
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Improving Variability of Applications
using Adaptive Object-Models

João Gradim Pereira

Master in Informatics and Computing Engineering

Supervisor: Ademar Aguiar (Ph.D)

Supervisor: Hugo Ferreira (Ph.D AbD)

17th January, 2011

Improving Variability of Applications using Adaptive
Object-Models

João Gradim Pereira

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: João Pascoal Faria (Ph.D)

External Examiner: António Nestor Ribeiro (Ph.D)

Supervisor: Ademar Aguiar (Ph.D)

Supervisor: Hugo Ferreira (Ph.D AbD)

11th February, 2011

Abstract

Most software systems exist in an ever-changing environment. The difficulty to capture
the requirements and craft the system to mirror these requirements often requires higher
costs and development time. Moreover, these systems are not static in nature and often
need to be modified to reflect changes in the environment and stakeholders’ expectations.

An answer to these problems is to create information systems that are flexible enough
to introduce model-level changes as quickly and cheaply as possible. One particular point
of interest is to allow the end-users to modify the system definition — which implies
that modifications have to be performed without any programming knowledge or system
redeploying. This can be achieved by using a meta-architecture pattern known as Adaptive
Object-Modeling (or AOM).

An Adaptive Object-Model architecture is a system architecture that represents classes,
attributes, relationships, and behavior as metadata, where the system definition is based on
instances of model abstractions rather than classes: this allows for the easy modification of
the domain model in runtime, discarding the need for redeploying. Also, a set of techniques
have been developed to build the user interface automatically from the domain model, in
order to create truly adaptive software.

The platform escolinhas.pt is an expanding Ruby on Rails application that works as
a private social network for schools, students aged 6 to 10, along with their teachers and
parents. It is based on the structure of real Portuguese primary education schools and
promotes the use of digital tools to create collaborative work.

This report describes the work and research involved in adapting the ideologies and
techniques used in building AOM architectures to already existent applications based on
static database schemas and MVC architectures, such as escolinhas.pt.

This research focuses on studying the current design for the escolinhas.pt platform
and pinpointing which modules of the application have special needs regarding their
variability. Three modules or areas of the application were chosen to conduct this study:
user roles (and authorization logic), the social network, and the document editor. Each one
of these areas is studied in order to determine possible problems and gather the necessary
variablity requirements. For each one of the areas, small, proof-of-concept prototypes are
built, applying the most appropriate design patterns from a set of candidates, detailing
implementation details for each one, as well as studying the impact that each prototype
had.

Results show that the application of these design patterns to a MVC based framework
such as Ruby on Rails are not only possible, but can have a positive impact on the overall
design and performance of the application.

i

ii

Resumo

A grande maioria dos sistemas de informação existem em ambientes altamente variáveis.
A dificuldade em capturar os requisitos de modo a modelar o sistema de acordo com estes
causa custos de produção e tempos de desenvolvimento mais altos. Muitos destes sistemas
não são estáticos e sofrem modificações regulares de modo a reflectir as mudanças sofridas
pelo meio ambiente e expectativas dos clientes.

Uma resposta possível para este problema é a criação de sistemas de informação que
sejam flexíveis o suficiente para que a introdução de modificações ao nível do modelo
de domínio sejam o mais rápido e com o menor custo possível. Um ponto de interesse
em particular é o de permitir que os utilizadores finais do sistema possam modificar o
seu modelo de domínio — o que implica que estas modificações sejam efectuadas sem
qualquer conhecimento de programação ou da instalação do sistema em si. Este objectivo
pode ser conseguido através da utilização de um padrão de desenho de meta-arquitecturas
conhecido como Adaptive Object-Models (ou AOM).

Uma arquitectura baseada em Adaptive Object-Models é uma arquitectura de sistemas
que representa classes, atributos, associações e comportamentos como meta-dados, em que
a definição do sistema se baseia em instâncias de abstrações do modelo em vez de classes:
isto permite uma fácil modificação do modelo do sistema, removendo a necessidade de
re-instalação. A par do desenvolvimento deste tipo de sistemas, uma série de técnicas
e padrões foram criados para que a interface do utilizador seja passível de ser criada
automaticamente.

A plataforma escolinhas.pt é uma applicação criada em Ruby on Rails e que fun-
ciona como uma rede social para alunos de 6 a 10 anos de idade, conjuntamente com
os seus encarregados de educação e professores. A sua estrutura é baseada nas escolas
primárias Portuguesas, e promove o uso de ferramentas digitais para a criação de trabalhos
colaborativos.

Este relatório descreve o trabalho e pesquisa envolvido na adaptação de ideologias e
técnicas usadas na construção de arquitecturas AOM a aplicações já existentes, assentes em
esquemas de bases de dados estáticas e arquitecturas MVC, como é o caso da plataforma
escolinhas.pt.

Este trabalho foca-se no estudo do desenho actual da plataforma escolinhas.pt e em
capturar quais os módulos da aplicação que têm maiores necessidades de variabilidade.
Três módulos da aplicação foram escolhidos para este estudo: os papéis (roles) dos
utilizadores, a rede social e o editor de documentos da plataforma. Cada uma destas
áreas é estudada de modo a determinar possíveis problemas e recolher os requisitos de
variabilidade de cada uma. Para cada um destes módulos pequenas provas de conceito
foram construídas como protótipos, aplicando os padrões de desenho mais apropriados de

iii

um conjunto de padrões candidadatos, referindo os detalhes de implementação bem como
estudando o impacto que cada uma destas soluções teve na aplicação.

Resultados mostram que a aplicação de padrões de desenho associados a arquitecturas
AOM a uma framework baseada em MVC são não só possíveis, como podem ter um
impacto positivo tanto no desenho como no desempenho da aplicação.

iv

Acknowledgements

To everyone at escolinhas.pt, for making me feel at home throughout all these months.

To Ademar Aguiar and Hugo Ferreira, for guiding me and for their patience when I
had nothing more than questions.

To Gonçalo and Paulo, for continuously motivating me, supporting my work and helping
me whenever I needed.

To everyone who shared the last 5 and half years with me, night, and day, and then
some more.

To my family, for their undying patience and support, for making me believe in my-
self and allowing me to be whomever I want to be.

João Gradim

v

vi

“Computers are good at reading instructions, not at reading your mind”

Donald E. Knuth

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Objectives . 2
1.3 Report Overview & Structure . 3

2 State of the Art 5
2.1 Approaches to Create Adaptable Software 5
2.2 Software Product Lines . 5
2.3 Domain-Driven Design . 6
2.4 Model-Driven Engineering . 6
2.5 Frameworks . 7
2.6 Metaprogramming . 7
2.7 Aspect-Oriented Programming . 7
2.8 Design Patterns . 8
2.9 Adaptive Object-Models . 9

2.9.1 AOM Architecture . 9
2.9.2 Pattern Composition . 14
2.9.3 AOM GUI Generation . 15
2.9.4 Oghma . 15

2.10 Ruby . 17
2.10.1 Ruby Metaprogramming . 17
2.10.2 Ruby On Rails . 18

2.11 Conclusions . 18

3 Problem Statement 21
3.1 Problem Description . 21
3.2 Architectural & Design Patterns . 22
3.3 Case-study Areas . 22

3.3.1 Roles . 22
3.3.2 Social network and contacts . 23
3.3.3 Document Editor . 23

3.4 Conclusions . 23

4 Approach & Results 25
4.1 Research Design . 25

4.1.1 Current Design Analysis . 25
4.1.2 Variability Analysis . 26

ix

CONTENTS

4.1.3 Implementation & Impact Analysis 26
4.2 User Roles . 27

4.2.1 Variability Requirements . 27
4.2.2 Candidate Patterns . 27
4.2.3 Chosen Patterns & Rationale . 28
4.2.4 Implementation . 29
4.2.5 Impact Analysis . 29

