , αF .xF .MF , xC .MC , αE .xE .ME, xP .MP) : B

Figure 30. Trace introduction and elimination rules.

Lemma 38. For all query types C , TRACE C is not a base type.

Definition 39 (Trace context). ⟦Γ⟧ maps term variable x to T(TRACE C) if and only if Γ maps x to A, where C is the obvious
constructor with · ⊢ A = T(C).

Lemma 40. For every query type Amade of base types, list constructors, and closed records, there existsC such that Γ ⊢ A = T(C)
in a well-formed context Γ.

C.2 Proof of Lemma 37

Proof. By induction on query types C and closed rows of query types S .
• Base types Bool∗, Int∗, String∗:

VALUE(TRACE Bool∗) = VALUE(Trace Bool∗) = Bool∗

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

(λx .M) N { M[x B N]
fix f .M { M[f B fix f .M]

(Λα .M) C { M[α B C]
if true then M else N { M

if false then M else N { N

⟨li = Mi ⟩.li { Mi

rmap(li :Ci) M N { ⟨li = (M Ci) N .li ⟩

rfold(li :Ci) L M N { L N .l1 (L N .l2 . . . (L N .ln M) . . .)

for (x ← []) N { []
for (x ← [M]) N { N [x B M]

tracecase Lit M of (x .ML, MI , MF , MC , ME, MP) { ML[x B M]
tracecase If M of (ML, x .MI , MF , MC , ME, MP) { MI [x B M]

tracecase For C M of (x .ML, x .MI , α .x .MF , x .MC , α .x .ME, x .MP) { MF [α B C, x B M]
tracecase Cell M of (x .ML, x .MI , α .x .MF , x .MC , α .x .ME, x .MP) { MC [x B M]

tracecase OpEq C M of (x .ML, x .MI , α .x .MF , x .MC , α .x .ME, x .MP) { ME [α B C, x B M]
tracecase OpPlus M of (x .ML, x .MI , α .x .MF , x .MC , α .x .ME, x .MP) { MP [x B M]

typecase Bool of (MB, MI , MS , β .ML, ρ .MR, γ .MT) { MB

typecase Int of (MB, MI , MS , β .ML, ρ .MR, γ .MT) { MI

typecase String of (MB, MI , MS , β .ML, ρ .MR, γ .MT) { MS

typecase List C of (MB, MI , MS , β .ML, ρ .MR, γ .MT) { ML[β B C]
typecase Record S of (MB, MI , MS , β .ML, ρ .MR, γ .MT) { MR [ρ B S]
typecase Trace C of (MB, MI , MS , β .ML, ρ .MR, γ .MT) { MT [γ B C]

Figure 31. Normalization β-rules. See also commuting conversions in Figure 32, congruence rules in Figure 33, and constructor
computation rules in Figure 26

(if L then M1 else M2) N { if L then M1 N else M2 N

(if L then M1 else M2) C { if L then M1 C else M2 C

(if L then M else N).l { if L then M .l else N .l

for (x ← M1 ++M2) N { (for (x ← M1) N) ++ (for (x ← M2) N)

for (x ← for (y ← L) M) N { for (y ← L) for (x ← M) N

if (if L then M1 else M2) then N1 else N2 { if L then (if M1 then N1 else N2) else (if M2 then N1 else N2)

for (x ← if L then M1 else M2) N { if L then for (x ← M1) N else for (x ← M2) N

tracecase if L then M1 else M2 of (ML, MI , MF , MC , ME, MP) { if L then tracecase M1 of (ML, MI , MF , MC , ME, MP)

else tracecase M2 of (ML, MI , MF , MC , ME, MP)

Figure 32. Commuting conversions reorder expressions to expose more β-reductions.

• List types List∗ D:

VALUE(TRACE (List∗ D)) = VALUE(List∗ (TRACE D))

= List∗ (VALUE(TRACE D))

= List∗ D

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

M ⇝ M ′

I [M]⇝ I [M ′]

C ⇝ C′

J [C]⇝ J [C′]