4.3 Social Network . 30
4.3.1 Variability Requirements . 31
4.3.2 Candidate Patterns . 32
4.3.3 Chosen Patterns & Rationale . 32
4.3.4 Implementation . 33
4.3.5 Impact Analysis . 35

4.4 Documents . 36
4.4.1 Variability Requirements . 36
4.4.2 Candidate Patterns . 37
4.4.3 Chosen Patterns & Rationale . 38
4.4.4 Implementation . 39
4.4.5 Impact Analysis . 41

4.5 Conclusions . 44

5 Conclusion 45
5.1 Conclusions . 45
5.2 Further Work . 46

References 47

x

List of Figures

2.1 MOF levels. 9
2.2 TYPE-OBJECT pattern . 10
2.3 PROPERTY pattern . 11
2.4 TYPE-SQUARE . 11
2.5 STRATEGY pattern, as applied to an AOM architecture 12
2.6 INTERPRETER pattern, as applied to an AOM architecture 12
2.7 SYSTEM MEMENTO pattern . 13
2.8 ACCOUNTABILITY pattern . 13
2.9 Revised PROPERTY pattern . 14
2.10 AOM core architecture and design . 14
2.11 Implementation model of the structural meta-model for the Oghma frame-

work . 16

4.1 Current User Roles Model. 28
4.2 Conceptual User Roles Model. 29
4.3 Current User Network Model. 31
4.4 Simplified Network Models. 32
4.5 Accountability Implementation for User Network. 33
4.6 Average number of queries performed per number of contacts. 35
4.7 Current Documents Model. 37
4.8 Conceptual Documents Model. 38
4.9 Average number of queries performed per number of Blocks in a single

Document. 42

xi

LIST OF FIGURES

xii

List of Tables

4.1 AccountabilityTypes created to describe every type of existent relation. . . 34

xiii

LIST OF TABLES

xiv

Abbreviations

ACL Access Control List
AOP Aspect-Oriented Programming
API Application Programming Interface
AR ActiveRecord (Design Pattern)
CRUD Create, Read, Update, Delete
DBMS Database Management System
DDD Domain-Driven Design
DSL Domain Specific Language
DSML Domain Specific Modeling Language
GUI Graphical User Interface
MVC Model, View, Controller (design pattern)
OOP Object-Oriented Programming
ORM Object-Relational Mapping
PIM Platform-Independent Model
RoR Ruby on Rails
UI User Interface
UML Unified Modeling Language

xv

Abbreviations

xvi

Chapter 1

Introduction

An Adaptive Object-Model (AOM) is an architectural style based on metamodeling and
object-oriented design that exposes its domain model to the end-user, and aims to create
better mechanisms for the evolution and adaption of software systems to their environments.

This document presents a study that shows that the patterns and ideologies described as
being part of AOM architectures can be successfully adapted to other architectures, with
objectives similar to the original ones.

In this introductory chapter, the background and context of the problem are presented,
along with the motivation and objectives. The structure of the document is presented, as
well as some typographical conventions used to enhance readability.

1.1 Context

Software systems are usually designed with a specific purpose in mind. They rely on a
series of requirements that are often very difficult to capture and maintain, as they have
a tendency to evolve faster than the implementation. This is caused mainly by the poor
understanding by the stakeholders about their needs and expectations of what a software
system should be able to do [PT07]. These situations lead to higher costs in software
development, as creating and maintaining software systems is a knowledge intensive
task [AdOdSBD07]. Moreover, most of these systems are not static, and have a constant
need to evolve in order to adapt themselves to their environment and new business rules,
shifting the stakeholders’ needs and expectations about these software systems.

In face of these situations, new development methods started to focus more on iterative
and incremental approaches, accepting incompleteness as part of every software system’s
development cycle [WC03]. At the same time, many new systems are being developed with
an emphasis on flexibility and run-time configuration [YJ02]. These approaches present
a clear contrast with an up-front, full specification for a software system, which, albeit
beneficial for some cases, is impractical in constant evolution scenarios. This may lead to

1

Introduction

sudden changes in software requirements and, inevitably, refactoring. In many cases, there
are deadlines to be met and budgets to adhere to: if the resources are insufficient, these
situations often lead to a BIG BALL OF MUD — an “haphazardly structured, sprawling,
sloppy, duct-tape and bailing wire, spaghetti code jungle” [JY97] — ultimately leading to
unmaintainable systems, very costly to modify and adapt to the stakeholders needs [FY97].

1.2 Motivation and Objectives

Developing quality software is a hard process. Maintaining, as well as adding new features
to these software systems is costly and time-consuming. If the process of shaping an
information system is made to be as streamlined as possible, the modification of the
system’s architecture (model and relation-wise) becomes a simple task of adapting the
platform according to the natural evolution of the business rules, environment changes and
the users and stakeholders needs.

The type of systems mentioned in 1.1 has very specific architectures, which allow
for the modification of the system model in runtime. While this may not be desirable in
every situation — either because of performance reasons or because the usage of such
an architecture could bring an undesirable level of complexity — part of the logic, ideas
and patterns of these meta-architectures could be applied to different types of software
architectures in order to achieve similar objectives.

Ruby on Rails is one of the most widely used web development frameworks. It provides
a series of tools and conventions that allow a developer to focus on the application design
rather than implementation details, as most of that work is automatically handled by
the framework itself [ORP]. However, when the kind of aforementioned needs arise
in these type of applications, the framework could present itself as a barrier to easily
building adaptive software as it is tied to a single architectural pattern (MVC) and a
series of conventions that favour using relational databases coupled with Object-Relational
Mapping (ORM) for data manipulation — meaning that, in most applications, the database
schema is an integral part of the platform design1. As such the association of these types
of design patterns to a full-stack framework such as Rails presents an interesting challenge:
how to effectively and harmoniously combine these apparently different ideologies —
Rails is based on a static, descriptive model and AOMs use data to describe the system —
to take advantage of the best of both worlds.

This project will be applied to the Escolinhas [TC] project, a growing, Portuguese,
Ruby On Rails based project, in order to enhance the design and provide the means to
easily evolve the platform. Escolinhas aims at supporting social and collaborative work for

1The somewhat recent appearance of modern non-relational databases such as MongoDB and CouchDB and others
shifted this definition towards the code instead of the database schema. However, Rails initially only supported relational
databases such as MySQL, and the usage of non-relational databases is outside the scope of this dissertation.

2

Introduction

children in elementary schools involving students, teachers and parents as its users. With
the users demanding better and more adaptable teaching tools, it becomes an excellent case-
study application to research, test and apply all the work and discoveries made throughout
the course of this dissertation.

1.3 Report Overview & Structure

This report is structured as follows:

Chapter 2: “State of the Art” reviews the most important methodologies and pat-
terns used to make software as adaptable and maintainable as possible.

Chapter 3: “Problem Statement” exposes the problem to be addressed and thor-
oughly explains it, while explaining its usefulness.

Chapter 4: “Approach & Results” reviews the current design of the platform, and
performs a variability analysis of the system, choosing three focus areas. Then, for each
one, demonstrates its variability requirements, candidate patterns, the chosen patterns and
rationale behind such decisions, implementation details and impact analysis.

Chapter 5: “Conclusion” reviews the project, drawing conclusions about the issues
addressed in Chapter 4. It also provides a summary of contributions and some insights on
which future developments have been considered.

Some typographical conventions are used throughout the document to improve its
readability. Pattern names are displayed with SMALL CAPS. Whenever a class (entity)
currently part of the escolinhas.pt is referred, it will be typefaced in italics. Typewriter
text is used when referring to entity attributes or a certain programming language term.
References and citations appear inside [square brackets] and in highlight color. Highlighted
text will act as an hyperlink when visualizing this document in a computer.

3

Introduction

4

Chapter 2

State of the Art

This chapter presents a bibliographic review on the areas of interest and contribution of
this study and it is mainly divided in three parts. The first one presents the most commonly
used techniques, approaches and ideologies to build adaptable software. The second part
is concerned with the current research on AOMs, describing the main design patterns and
how they work together to create an AOM architecture. A current implementation of this
architecture is presented. The last part briefly presents the Ruby programming language
and describes how some of its concepts can be seen as analogous to the techniques and
patterns described before.

2.1 Approaches to Create Adaptable Software

There are two main approaches to make systems adaptable: generative programming
approaches and meta-architectures.

Generative programming methods approach the adaptability of a system by using an
ontological model representative of this system to automatically create executable artifacts
or code skeleton than can be further refined according to different needs.

Rails scaffolding and model generation is an excellent example of this approach, which
will be further explained in Section 2.10.2.

On the other hand, systems created with a special architecture designed to adapt at
runtime to new user requirements and rules by using descriptive information about the
system model that can be interpreted at runtime are sometimes said to possess a “reflective
architecture” or a “meta-architecture” [YBJ01].

2.2 Software Product Lines

The Software Product Lines (SPL) paradigm is promoted as a means of reducing time
to market, increasing productivity, improving quality and gaining cost effectiveness and

5

State of the Art

efficiency through large-scale reuse [TC06]. Software product line methods (SPLMs)
are practices-based, or plan-driven, software development approaches in which a set of
software-intensive systems that share a common, managed set of features are produced
from a set of re-usable core assets in a predictive, rather than opportunistic way — meaning
artifacts are only created when the need for their use arises, instead of providing generic,
reusable components.

2.3 Domain-Driven Design

Domain-Driven Design (henceforth referred to as DDD) is a philosophy and way of
thinking, first described by Eric Evans in [Eva03], aimed at accelerating software projects
that have to deal with complicated domains, with a two-fold premise [EGHN]:

• For most software projects, the primary focus should be on the domain and domain
logic; and

• Complex domain designs should be based on a model.

A third, informal premise is usually associated with DDD, wherein a collaboration
between technical domain experts must exist, in order to quickly, over various iterations,
reach the core of the problem’s concept.

2.4 Model-Driven Engineering

Model-Driven Engineering first appeared in 2001 [Mil03] as an answer to the growing
complexity of system architectures. This growing complexity and the lack of an integrated
view “forced many developers to implement suboptimal solutions that unnecessarily
duplicate code, violate key architectural principles, and complicate system evolution and
quality assurance” [Sch06].

To address these issues, Model-Driven engineering combines domain-specific modeling
languages (DSML) with transformation engines and generators in order to generate various
types of artifacts, such as source code or alternative model definitions.

The usage of DSML ensures that the domain model is perfectly captured in terms of
syntax and semantics. This guarantees a flatter learning curve as the concepts present in
the language are already known by the domain experts. This also helps a broader range
of experts, such as system engineers and experienced software architects, to ensure that
software systems meet user needs.

The ability to synthesize artifacts from models helps to ensure the consistency between
application implementations and analysis information associated with functional and
quality of service requirements captured by models.

6

State of the Art

2.5 Frameworks

Frameworks provide a series of loosely-coupled components created for a specific purpose
that provide generic functionality for the creation of software systems. These components
can be overridden or specialized in order to create specific functionality. Frameworks
can improve developer productivity and improve the quality, reliability and robustness
of new software. Developer productivity is improved by allowing developers to focus
on the unique requirements of their application instead of spending time on application
infrastructure. XNA [Mic] and Ruby on Rails (RoR) [Han] are good examples of popular
frameworks that aim to cut development time and costs in very different scenarios.

Frameworks can also be used together with code-generation techniques [DH04, Che08]
to improve the overall production speed and ease of use.

2.6 Metaprogramming

As defined by Robert D. Cameron and M. Robert Ito in [CI84],

“A metaprogramming system is a programming facility (subprogramming
system or language) whose basic data objects include the programs and program
fragments of some particular programming language, known as the target
language of the system. Such systems are designed to facilitate the writing of
metaprograms, that is, programs about programs. Metaprograms take as input
programs and fragments in the target language, perform various operations on
them, and possibly, generate modified target-language programs as output.”

To put it simply, metaprogramming is code that manipulates code. The advantages of
this paradigm have been described many times in software reuse literature. The transla-
tion of high-level descriptions into low-level implementations (by means of application
generators) allows a developer to focus on specification based on tested standards rather
than implementation, making tasks like system maintenance and evolution much easier
and affordable [Bas87, Cle88].

2.7 Aspect-Oriented Programming

Aspect-Oriented Programming is a programming paradigm that isolates secondary or aux-
iliary behaviours from the implementation of the main business logic. It has been proposed
as a viable implementation of modular crosscutting concerns. Since crosscutting concerns
cannot be properly modularized within object-oriented programming, they are expressed as
aspects and are composed, or woven, with traditionally encapsulated functionality referred
to as components [KM05, Ste06]. This paradigm has been gaining some momentum

7

State of the Art

particularly because even conceptually simple crosscutting concerns such as tracing during
debugging and synchronization, lead to tangling, in which code statements addressing the
crosscutting concern become interlaced with those addressing other concerns within the
application [LC03].

Many AOP implementations work by automatically injecting new code into existing
classes (a process which is commonly called decorating a class), effectively adding new
functionalities that promote extensive code reuse [Ste06, LC03, MS03].

2.8 Design Patterns

As stated by the architect Christopher Alexander in [AIS+77]:

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice”

Despite applying the term design pattern to architectural problems, it is possible to
transpose these ideas to object-oriented design. As such, a design pattern is, to put it
simply, a common solution to a recurring problem. [BMR+96a, AIS+77, GHJV94] then
defines the four essential components of a design pattern:

• The Name, which captures the essence of a design pattern and describes it in as few
words as possible (one or two, usually);

• The Problem, which describes the conditions necessary to apply the pattern, by
explaining the problem and its context;

• The Solution, which describes the elements that make up the design, their relation-
ships, responsibilities, and collaborations, while keeping it as general as possible, so
that its application is possible within multiple contexts:

• The Consequences, which denotes the results and trade-offs pertaining to the appli-
cation of the pattern, allowing the evaluation of alternative designs and understanding
the costs and benefits of applying the pattern.

8

State of the Art

2.9 Adaptive Object-Models

Despite all of the advances in the aforementioned areas, most (if not all) the currently used
techniques and methodologies still require a programmer or a domain expert in order to
modify a system definition and model. A specific type of architecture is required for the
end-user to be able to modify part or the entirety of a system to fit the underlying model to
their own needs.

As such, an end-user is not expected to have any kind of knowledge about programming,
design patterns and system architectures, or about a system of this type comes to be.
However, the end-user is sometimes the most knowledgeable part of the development
chain, in regards to how the system should behave.

2.9.1 AOM Architecture

An Adaptive Object-Model pattern is a system architecture that represents classes, at-
tributes, relationships, and behavior as metadata. The system definition is based on
instances of model abstractions rather than classes. This allows the modification of these
model abstractions in runtime to reflect changes in the domain, effectively modifying the
system behavior. As a direct consequence, the system instantly reacts to these changes,
making it adaptable to change, without the need for recompiling or redeploying [YBJ01].
This architectural pattern is akin to the Meta Object Facility (MOF), which main purpose is
to provide a metadata management and implementation framework. The basic architecture
is divided into four tiers, each one compliant with the higher level [OMG06], as depicted
in Fig. 2.1.