Term frames I [] F λx .[] | [] N | M [] | Λα .[] | [] C | if [] then M else N | if L then [] else N if L then M else []
| ⟨l = [];N ⟩ | ⟨l = M ; []⟩ | [].l | rmapS [] N | rmapS M [] | rfoldS [] M N | rfoldS L [] N | rfoldS L M []
| [[]] | [] ++N | M ++N | [] == N | M == N | [] + N | M + N | for (x ← []) N | for (x ← M) []
| Lit [] | If [] | For C [] | Cell [] | OpEq C [] | OpPlus []
| tracecase [] of (ML, MI , MF , MC , ME, MP) | tracecase M of ([], MI , MF , MC , ME, MP)
| tracecase M of (ML, [], MF , MC , ME, MP) | tracecase M of (ML, MI , [], MC , ME, MP)
| tracecase M of (ML, MI , MF , [], ME, MP) | tracecase M of (ML, MI , MF , MC , [], MP)
| tracecase M of (ML, MI , MF , MC , ME, [])
| typecase C of ([], MI , MS , β .ML, ρ .MR, γ .MT)
| typecase C of (MB, [], MS , β .ML, ρ .MR, γ .MT) | typecase C of (MB, MI , [], β .ML, ρ .MR, γ .MT)
| typecase C of (MB, MI , MS , β .[], ρ .MR, γ .MT) | typecase C of (MB, MI , MS , β .ML, ρ .[], γ .MT)
| typecase C of (MB, MI , MS , β .ML, ρ .MR, γ .[])

Constructor frames J [] F M [] | rmap[] M N | rfold[] L M N | For [] M | OpEq [] M
| typecase [] of (MB, MI , MS , β .ML, ρ .MR, γ .MT)

Figure 33. Congruence rules allow subterms to reduce independently.

• Record types Record∗ S :

VALUE(TRACE (Record∗ S)) = VALUE(Record∗ (Rmap TRACE S))

= Record∗ (Rmap VALUE (Rmap TRACE S))

= Record∗ S

• Empty row ·: Rmap VALUE (Rmap TRACE ·) = ·
• Row cons (l : A, S):

Rmap VALUE (Rmap TRACE (l : A, S))
=Rmap VALUE (l : TRACE A, Rmap TRACE S)

=(l : VALUE (TRACE A), Rmap VALUE (Rmap TRACE S))

=(l : A, Rmap VALUE (Rmap TRACE S))

=(l : A, S)

□

C.3 Proof of Lemma 38

Proof. By induction on query types C made up from base types, lists, and closed records. Applying TRACE to base types Bool,
Int, and String results in traced base types Trace Bool, Trace Int, and Trace String, respectively. List types are guarded
by the List type constructor, and similarly for records. Traces are not query types, but if they were, the induction hypothesis
would apply. □

C.4 Proof of Lemma 10

Proof. By induction on the query type C .
• The base cases are Bool, Int, and String. For any base type O out of these, we have TRACE O = Trace O . We have
dist (Trace O,k, t) = k[H B t] and need to show that it has type Trace O . Both t and H have type Trace O , so
substituting one for the other in k does not change the type (Lemma 34).
• CaseC = List (TRACEC ′): We need the right-hand side for (x ← l) [dist (TRACEC ′,k,x)] to have type TRACE (ListC ′).
We use the rules for comprehension and singleton list. We now need to show that dist (TRACEC ′,k,x) has type TRACEC ′
which is true by induction hypothesis with the same k .
• Case C = ⟨l : TRACE C ′⟩: The right-hand side ⟨l = dist (TRACE C ′,k, r .l)⟩ needs to have type ⟨l : TRACE C ′⟩. Thus, by
record construction and record projection, we need each of the expressions dist (TRACE C ′,k, r .l) to have type TRACE C ′
which they do by induction hypothesis. □

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

C.5 Proof of Theorem 11

Proof. By induction on the typing derivation forM : T(C). Almost all cases require that some subterms have a type T(C ′) that
is equal to some query type A. We can obtain this constructor C ′ by Lemma 40.

• Case
Γ(x) = A

Γ ⊢ x : A
:
⟦Γ⟧(x) = T(TRACE C) (Definition 39)

⟦Γ⟧ ⊢ x : T(TRACE C)
• Literals c have base types Bool, Int, or String. Their traces Lit c have types Trace Bool, Trace Int, or Trace String,
respectively.