Figure 2.1: MOF levels.

9

State of the Art

This kind of architecture relies on a series of design patterns: the TYPE-OBJECT and
PROPERTY patterns form the basic building blocks whereupon the AOM architecture
settles. Despite being extremely simple, they create the fundamental infrastructure able to
decouple the model definition from code-level implementation. In addition to these two
patterns mentioned, other design patterns that are able to form an AOM architecture will
be described, as well as the interactions between them.

2.9.1.1 TYPE-OBJECT Pattern

Object-oriented languages usually structure a program as a set of classes that define the
structure and behavior of objects, usually organizing them as a separate class for each
object type, which means that any structural change to the model requires code-level
modifications. However, variable systems are usually faced with the problem of having
a class that will be subclassed by an arbitrary number of specializations. The key to
solve this problem is to detach the object definition from the code level and instead define
it using meta-data — generalizing objects and describing their variation as parameters.
TYPE-OBJECT works by splitting a class in two [YBJ01]: the meta-class for the object to
be created — EntityType, and an instance of that class — Type. Fig. 2.2 shows the UML
class diagram for this design pattern.

Figure 2.2: TYPE-OBJECT pattern, adapted from [YFRT98].

2.9.1.2 PROPERTY Pattern

Similar to the problem solved by the TYPE-OBJECT, the PROPERTY pattern addresses the
analogous issues of having the need to change the attributes (sometimes called members)
of a class. The anticipation of these structural changes leads to the PROPERTY pattern,
where an attribute is split in two classes: the meta-class for the object to be created —
PropertyType, and an instance of that attribute — Property. Fig. 2.3 represents the UML
model for the PROPERTY design pattern.

10

State of the Art

Figure 2.3: PROPERTY pattern, adapted from [YFRT98].

2.9.1.3 TYPE-SQUARE Pattern

Usually a class is modeled with a number of different attributes, representing their real
world counterparts. So, in order to make a runtime modifiable class, an user must be
able to modify both its definition and attributes. The answer to this issue is to use both
TYPE-OBJECT and PROPERTY patterns at the same time, creating what is known as the
TYPE-SQUARE pattern — which forms the basis of any AOM architecture [YJ02]. Figure
2.4 shows the UML model for this pattern.

Figure 2.4: TYPE-SQUARE pattern, adapted from [YBJ01].

2.9.1.4 STRATEGY and RULE OBJECT Pattern

The original goal of the STRATEGY pattern is to, given a set of algorithms, encapsulate
each one in order to use them interchangeably, which allows the easy usage of different
strategies to solve different problems [GHJV94].

As AOM architectures are concerned, this pattern is used to perform user-defined
validations for user input, whichever they may be. An example can be found on Fig. 2.5.

11

State of the Art

Figure 2.5: STRATEGY pattern, as applied to an AOM architecture, adapted from [GHJV94].

2.9.1.5 INTERPRETER Pattern

The INTERPRETER pattern commonly is used when a recurring problem within a platform
arises. When this is the case, it might be fruitful to define a simple language to solve these
types of problems [GHJV94]. Regarding AOMs, this pattern, coupled with STRATEGY

(described in 2.9.1.4), is used to allow users to express complex restrictions on the values
of properties present in the system. Fig. 2.6 shows how this pattern is usually applied to
AOM architectures, as described in [Fer10].

Figure 2.6: INTERPRETER pattern, as applied to an AOM architecture, adapted from [GHJV94].

2.9.1.6 SYSTEM MEMENTO Pattern

The SYSTEM MEMENTO Pattern is used when one wishes to preserve the different states a
system has achieved upon its evolution. The usage of this pattern allows the decoupling
of the state from the objects themselves and promotes reusability as the same versioning
mechanism can be applied to any entity present in the system. This pattern usually states

12

State of the Art

that an entity in a system (henceforth referred to as a Thing) is a composition of States (as
shown on Fig. 2.7), which, when timestamped, work as evolutionary line for each of the
Things it is related with. Finally, a Version is a collection of all of the States in a system,
effectively creating a snapshot of the whole system at a given point in time.

Figure 2.7: SYSTEM MEMENTO pattern, adapted from [FCW08].

2.9.1.7 Relationships Between Entities

Yoder et al. [YJ02] describes the relationships between AOM classes by using the AC-
COUNTABILITY pattern [Fow97, Hay98]. The ACCOUNTABILITY pattern is used when
there is a need to express multiple types of relationships between parties (regardless of
what their types may be), all of which carry a different meaning [Fowa]. This pattern is
shown on Figure 2.8.

Figure 2.8: ACCOUNTABILITY pattern, adapted from [Fowa].

Most OOP languages, however, describe object attributes as either primitive values or
references to other objects. Some languages, such as Ruby and Smalltalk, treat everything
as an object and do not make any difference between references and primitive values. These

13

State of the Art

concepts can be used to extend the PROPERTY pattern, and make it aware of relationships
between entities, using attributes such as cardinality, navigability or role [FCAF10].

The revised PROPERTY pattern is depicted in Figure 2.9:

Figure 2.9: Revised PROPERTY pattern, adapted from [FCAF10].

2.9.2 Pattern Composition

By themselves, the design patterns described before do not make up an AOM architecture.
Mixing up patterns does not provide any concrete implementation of this kind of architec-
tures, nor it points to what a framework for AOM would look like — which means that
the usual architecture of an AOM is usually the result of composing one or more of the
aforementioned patterns in conjunction with other object-oriented patterns. The result of
this conjunction can be seen in Fig. 2.10

Figure 2.10: AOM core architecture and design, adapted from [YBJ01].

14

State of the Art

2.9.3 AOM GUI Generation

A system is only as powerful as the interaction with that system allows you to manipulate it
— meaning that a poor interface (be it a GUI or an API or any other kind of interface) does
not afford a full-fledged use of the system in question. As an example, this may happen
when a software library has a number of functionalities implemented but the API exposed
to manipulate does not use said implementations, rendering them useless and limiting its
usage.

Regarding AOM systems, as the system is interpreted and modified in runtime, the GUI
must also be automatically built in runtime from the interpretation of the M1 level model.
This implies a standardized approach to rendering entities and entity properties, in order
to minimize code redundancy and provide a consistent look & feel. The main problem
identified by Welicki et al.[WYWB07] was the redundancy that arose from the need to
render each type of property, leading to a higher degree of maintenance and potencial
UI inconsistency. The solution devised was to create rendering objects responsible for
rendering the user interface for each type of property within a given context, creating what
is know as the PROPERTY RENDERER pattern, which enforces a strong separation between
domain entities and respective visualization.

However, the separate rendering of single properties is not enough to capture the
complexity of an entity. There needs to be a coordination of the various PROPERTY

RENDERERS in order to produce a more complex output (be it a UI fragment or a complete
interface). The solution is to build view components which coordinate the presentation of
several property renderers of an entity to produce different complex UI fragments. Each
property renderer is specialized to generate UI code for instances of a property type in a
certain context (viewing, editing, different visualization formats, etc). A view component
will coordinate several fine-grained renderers and produce more complex UI code for an
entity. As such, the same basic concept from PROPERTY RENDERER can be applied to
entities rendering, creating the ENTITY VIEW pattern [WYWB07].

2.9.4 Oghma

Oghma is a reference framework for the development of AOM systems, developed in C#.
It allows the rapid creation of highly variable, dynamic systems. It is currently being
developed in the context of the doctoral dissertation of Hugo Ferreira [Fer10]. It is a
very complete framework able to create, manage and persist AOM systems, from backend
to GUI generation, by making extensive use of metaprogramming and metamodeling
techniques, by following the general guidelines of the NAKED OBJECTS architectural
pattern [PW03].

Oghma is thus a concrete implementation of a framework based on the reference archi-
tecture to develop AOM-based systems established in [Fer10], that balances several design

15

State of the Art

and engineering forces. It supports the creation of models resembling MOF [OMG06] and
UML [OMG10], and aims at covering the entire cycle of system creation and evolution. As
an AOM, it allows the introduction of changes to the system during runtime, thus providing
a particular kind of confined end-user development. Fig. 2.11 show the core architecture
for this framework.

It is structured as a collection of LAYERED COMPONENT LIBRARY [BMR+96b],
allowing their high-level composition to achieve different functional architectures, e.g.
client-server v.s. single-process.

Furthermore, the framework leverages the infrastructure used to support system evo-
lution to provide additional features, such as auditing over the system’s usage, and time-
traveling to an arbitrary point along its evolution (i.e. to set the system in a past state).

Oghma includes a set of interchangeable components designed to have an high degree
of flexibility, as it was designed to support several types of persistency engines — be it in
memory or a DBMS.

Finally it adds the ability to specify a wide set of behavioural and validation rules by
using the INTERPRETER pattern[GHJV94], presenting to the end-user as a DSL, either
through a textual syntax or a graphical interface representative of the rules to be enforced.

��� reference architecture & implementation

Abstract: bool
Readonly: bool

Entity

1..*

Identifier: Identity

ThingnativeType

Name: string
Display name: string

Named Element

Classifier

Object Type

Package

Lower bound: int
Upper bound: int
Unique: bool
Readonly: bool
/ Derived: bool

Property

Interface

owner

0..*

owner

redefined-by 0..1

parent 0..1

Primitive Type

opposite
0..1

0..* implements

meta

1

‹‹system››
Type 0..1

targetType1

State Version

Owned Element

1..* 1..*

base
0..*Literal

Enum

owned

1..*

owner

1

Figure 6.12: Implementation model of the structural meta-model.

type. To support such common rules, relatively immutable or otherwise parameterized, one
could resort to using the Strategy and Rule Object pattern, as previously discussed
in § 3.2.6 (p. 48) and seen in Figure 6.13.

Figure 6.13: A class diagram of the Strategy and Rule Object patterns, forming the
structure of the family of algorithms for enforcing rules. The dashed line represents
an invocation call.

An extension of the Rule Object is depicted in Figure 6.14 (p. 111), which allows the
definition of: (i) Entity Type invariants, which are predicates that must always hold,
(b) derivation rules for Property Types and Views, (c) the body of Methods, (d)
guard-conditions of Operations, etc. The structural constraints above mentioned, such
as the cardinality and uniqueness of a Property Type, are specializations of conditions.
Methods may be invoked manually and/or triggered by events, thus providing enough
expressivity to specify State Machines and Workflows. Patterns such as Smart
Variables and Table Lookup also provide an example of common rules implemented

Figure 2.11: Implementation model of the structural meta-model for the Oghma framework, adapted
from [Fer10].

16

State of the Art

2.10 Ruby

Ruby is a dynamic, purely object-oriented programming language. It was created by
Japanese programmer Yukihiro Matsumoto and it was first released to public in 1995. In its
author words, Ruby was created to be a “a dynamic, open source programming language
with a focus on simplicity and productivity. It has an elegant syntax that is natural to
read and easy to write” [Mat]. It was inspired by many different languages such as Lisp,
Smalltalk, Perl and Ada, and possesses a series of characteristics that make it extremely
attractive [Mat].

The Ruby language was designed with a meta-architecture in mind: it allows for
changes to class definitions in runtime, constantly adapting to change. It does so by
providing open, active class definitions. A common part of the development process when
writing a Ruby program is to extend the language by extending the core language classes
(such as String and Float) with custom methods [Tho07].

2.10.1 Ruby Metaprogramming

Ruby uses metaprogramming techniques extensively — in fact, metaprogramming is an
integral part of some of the language constructs. Take the example from Listing 2.1

1 class Person
2 attr_accessor :name, :age
3 end

Listing 2.1: Metaprogramming in Ruby classes.

The use of the attr_accessor declaration is actually a shortcut method for a getter
and setter for the name and age attributes of the Person class. It does so by automatically
creating the necessary methods inside a class_eval context — effectively modifying
the class definition by evaluating code in runtime. Listing 2.2 represents the code generated
internally by the Ruby interpreter when interpreting Listing 2.1:

The usage of the metaprogramming facilities present in Ruby is important in the context
of AOM architectures: as a dynamic language, it is able to manipulate and generate code
in runtime. This special property of Ruby (and other dynamic languages, such as Python)
allows the simplification of many of the patterns described before, especially PROPERTY —
by using the capabilities of the language, these patterns are absorbed by the language itself,
becoming a normal part of development.

17

State of the Art

1 class Person
2 def name=(val)
3 @name = val
4 end
5 def name
6 @name
7 end
8

9 def age=(val)
10 @age = val
11 end
12 def age
13 @age
14 end
15 end

Listing 2.2: Code generated by Ruby metaprogramming constructs.

2.10.2 Ruby On Rails

Ruby on Rails is a full-stack Web framework, initially developed by Hansson in 2003,
based on the MVC design pattern. As stated by [Han]:

“Ruby on Rails is an open-source that’s optimized for programmers happiness
and sustainable productivity. It lets you write beautiful code by favoring
convention over configuration.”

In regards to code generation, the Ruby on Rails framework includes a series of
mechanisms for system artifacts generation, be it Models, Controllers or even Views. It
does so by analyzing the underlying relational database model and deriving the model
specifications from the column’s type and name. However, RoR does not generate a
static model definition, as it deduces the necessary information whenever the system is
loaded. Instead, it uses these informations to create an adequate code skeleton for basic
CRUD operations in views, greatly accelerating the development process by providing
the developers with a basic blueprint of a fully functional system that can be refined and
tailored to specific needs [Che08].

2.11 Conclusions

The Adaptive Object-Model architectural style can be defined as a metamodeling, object-
oriented approach to build software architectures that, by relying on a series of techniques,
have the property of being reflective and specially tailored to allow end-users to make
modifications to the domain. A series of patterns that make this possible were described, as

18

State of the Art

well as their connection to the Ruby language, on top of which the escolinhas.pt platform
is built.

19

State of the Art

20

Chapter 3

Problem Statement

In this chapter, the problem will be described and justified, with reference to the biblio-
graphic review presented in Chapter 2. Section 3.1 includes a more detailed description of
the study and its objectives. Section 3.2 the approach to be taken in order to try and solve
the described problem. Finally, Section 3.3 presents the case-study areas that will be the
focus of the study described in this document and why they were chosen.

3.1 Problem Description

As stated by Hanson, Ruby on Rails is built to maximize the developers productivity [Han].
It does so by providing a comprehensive set of tools that perform most of the work. The
RoR framework is also designed for easy system evolution through migrations — which
allow developers to easily add, remove and modify tables and table rows, while minimizing
the effort of maintaining application consistency. While this is a solid, proven approach to
improve an application’s variability over time, it is often less flexible than one might wish,
often leading to complicated data migration tasks that may involve modifying production
data while ensuring consistency — this can pose as a problem when the amount of data
is extensive and highly variable in nature. As such, the use of a static database schema
coupled with migrations may not be entirely desirable for applications highly variable in
nature.