• Case
Γ ⊢ L : Bool Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ if L thenM else N : A
:

The right hand side of the self-tracing transform is another if-then-else with condition value (Trace Bool) ⟦L⟧
and then-branch

dist (TRACE C, If ⟨cond = ⟦L⟧, out = H⟩, ⟦M⟧)

and similar else-branch.
In the condition, we apply value : ∀α .T(α) → T(VALUE α) to a subtrace of type TRACE Bool by induction hypothesis.
Therefore it has type VALUE (TRACE Bool) which is equal to Bool by Lemma 37.
For all base types D, If ⟨cond = ⟦L⟧, out = H⟩ has type Trace D assuming H : Trace D. We have ⟦M⟧ : T(TRACEC) by
IH. Therefore, by Lemma 10, the whole term obtained by dist has type TRACE C . The else-branch is analogous and the
whole expression has type T(TRACE C).
• Case

Γ ⊢ [] : List A
:

⟦Γ⟧ ⊢ T(TRACE C) : Type using A = T(C)

⟦Γ⟧ ⊢ [] : List T(TRACE C)

⟦Γ⟧ ⊢ [] : T(List∗ (TRACE C))
⟦Γ⟧ ⊢ [] : T(TRACE (List∗ C))

• Case
Γ ⊢ M : A

Γ ⊢ [M] : List A
:

IH
⟦Γ⟧ ⊢ ⟦M⟧ : T(TRACE C)

⟦Γ⟧ ⊢ [⟦M⟧] : List T(TRACE C)

⟦Γ⟧ ⊢ [⟦M⟧] : T(TRACE (List∗ C))

• Case
Γ ⊢ M : List A Γ ⊢ N : List A

Γ ⊢ M ++N : List A
:

IH
⟦Γ⟧ ⊢ ⟦M⟧ : T(TRACE (List∗ C))

⟦Γ⟧ ⊢ ⟦M⟧ : List T(TRACE C) analogous for N
⟦Γ⟧ ⊢ ⟦M⟧ ++ ⟦N ⟧ : List T(TRACE C)

⟦Γ⟧ ⊢ ⟦M⟧ ++ ⟦N ⟧ : T(TRACE (List∗ C))

• Case
Γ ⊢ M : List B Γ,x : B ⊢ N : List A

Γ ⊢ for (x ← M) N : List A
:

IH

⟦Γ⟧ ⊢ ⟦M⟧ : T(TRACE (List∗ D))

⟦Γ⟧ ⊢ ⟦M⟧ : List T(TRACE D)

⋆

⟦Γ⟧, x : T(TRACE D) ⊢ b : List T(TRACE C)

⟦Γ⟧ ⊢ for (x ← ⟦M⟧) b : List T(TRACE C)

⟦Γ⟧ ⊢ for (x ← ⟦M⟧) b : T(TRACE (List∗ C))

where b = dist (TRACE C, For D ⟨in = x , out = H⟩, ⟦N ⟧) and ⋆ follows from the induction hypothesis applied to ⟦N ⟧
and Lemma 10.

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

• The case for records is similar to that for list concatenation, in that we have multiple subtraces where the induction
hypothesis applies, we just collect them into a record instead of another list concatenation.
• Case record projection: The projection was well-typed before tracing, so the record termM contains label l with some
type A. By induction hypothesis and A = T(TRACE C) the trace ofM contains label l with type TRACE C .

IH
⟦Γ⟧ ⊢ ⟦M⟧ : ⟨l• : T(TRACE C), . . . ⟩

⟦Γ⟧ ⊢ ⟦M⟧.l : T(TRACE C)

• Case table: This is a slightly more complicated version of the base case for constants. We essentially map the Cell trace
constructor over every table cell. Thus we go from a list of records of base types to a list of records of Traced base types.

⟦Γ⟧ ⊢ table . . .

⟦Γ⟧,y : ⟨l : C⟩ ⊢ y.l : C
⋆

⟦Γ⟧,y : ⟨l : C⟩ ⊢ [⟨l = cell (n, l ,y.oid,y.l)⟩] : [⟨l : Trace C⟩]

⟦Γ⟧ ⊢ for (y ← table n ⟨l : C⟩) [⟨l = cell (n, l ,y.oid,y.l)⟩] : [⟨l : Trace C⟩]

⟦Γ⟧ ⊢ for (y ← table n ⟨l : C⟩) [⟨l = cell (n, l ,y.oid,y.l)⟩] : T(TRACE [⟨l : C⟩])

There are a couple of steps missing at⋆. The singleton list step is trivial. Then we have one precondition for each column
in the table. Recall that cell is essentially an abbreviation for Cell, which records table name, column name, row number,
and the actual cell data in a trace. We use the table name n and the record label l as string values for the table and column
fields. We enforce in the typing rules that every table has the oid column of type Int.
• Case equality:

⟦Γ⟧ ⊢ C : Type
IH

⟦Γ⟧ ⊢ ⟦M⟧ : T(TRACE C)

IH
⟦Γ⟧ ⊢ ⟦N ⟧ : T(TRACE C)