As presented on Chapter 2, the usage and application of adequate design patterns is
capable of mitigating some of these issues, improving both an application’s variability and
maintainability.

The main concerns of this dissertation are how these architectural and design patterns
can be effectively applied to a somewhat (architecturally speaking) restrictive framework,
and how these techniques can be combined with a schema-oriented MVC architecture used
by the Ruby on Rails Framework with a relational database (MySQL) as the persistence

21

Problem Statement

layer. One other point this work is concerned with is how can the variability of such
systems increase and how effective they are in terms of development and performance.

The work will be developed using the escolinhas.pt platform as a real and industrial
case study.

3.2 Architectural & Design Patterns

The evolution of architectural patterns is outside the scope of this project, mainly because
the project that will serve as a base to the case studies herein described is tied to the Ruby
on Rails framework and its implementation of the MVC architecture for software systems.
Trying to tackle the problem by changing the underlying architecture would mean that the
application would mostly have to be rebuilt from scratch, with the team having to stop
development to rewrite the application and learning a whole new set of skills, which is
simply not feasible. This process is usually done incrementally and opportunistically, as
needs and opportunities appear. Moreover, financial issues would arise from the fact that
the development team would have to be trained in whichever new platform would be used.

As the modification of the underlying architecture of escolinhas.pt has been discarded,
the next step is to try to modify only parts of the application design, focusing on a number
of different areas — also known as hotspots — chosen for their unique requirements in
terms of variability. Having chosen these areas, it is important to define which AOM-related
design patterns should be applied to solve their problems, and why.

3.3 Case-study Areas

In order to identify the most adequate areas to focus in, a study of the design of the whole
system was necessary — this allowed the identification of the areas that had naturally
occurring highly-variable requirements. For this study, three hotspots within the application
were chosen.

3.3.1 Roles

In escolinhas.pt, a user is associated with a number of different roles. These roles allow to
users to perform many different tasks and to have access to a number of distinct sections
of the platform — meaning they are used as the credentials to access and interact with
the application. These roles are implemented using a variant of the ORGANIZATION

HIERARCHY as described by Martin Fowler in [Fowa]. This implementation leads to a
restrictive design, making the task of creating new roles or access rules unnecessarily
complicated.

22

Problem Statement

3.3.2 Social network and contacts

Escolinhas.pt is a social platform for children aged 6 to 10 years old. As a social platform,
the network generated by the users is a big part of the application. At this time, this
network is built dynamically upon request, by analyzing the relations between users. These
relations are derived from the user’s school, groups, and friendships. However dynamic,
this method proves too restrictive, as there is no convenient and correct way to introduce
exceptions in the network — the only way would be to pollute the code with hard-coded
rules. As such, the need for a more flexible solution arises.

3.3.3 Document Editor

The document editor provided in escolinhas.pt is one of the most used components of
the platform. It produces documents that, in their simplest form, have a title and a series
of orderable blocks that serve as a placeholder for many different types of content (text,
images, drawing, maps, etc). These documents are able to maintain a history of the
modifications, in order to audit changes to its content, and to be able to publish a specific
version of the document to the platform. While the editor was built with expansibility
in mind, the process of creating a new type of block is not as streamlined as one may
wish. On top of that, the versioning system implemented is very tightly coupled with the
ACTIVERECORD (AR) implementation provided by the Ruby on Rails framework, which
makes the logic for versioning unnecessarily complicated. This makes the document editor
a very interesting area for this kind of study.

3.4 Conclusions

In this section, the problem was described and the main objectives laid out, as well as
the approach to be taken. The next chapter will focus on choosing the appropriate design
patterns that solve each one of the problems, as well as the impact each solution had on the
platform.

23

Problem Statement

24

Chapter 4

Approach & Results

This chapter presents the main body of work resultant of the study performed for this
dissertation, and it is divided in two main parts. The first one is related to research
design and it starts by describing how the current design of the escolinhas.pt platform
was performed and which tools were used to perform the analysis, and how the variability
needs for each one of the areas described in 3.3 were identified. The second part describes
the development process of each one of the case-study areas: Roles, Social Network
and Document Editor. For each one of these areas, it will present the current design
and variability requirements. Based on these informations, candidate patterns will be
presented, as well as the chosen patterns used to solve the problem and the rationale behind
it, outlining why certain patterns were discarded. Then, implementation details will follow,
concluding each section with an analysis of the impact each solution had, as well as some
results (where applicable).

4.1 Research Design

The first step taken in order to identify potential problems was to study its current design.
This step led to the identification of several points that negatively impacted the variability
of the application. After the identification of these points, variability requirements were
gathered, so that small, functional prototypes could be built and their impact analyzed
within the platform.

4.1.1 Current Design Analysis

A thorough analysis of the current design of the application was the first step taken, in order
to identify potential problems within the platform. This study was conducted using a series
of tools1 that, unfortunately (at the time of writing), proved unsuccessful in extracting an
Entity Relationship Diagram from the code of the application — either they did not work

1Rubymine 2.0 [Jet] and Rails ERD [Tim]

25

Approach & Results

with the current versions of Ruby/Rails used by the platform (Rails ERD) or generated
an inaccurate graph (Rubymine 2.0). As such, another approach was taken: the product
owner of the platform was queried on what he felt were the variability “hotspots” of the
application: this narrowed the scope of the current design analysis, allowing to focus
on three different areas, as stated in 3.3. These areas were then manually studied — by
analyzing the current database schema, as well as the Model (MVC) source files — in
order to extract the Entity Relationship Diagrams relative to each one — shown ahead on
4.2.1, 4.3 and 4.4 — which allowed analyzing each one as independently as possible, so
that the applied design patterns (if any) would emerge — making the task of pinpointing
exactly what was wrong with each approach much easier.

4.1.2 Variability Analysis

Each one of the areas — Roles, Social Network and the Document Editor — referred in 3.3
was then studied in order to determine their variability requirements, and to which degree
this variability should exist: developer, system administrator, or even end-user. These
requirements were defined by the carefully considering the opinions from the users of the
platform, the product owner and the main developers. These requirements were then used
to determine which design patterns would be more appropriate to achieve the problems
posed by each of the areas, and why.

4.1.3 Implementation & Impact Analysis

For each one the three focus areas, functional prototypes were developed, either directly
on top of the platform (Social Network, 4.3, and User Roles, 4.2) or as an independent
proof-of-concept application (Document Editor, 4.4), that, as soon as possible, will be
integrated into the main platform. These prototypes, however simplistic (and not yet in
production), will be able to validate the research and decisions made throughout the next
sections. All of the prototypes are implemented using Ruby 1.9.1 and Rails 2.3.9, as used
in the production and development environments of escolinhas.pt.

The impact analysis for each of these areas will be made in two different fronts:
variability and performance. Variability impact analysis will be concerned with the increase
in flexibility/configurability of a certain component, and how it measures to the objectives
established beforehand. Performance analysis will (if applicable) examine the how much
more (or less) performant each one of the implementations is, compared to the previous
solutions.

After studying the current design of the application and collecting the necessary
requirements, the development phase took place: the major variability requirements
were outlined, and a set of design patterns carefully considered, with their benefits and
disadvantages weighed in order to correctly choose the most appropriate solution. Finally,

26

Approach & Results

proof-of-concept prototypes were built so that the choice of patterns could be validated
and the impact resultant from the implementations measured.