⟦Γ⟧ ⊢ OpEq C ⟨left = ⟦M⟧, right = ⟦N ⟧⟩ : Trace Bool

• Case plus, with liberal application of T(TRACE Int) = Trace Int:

Induction hypothesis
⟦Γ⟧ ⊢ ⟦M⟧ : T(TRACE Int)

Induction hypothesis
⟦Γ⟧ ⊢ ⟦N ⟧ : T(TRACE Int)

⟦Γ⟧ ⊢ OpPlus ⟨left = ⟦M⟧, right = ⟦N ⟧⟩ : T(TRACE Int)

□

C.6 Proof of Lemma 13

Proof. By induction on the kinding derivation. We look at the possible reductions (see Figure 26). Congruence rules allow for
reduction in rows, function bodies, applications, list, trace, record, row map, and typerec. These all follow directly from the
induction hypothesis. The remaining cases are:
• (λα : K .C) D { C[α B D]: by Lemma 34.
• Rmap C · { ·: both sides have kind Row.
• Rmap C (l : D; S) { (l : C D; Rmap C S): from the induction hypothesis we have that C has kind Type → Type, D has
kind Type, and S has kind Row. Therefore C D has kind Type and the whole right-hand side has kind Row.
• Typerec β-rules:
– Base type right hand sides have kind Type by IH.
– Lists:

Typerec List∗ D (CB ,CI ,CS ,CL,CR ,CT) { CL D (Typerec D (CB ,CI ,CS ,CL,CR ,CT))

CL has kind Type → K → K by IH. D has kind Type by IH, and the typerec expression has kind K .
– Records:

Typerec Record∗ S (CB ,CI ,CS ,CL,CR ,CT) { CR S (Rmap (λα .Typerec α (CB ,CI ,CS ,CL,CR ,CT)) S)

CL has kind Row → Row → K by IH. S has kind Row by IH. The row map expression has kind Row, because the
type-level function has kind Type → Type.

– The trace case is analogous to the list case. □

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

C.7 Proof of Lemma 14

Proof. By induction on the typing derivation Γ ⊢ M : A. Constants, variables, empty lists, and empty records do not reduce. We
omit discussion of the cases that follow directly from the induction hypothesis, Lemma 13, and congruence rules (see Figure
33), likeM + N being able to reduce in bothM and N . The remaining, interesting reduction rules are the β-rules in Figure 31
and the commuting conversions in Figure 32. We discuss them grouped by the relevant typing rule.
• Function application:
– (λx .M) N { M[x B N]: follows from Lemma 34.
– (if L thenM1 elseM2) N { if L thenM1 N elseM2 N :
We have:

Γ ⊢ L : Bool Γ ⊢ M1 : A→ B Γ ⊢ M2 : A→ B

Γ ⊢ if L then M1 else M2 : A→ B Γ ⊢ N : A

Γ ⊢ (if L then M1 else M2) N : B

and can therefore show:

Γ ⊢ L : Bool

Γ ⊢ M1 : A→ B Γ ⊢ N : A

Γ ⊢ M1 N : B

Γ ⊢ M2 : A→ B Γ ⊢ N : A

Γ ⊢ M2 N : B

Γ ⊢ if L then M1 N else M2 N : B

• Type instantiation:
– (Λα .M) C { M[α B C]: follows from the constructor substitution lemma (Lemma 34).
– (if L then M1 else M2) C { if L then M1 C else M2 C: hoisting if-then-else out of the term works the same as
application above.

• Fixpoint: follows from the substitution lemma (Lemma 34).
• If-then-else: if the condition is a Boolean constant, the expression reduces to the appropriate branch, which has the
correct type by IH. The commuting conversion for lifting if-then-else out of the condition is type-correct by IH and
rearranging of if-then-else rules.
• List comprehensions:
– The if-then-else commuting conversion is as before.
– for (x ← []) N { []: [] has any list type and N has a list type.
– for (x ← [M]) N { N [x B M]: by substitution (Lemma 34).
– for (x ← M1 ++M2) N { (for (x ← M1) N) ++ (for (x ← M2) N): reorder rules.
– for (x ← for (y ← L) M) N { for (y ← L) for (x ← M) N :
We have:

Γ ⊢ L : [AL] Γ,y : AL ⊢ M : [AM]
Γ ⊢ for (y ← L) M : [AM] Γ,x : AM ⊢ N : [AN]

Γ ⊢ for (x ← for (y ← L) M) N : [AN]
We need:

Γ ⊢ L : [AL]
Γ,y : AL ⊢ M : [AM] Γ,y : AL,x : AM ⊢ N : [AN]

Γ,y : AL ⊢ for (x ← M) N : [AN]
Γ ⊢ for (y ← L) for (x ← M) N : [AN]

We obtain Γ,y : AL,x : AM ⊢ N : [AN] from Γ,x : AM ⊢ N : [AN] by weakening (Lemma 35) and context swap
(Lemma 36).

• Projection: The β rule is obvious, the if-then-else commuting conversion is as before.

• Type equality
Γ ⊢ N : B Γ ⊢ A = B

Γ ⊢ N : A
: for all N ′ with N { N ′ we have that Γ ⊢ N ′ : B by the induction hypothesis.

We also know that Γ ⊢ A = B, so Γ ⊢ N ′ : A by this typing rule and symmetry of type equality.
• Case rmap: Typing rule:

Γ ⊢ M : ∀α : Type.T(α) → T(C α) Γ ⊢ N : T(Record∗ S)

Γ ⊢ rmapS M N : T(Record∗ (Rmap C S))

Reduction rule:
rmap⟨li :Ci ⟩ M N { ⟨li = (M Ci) N .li ⟩

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

Need to show that ⟨li = (M Ci) N .li ⟩ : T(Record∗ (Rmap C ⟨li : Ci ⟩)). By row type constructor evaluation, that type
equals T(Record∗ ⟨li : C Ci ⟩), which is the obvious type of ⟨li = (M Ci) N .li ⟩.
• Case rfold: Typing rule:

Γ ⊢ L : T(C) → T(C) → T(C) Γ ⊢ M : T(C) Γ ⊢ N : T(Record∗ (Rmap (λα .α → C) S))

Γ ⊢ rfoldS L M N : T(C)

Reduction rule:

rfold(li :Ci) L M N { L N .l1 (L N .l2 . . . (L N .ln M) . . .)

Need to show that L N .l1 (L N .l2 . . . (L N .ln M) . . .) has type T(C).M has type T(C). L has type T(C) → T(C) → T(C).
Each N .li has type T(C), because N has a record type obtained by mapping the constant function with result C over
row S .
• Typecase typing rule:

Γ ⊢ C : Type Γ,α : Type ⊢ B : Type
β, ρ,γ < Dom(Γ) Γ ⊢ MB : B[α B Bool∗] Γ ⊢ MI : B[α B Int∗] Γ ⊢ MS : B[α B String∗]

Γ, β : Type ⊢ ML : B[α B List∗ β] Γ, ρ : Row ⊢ MR : B[α B Record∗ ρ] Γ,γ : Type ⊢ MT : B[α B Trace∗ γ]

Γ ⊢ typecaseα .B C of (MB ,MI ,MS , β .ML, ρ.MR ,γ .MT) : B[α B C]

Reduction rules:
– typecase Bool∗ of (MB ,MI ,MS , β .ML, ρ.MR ,γ .MT) { MB
Need to show thatMB : B[α B Bool∗], which is one of our hypotheses.

– typecase List∗ C of (MB ,MI ,MS , β .ML, ρ.MR ,γ .MT) { ML[β B C]
Need to show that the result of reductionML[β B C] has type B[α B List∗ C], the same as the typing rule.

Γ ⊢ ML[β B C] : B[α B List∗ C]

Instantiating the constructor substitution lemma (Lemma 34) gives us

Γ[β B C] ⊢ ML[β B C] : (B[α B List β])[β B C]

from Γ,α : Type ⊢ B : Type and β < Dom(Γ) we know that neither B nor Γ can contain β . Thus the only substitution
for β we need to perform is in the substitution for α and we can reassociate substitution like this:

Γ ⊢ ML[β B C] : B ([α B List β][β B C])

which is the same as

Γ ⊢ ML[β B C] : B[α B List C]

The other cases are analogous.
• Case tracecase: Typing rule:

Γ ⊢ M : Trace A Γ, xL : A ⊢ ML : B Γ, xI : ⟨cond : Trace Bool, then : Trace A⟩ ⊢ MI : B
Γ, αF : Type, xF : ⟨in : T(TRACE αF), out : Trace A⟩ ⊢ MF : B Γ, xC : ⟨table : String, column : String, row : Int, data : A⟩ ⊢ MC : B

Γ, αE : Type, xE : ⟨left : T(TRACE αE), right : T(TRACE αE)⟩ ⊢ ME : B Γ, xP : ⟨left : Trace Int, right : Trace Int⟩ ⊢ MP : B

Γ ⊢ tracecase M of (xL .ML, xI .MI , αF .xF .MF , xC .MC , αE .xE .ME, xP .MP) : B

Reductions:
– tracecase For C M of (x .ML,x .MI ,α .x .MF ,x .MC ,α .x .ME ,x .MP) { MF [α B C,x B M]

We need to show
⋆

Γ ⊢ MF [α B C,x B M] : A
⋆: We only needM : ⟨in : . . . ⟩ and C : Type, which we get by inversion of the typing rule for For and the substitution
lemmas.