4.2 User Roles

Roles play a very important part in any application: by attaching them to users, they
allow the application to authorize users based on their roles. If an application has a strong
tendency to evolve, so do its roles and authorization sets. This section describes the
work involved in making the current system of roles used in escolinhas.pt as adaptable as
possible.

4.2.1 Variability Requirements

Authorization is one of the most sensitive areas of any closed software system: it ensures
everyone does only what it should in order to guarantee everything works as expected. In
a constantly evolving system, the accesses granted by user roles have a tendency to shift
and evolve alongside the application — either because of new features or a new type of
user is required in the system to perform specific tasks. In the context of escolinhas.pt this
problem ties itself with the ACL used: because of the diversity of roles (Fig. 4.1) and the
three different usage plans, a lot of different rules are applied to determine if a user can or
can not perform certain actions; allied to the growing number of features of the platform,
this means that the authorization scheme has to be as flexible as possible to ensure minimal
overhead when determining new types of permission sets.

4.2.2 Candidate Patterns

The current logic on roles and users states that a user may be a professor, a student, a parent,
a coordinator (in which case it also has a professor role associated), or an administrator. Of
these five different types of roles, only two of them are allowed editing privileges, which
means that only students and professors have to ability to create and edit documents, which
leads to an unnecessary level of complexity. If, for example, it was necessary to have a
parent with editing privileges, a new Role, descendant of Role::Editor, would have to be
created just for that user.

An obvious solution to this problem would be to tie a “traditional” ACCESS CONTROL

LIST (as described in [MMN02]) to the roles actually in use: this would allow to fine-tune
each one of the users permissions and authorization sets while maintaining the codebase
clean — however, the logic surrounding authorization schemas and user roles is built
around the CanCan Ruby gem [Bat], which authorizes an user based on his or her roles,
while keeping the necessary logic to a minimum.

27

Approach & Results

Figure 4.1: Current User Roles Model.

As such, the usage of a new and fully customized ACL is unnecessary. As CanCan
rules are written in Ruby and are based on the ACTIVERECORD (AR) engine used by Rails,
CanCan is capable of handling authorizations based either on Models (MVC) or instances
of these Models. The application of an ACL to define user permissions would allow a
fine-grained control over the actions of every individual — instances of User Model —
on the system. However, the cases when this kind of control is necessary are rare, which
would mean that the increase in complexity brought with the usage of an ACL would not
be surpassed by its usefulness: it would be necessary to rewrite every rule already defined
within CanCan and then associate each user on the system with a specific set of rules,
instead of maintaining the current setup and writing a few (rare) exceptions for the users
the system administrator saw fit.

4.2.3 Chosen Patterns & Rationale

As the implementation of a new ACL was discarded in 4.2.2, the best solution is to enhance
the already present roles system: a flat Role hierarchy, as described in [BRSW97] would
allow for a more flexible authorization scheme, where a User could have one or more roles
associated, depending on what actions he would be allowed to do, as shown on Fig. 4.2.
This also makes the task of creating new roles with different authorization schemes much
easier, as there is not a need to conform to any special hierarchy scheme: a new role simply
means a new type of user. This clearly contrasts with the previous role’s logic, where a
multi-level hierarchy was in place.

28

Approach & Results

Figure 4.2: Conceptual User Roles Model.

4.2.4 Implementation

The refactoring of the roles infrastructure was of very low impact, as codebase and database
schema are regarded. The hierarchy of Role classes was flattened, keeping it at only two
levels: a generic, non-instantiable class Role, and all of its currently existent subclasses:
Editor, Parent, Student, Professor, Coordinator and Administrator. Then, the existent rules
were adapted to fit this new hierarchy. The last steps pertains to the modification of the
current data to fit the new role organization, which entails analyzing each user current roles
and performing the adequate substitutions from the previous roles schema.

4.2.5 Impact Analysis

The main issues related to the current Roles schema and consequent authorization strategies
are caused by the difficulty to capture the constantly evolving necessities of different types
of users. As the platform evolves, so do its users and their associated roles. If a new feature
is added to the application, it is necessary to define the privileges each user type has over it.
The flattening of the Roles hierarchy allows the representation of these Roles as separate,
independent objects, allowing the different contexts they refer to be kept separate and also
simplify the system configuration.

The usage of a matricial ACL implementation, as discussed in 4.2.2 would simplify the
configuration regarding the privileges of specific users — allowing a system administrator
to have full control over them. Ultimately, this means that the roles would play a very
small part in authorization granting, serving only as pre-defined rule sets to be applied to
new users.

The usage of a declarative ACL (CanCan) in conjunction with the ROLE OBJECT

pattern, leads to some important consequences: despite losing the ability to easily control
the specific set of rules of each user2and increasing the difficulty of maintaining constraints

29

Approach & Results

between roles, it allows the independent evolution of each Role, while making the task of
defining their key abstractions regarding each role’s position within the platform much
more simple and concise.

Comparing the solution described in 4.2.3 with the previous system, some conclusions
can be drawn: by eliminating complex hierarchies and keeping all roles on the same level,
Roles are easily evolved, as each Role is independent from every other one. However, this
solution must be be used with some caution, as maintaining constraints between roles
becomes difficult: since a User rule set consists of several Roles, maintaining constraints
and preserving the overall subject consistency might become difficult due to conflicting
rules. Nevertheless, the ability to easily add new Roles and write the appropriate rules (as
the example from Listing 4.1 shows) is enough to warrant the use of this solution. Finally,
the rules currently in place for the escolinhas.pt platform are a mix of rules based on Roles
and actions that can performed on objects: this makes defining new Roles and rule sets
somewhat more complicated than defining them based solely based on the application
Roles. The usage of the ROLE OBJECT pattern, combined with a rewrite of the current
rules will make the act of creating new Roles much more affordable.

1 class Ability
2 include CanCan::Ability
3

4 if user.is_admin? # set of rules for users with ’Admin’ role associated
5 can :manage, :all
6 end
7

8 if user.is_guest? # set of rules for users with no roles associated
9 can :read, [Post, Comment]

10 end
11 end

Listing 4.1: CanCan rule definition example.

4.3 Social Network

As a social platform, escolinhas.pt makes heavy use of the social network created by its
users. Due to the nature of the application, which closely mimics the Portuguese primary
school system, there is a need to control how the users (especially the students and parents)
interact with each other; in other words, the application needs to have mechanisms that
allow the manipulation of the social network. This section describes the study and work

2This ability is not completely lost. If necessary, CanCan can be used to define authorizations based on a User
instance (a specific user)

30

Approach & Results

involved in creating such mechanisms, as well as implementation details and its impact
details, both in terms of variability and performance.

4.3.1 Variability Requirements

The current design for the escolinhas.pt social network is based on the relationships formed
through the connections between users and their schools, groups, and other users, as
depicted in Fig. 4.3. The User’s Roles play an important part in the definition of this
network, as an user is only linked directly to other users; any other connection is mediated
through their Roles, creating their association with Schools and Groups. This allows the
construction of a network where all the connections can be inferred dynamically and where
an user can be identified to another through these same connections: friends, classmates,
parent–child, teacher–student, and so on. This network is used mainly in the internal
communication systems of escolinhas.pt, which allows users to communicate with each
other within the platform.

Figure 4.3: Current User Network Model.

This model, however useful, offers a very small degree of variability. Due to the closed
nature of the platform, there is a need to provide mechanisms able to fine-tune these
connections in order to accommodate to each school specific needs — some Schools may
not want to appear in search results; there may be some Students or even Parents who
need to have special communication privileges. These mechanisms need to be available
at the system administrator level, in order to easily manipulate these links without the
need to pollute the application’s codebase with hard-coded rules and without the need for
redeployement.