The other cases are analogous. □

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

C.8 Proof of Lemma 17

Proof. By induction on the kinding derivation of C or S (see Figure 24).
• Base types Bool, Int, String are in normal form.
• Type variables α are in normal form.
• Type-level functions λα .C : by IH, either C { C ′, in which case λα .C { λα .C ′, or C is in normal form already, in which
case λα .C is in normal form, too.
• Type-level application C D: by IH either C or D may reduce, in which case the whole application reduces. Otherwise, C
and D are in normal form. The following cases of C do not apply, because they are ill-kinded: base types, lists, records,
and traces. If C is a normal form and a variable, application, or typerec then C is a neutral form and D is a normal form
so C D is a neutral (and normal) form. Finally, if C is a type-level function, the application β-reduces.
• List types: by IH either the argument reduces, or is in normal form already.
• Record types: by IH either the argument (a row) reduces, or is in normal form already.
• Trace types: by IH either the argument reduces, or is in normal form already.
• Typerec C of(CB ,CI ,CS ,α .CL, ρ.CR ,α .CT): by IH, either C { C ′, in which case Typerec reduces with a congruence
rule, or C is in one of the following normal forms:
– If C is a base, list, record, or trace constructor, the Typerec expression β-reduces to the respective branch.
– C cannot be a type-level function, that would be ill-kinded.
– IfC is one of the following neutral forms: variables, applications, and Typerec, then by IH the branchesCB ,CI , etc. either
reduce and a congruence rule applies, or they are all in normal form and Typerec C of(CB ,CI ,CS ,α .CL, ρ.CR ,α .CT)
is in normal form.

• The empty row · is in normal form.
• Row extensions l : C; S : by IH applied to C and S we have three cases:
– If C { C ′, then l : C; S { l : C ′; S .
– If S { S ′, then l : C; S { l : C; S ′.
– If C and S are in normal form, then l : C; S is in normal form.
• Rmap C S : we apply the induction hypothesis to S and C . If either C or S takes a step, the whole row map expression
takes a step via the respective congruence rule. Otherwise S is in one of the following normal forms:
– Case empty row: Rmap C · { ·
– Case l : D; S ′: Rmap C (l : D; S ′) { (l : C D; Rmap C S ′).
– Case Rmap D U : Rmap C (Rmap D U) is in normal form.
– Case ρ: Rmap C ρ is in normal form.
• The row variable ρ is in normal form. □

C.9 Proof of Lemma 18

Proof. By induction on the typing derivation ofM .
• Constants: in normal form.
• Term variables: in normal form.
• Term function: apply IH to body and either reduce or in normal form.
• Fixpoint: we can always take a step by unrolling once.
• Term applicationM N : apply induction hypothesis toM . IfM reduces toM ′, thenM N reduces toM ′ N . Otherwise,M
is in LinksT normal form. It cannot be any of the following, because these would be ill-typed: constants, type abstraction,
operators, record introduction forms including record map, list introduction forms, trace introduction forms. In the
following cases, we apply the induction hypothesis to N and either reduce to M N ′ or are in normal form already:
variable, application, type application, record fold, tracecase, typecase. This leaves the following cases:
– IfM is a function, we β-reduce.
– IfM is of the form if-then-else, we reduce using a commuting conversion.
• Term-level type abstraction ∀α : M : by IH, eitherM { M ′, in which case ∀α : M { ∀α : M ′, orM is in normal form, in
which case ∀α : M is in normal form as well.
• Term-level type application M C: apply induction hypothesis to M . If M reduces to M ′, then M C reduces to M ′ C .
Otherwise,M is in LinksT normal form. It cannot be any of the following, because these would be ill-typed: constants,
functions, operators, record introduction forms including record map, list introduction forms, trace introduction forms.
In the following cases, the application is already in normal form: variable, application, type application, projection,
record fold, tracecase, typecase. This leaves the following cases:

Language-integrated provenance by trace analysis DBPL ’19, June 23, 2019, Phoenix, AZ, USA

– If it is a term-level type abstraction, we β-reduce.
– If it is of the form if-then-else, we perform a commuting conversion.
• Case if L thenM else N : apply induction hypothesis to all subterms. If any of the subterms reduce, then the whole
if-then-else reduces. Otherwise, L,M,N are in LinksT normal form. The condition cannot be any of the following,
because these would be ill-typed: functions, type abstractions, arithmetic operators, record introduction forms including
record map, list introduction forms, trace introduction forms. In the following cases, the condition already matches the
normal form: variable, application, type application, projection, record fold, tracecase, and typecase. This leaves the
following cases for the condition:
– Constants: true and false reduce, other constants are ill-typed.
– If the condition is of the form if-then-else itself, we apply a commuting conversion.
– Operators with Boolean result like == are in normal form.
• Records ⟨l = M ;N ⟩: apply induction hypothesis toM and N . If either reduces, the whole record reduces, otherwise it is
in normal form.
• ProjectionM .l : apply induction hypothesis toM . IfM reduces toM ′, thenM .l reduces toM ′.l . Otherwise,M is in LinksT
normal form. It cannot be any of the following, because these would be ill-typed: constants, functions, type abstraction,
operators, list introduction forms, trace introduction forms. In any of the following cases ofM ,M .l is already in normal
form: variable, application, type application, projection, record map, record fold, typecase, tracecase. This leaves the
following cases forM :
– If it is of the form if-then-else itself, we apply a commuting conversion.
– It cannot be an empty record, or a record expression where label l does not appear—these would be ill-typed. If M is a
record literal that maps l toM ′ then ⟨l = M ′;N ⟩.l reduces toM ′.

• Record map rmapS M N : by Lemma 17 we have that either S reduces to S ′, in which case rmapS M N reduces to
rmapS

′

M N , or is in normal form. Similarly, M and N may reduce by IH. Otherwise, we have S , M , and N in normal
form. By cases of S :
– If it is a closed row, we apply the β-rule.
– If it is an open rowU , rmapU M N is in normal form.
• Record fold rfoldS L M N : same as record map.
• Empty list: in normal form.
• Singleton list: apply IH to element and reduce or is in normal form.
• List concatenation: apply IH to both sides. If either reduces, the whole concatenation reduces, otherwise it is in normal
form.
• Comprehension for (x ← M) N : apply induction hypothesis toM . IfM reduces toM ′ then for (x ← M) N reduces to
for (x ← M ′) N . Otherwise, M is in LinksT normal form. It cannot be any of the following, because these would be
ill-typed: constants, functions, type abstractions, primitive operators, record introduction forms including record map,
and trace constructors. In the following cases we apply the IH to the body and either reduce or the whole comprehension
is in normal form: variables, term application, type application, projection, tables, record fold, tracecase, typecase. This
leaves the following cases forM :
– If-then-else: reduces with a commuting conversion.
– Empty list: the whole comprehension reduces to the empty list.
– Singleton list: β-reduces.
– List concatenation: reduces with a commuting conversion.
– Comprehension: reduces with a commuting conversion.
• Table: in normal form.
• Trace constructors: apply IH and Lemma 17 to constituent parts. If either reduces, the whole trace constructor reduces,
otherwise it is in normal form.
• Tracecase: apply induction hypothesis to the scrutinee. If it reduces, the whole tracecase expression reduces. Otherwise it
is in LinksT normal form. It cannot be any of the following, because these would be ill-typed: constants, functions, type
abstractions, primitive operators, record introduction forms, record map, empty or singleton lists, list concatenations or
comprehensions, tables. If the scrutinee is any of the following, by IH we reduce in the branches or the whole tracecase
is in normal form: variables, term application, type application, projection, record fold, tracecase, typecase. This leaves
the following cases:
– If-then-else: reduces using commuting conversion.
– Trace constructor: β-reduces.

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Stefan Fehrenbach and James Cheney

• Typecase: apply Lemma 17 to the scrutinee. Either it reduces, in which case the whole typecase expression reduces.
Otherwise it is in normal form. It cannot be a type-level function, that would be ill-kinded. In the following cases, we
apply the induction hypothesis to the branches of the typecase and reduce there, or we are in LinksT normal form: type
variables, type-level application, and typerec. And finally, if the outmost constructor is one of the following, a β-rule
applies: bool, int, string, list, record, trace.
• Primitive operators like == and +: by IH either the arguments reduce, in which case the whole expression reduces, or are
in normal form, in which case the whole expression is in normal form. □

C.10 Proof of Lemma 20

Proof. By induction on the typing derivation. The term cannot be a record fold or typecase, because those necessarily contain
a (row) type variable, which is unbound in the query context Γ. It cannot be a term application, type application, or tracecase,
because the term in function position or the scrutinee, by IH, is of the form x or x .l , both of which are ill-typed given that
the query context Γ does not contain function types, polymorphic types, or trace types. Projections P .l are of the form F .l or
(rmapU M N).l . The former case reduces by IH to x .l or x .l ′.l , the first of which is okay, and the second is ill-typed. The latter
case is impossible, becauseU necessarily contains a row variable and would therefore be ill-typed. This leaves variables x and
projections of variables x .l . □

C.11 Proof of Theorem 22

Proof. By induction on the typing derivation.
• Constants, variables, empty lists, and tables are in both languages.
• Functions, type abstractions, and trace constructors do not have nested relational type.
• Function application: The typing rule

Γ ⊢ M ′ : A→ B Γ ⊢ N : A
Γ ⊢ M ′N : B

requires M ′ to have a function type. Since M is in normal form, M ′ matches the grammar F . Lemma 20 implies that
M ′ is either a variable x or a projection x .l . The query context Γ assigns record types with labels of base types to all
variables — not function types — a contradiction.
• Type instantiation: The typing rule

Γ ⊢ M ′ : ∀α : K .A Γ ⊢ C : K
Γ ⊢ M ′ C : A[α B C]

requiresM ′ to have a polymorphic type. The normal form assumption requiresM ′ to match the normal form F . Therefore,
Lemma 20 applies, soM ′ is either a variable x or a projection x .l . The query context Γ assigns record types with labels
of base types to all variables — a contradiction.
• Primitive operators, if-then-else, records, singleton list, and list concatenation: apply the induction hypothesis to the
subterms.
• ProjectionM ′.l :M ′ is in normal form P , which is either of the form F or a record map. Lemma 20 restricts F to x and
x .l ′, both of which are nested relational calculus terms. P cannot be of the form rmapU N ′ N ′′, becauseU necessarily
contains a free type variable (see Remark 16), and thus cannot be well-typed in a query context Γ which does not contain
type variables.
• Record map and fold have normal forms rmapU M ′ N and rfoldU L M ′ N , respectively.U necessarily contains a free
type variable (see Remark 16), and thus cannot be well-typed in a query context Γ which does not contain type variables.
• List comprehension for (x ← M ′) N : The iterateeM ′ is in normal form T , which includes tables and normal forms F . If
M ′ is a table, x has closed record type with labels of base types, the induction hypothesis applies to N , and the whole
expression is in nested relational calculus. IfM ′ is of the form F , Lemma 20 applies and implies thatM ′ is either x or x .l .
Both cases are ill-typed, because the query context Γ only contains variables with closed records with labels of base type
— a contradiction.
• Tracecase: much like the application case above, the typing derivation forces the scrutinee to be of trace type. The normal
form forces the scrutinee to be of the form F , and from Lemma 20 follows that it has to be a variable, or projection of a
variable. The query context Γ assigns record types with labels of base types to all variables — a contradiction.
• Typecase: the scrutinee is in normal form E which contains at least one free type variable (see Remark 16). In a query
context which only binds term variables, this cannot possibly be well-typed — a contradiction. □

	Abstract
	1 Introduction
	2 The problem
	3 Query traces
	4 Trace analysis
	4.1 Where-provenance
	4.2 Value
	4.3 Lineage
	4.4 Normalization and query generation

	5 LinksT syntax & static semantics
	6 The self-tracing transformation
	7 Normalization
	7.1 Reduction rules
	7.2 Preservation
	7.3 Normal form
	7.4 Progress
	7.5 Normal terms with query types are NRC

	8 Related work
	9 Conclusions
	References
	A The value trace analysis function
	B Full formalization of LinksT
	B.1 Kinding judgments
	B.2 Type-level computation and equivalence
	B.3 Type judgments
	B.4 Normalization

	C Proofs
	C.1 Additional properties
	C.2 Proof of Lemma 37
	C.3 Proof of Lemma 38
	C.4 Proof of Lemma 10
	C.5 Proof of Theorem 11
	C.6 Proof of Lemma 13
	C.7 Proof of Lemma 14
	C.8 Proof of Lemma 17
	C.9 Proof of Lemma 18
	C.10 Proof of Lemma 20
	C.11 Proof of Theorem 22