31

Approach & Results

4.3.2 Candidate Patterns

Ideally, the user network would be described with a simple, self-referencing model, as
shown in figure 4.4a. This would allow the creation of static relationships between any
two users that could be edited as needed. This would work great if all that was needed was
to create relationships between users. However, it is often necessary to create connections
between users and other entities in the system, such as groups and schools. Thus, this
simple model needs to be abstracted in order to connect any two entities present in the
system, whichever they may be, as shown in Fig. 4.4b.

(a) Users Network (b) Entities Network

Figure 4.4: Simplified Network Models.

4.3.3 Chosen Patterns & Rationale

The presented solutions are inspired by Martin Fowler’s work regarding Organization
Structures, and based on the ORGANIZATION HIERARCHY design pattern. Despite solving
the majority of the problem, the solutions described in 4.3.2 are less than ideal, as they do
not allow the identification of an user towards another, because only a direct connection
between two different entities is contemplated.

This could be solved by introducing an associative class containing these informations
— however, the resulting structure would still not convey enough information to properly
represent the existing hierarchies, as a simple relationship between two entities (as shown
in Fig. 4.4) cannot identify who is the superior and the subordinate of the relationship.

As such, for this particular problem, it is necessary to be able to connect any two entities
in the system, identify their place in the hierarchy (parent or child), with an optional third
entity to serve as hint as to how the original entities are connected. This problem can be
solved by using the ACCOUNTABILITY pattern (see 2.9.1.7) by Martin Fowler [Fowa]:
it allows a bi-directional, hierarchical relationship between two entities (also known as
parties) while maintaining an AccountabilityType which can be used to store additional
data about the connection. As such, this AccountabilityType can be used to store an
optional third party, responsible for identifying how the two other parties are connected —

32

Approach & Results

effectively granting means to identify an user before an other, which is part of the original
problem formulation (4.3).

4.3.4 Implementation

A variant of the ACCOUNTABILITY design pattern (as described in section 2.9.1.7) was
chosen (shown in Fig. 4.5). This implementation follows the original description of the pat-
tern by using all the usual entities present in the original ACCOUNTABILITY pattern [Fowa]
— however, it denormalizes the AccountabilityType entity into the Accountabilities them-
selves, by placing the AccountabilityType attributes (type, through, school_year,
active) in the Accountability. Despite creating some data redundancy, this option pro-
vides a more performant implementation: as the Accountabilities table is to be constantly
accessed, the decision to have the AccountabilityTypes in a separate table would lead to
expensive JOIN operations. This, in turn, would lead to a less than desirable performance
and complexity.

Figure 4.5: Accountability Implementation for User Network.

For performance reasons (explained in 4.3.5), a series of different AccountabilityTypes
were created, in order to cater to a multitude of relationship types, as described in Table 4.1

Type Parent Child Through Description

group_professor Group Professor — establishes a connection between a
Group and a Professor, meaning that
the user is one of the teachers of
Group

professor Professor Student Group establishes a connection between
two Users — a Professor and a Stu-
dent — creating a teacher-student
relationship between them through
whichever Group they are related to

33

Approach & Results

group_student Group Student — establishes a connection between a
Group and a Student, meaning that
the user is part of the Group and
taught by the group_professors as-
sociated with the aforementioned
Group

school_professor School Professor — establishes a connection between a
School and a Professor

school_student School Student — establishes a connection between a
School and a Student

parent Parent Student — establishes a parenthood relation-
ship between two users

school_cordinator School Coordinator — dictates an User is a coordinator
(also known as an administrator) of
a certain School

colleague Professor Coordinator School establishes a connection between
two Users — either a Coordinator
or a Professor — through a School
they both work in

student Coordinator Student School establishes a relationship between a
Coordinator and a Student through
a School

school_parent Coordinator Parent School establishes a relationship between a
Coordinator and a Parent through a
School

friend User User — establishes a connection between
any two Users of the system —
whichever their roles may be — to
indicate a friendship relation exists
between them

Table 4.1: AccountabilityTypes created to describe every type of existent relation.

Some of the aforementioned AccountabilityTypes are representative of every type of
interpersonal relationship existent in the escolinhas.pt platform. At first sight, some of
the AccountabilityTypes created may seem redundant, such as student and school_parent:
they exist because the school coordinator needs to be able to contact everyone who is
part of the school. One could argue these connections could easily be inferred through
the relations between the coordinator and his or her school, and the relations existent
between the school and its students, and finally use the existent parenthood relationships.
However, as described in 4.3.1, one of the major design flaws (regarding variability), was
the completely dynamic nature of the contacts network — as the network was always

34

Approach & Results

built upon request, there was no viable way of modifying it without using hardcoded rules
or a configuration setup external to the code. Thus, the choice to implement apparently
redundant AccountabilityTypes tied itself with the necessity to have full control over the
existent social relationships. The remainder of the AccountabilityTypes are used to store
and facilitate access to membership-like relationships, by stating a certain user is part of a
school or group at a given school year. This also allows the platform to keep a history of
past (inactive) relationships between entities in the system.

4.3.5 Impact Analysis

The usage of this design pattern not only solved some of the existing variability and
performance problems, but introduced a new possibility: the ability to create relationships
between any two entities in the system. This leads to a very flexible network, capable of
being modified at the M0 (data) level (see 2.9.1), which is a pre-requisite for end-user level
variability.

A second objective pertaining to the application of this pattern was to improve the
performance related to contact list creation and the identification of these before the user.
This task is currently extremely expensive, with an edge case of 5724 queries needed to
fetch and identify 715 contacts. A user with only 18 contacts generates 154 queries. This
means that an average of 8 queries are performed for each one of the contacts, meaning the
cost of this operation is approximately linear in nature, as depicted in Fig. 4.6.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800

Q
ue

rie
s

pe
rf

or
m

ed

Number of contacts

Figure 4.6: Average number of queries performed per number of contacts.

35

Approach & Results

The graph in Fig. 4.6 represents the average number of queries performed per number
of contacts a user has, and it was sampled from a random population of 10000 real users of
the platform. As stated before cost growth of the function is only approximately linear:
due to the dynamic nature of the network, some users may have a sparser network — e.g.
less groups associated with, but more users associated with each group the user is part of —
which can explain the unexpected decrease in the number of queries around the 200-mark
and the irregularities in users with less than 100 contacts. However, in practice, this cost
can be extrapolated to a linear cost, to a point where one can infer that the number of
queries performed is approximately 8 times the number of contacts, which represents a
very serious performance issue for one of the most used features of the platform.

The implementation of the ACCOUNTABILITY pattern to maintain the relationships be-
tween users was able to reduce the cost of the abovementioned task to from O(n) (Fig. 4.6)
O(1): by using the RoR ACTIVERECORD API to access and manipulate these connections,
only 11 queries are performed to fetch and identify an user contacts, regardless of the size
of said contact list. This means that the platform is able to sustain a considerable growth
without suffering serious impacts on the performance of seemingly trivial operations.

4.4 Documents

The last studied area — the Document Editor — is also the most used and most complex
component of the system. It is the main means of collaboration between students and
teachers, and used to create essays, using a series of different digital contents, such as
images, videos, or maps. As one of the most used features of the system, it is also the one
most subject to modification. This section details the work performed in order to make the
process of modifying the Document Editor as agile as possible.

4.4.1 Variability Requirements

The document editor present in escolinhas.pt is one of the core components of the system
and one of the most used features of the platform. This being the case, and due to the
constantly evolving nature of the product and the product itself, it is also one of the
most modified parts of the system. As it can be seen in Fig. 4.7, this structure has to
grow both in size and complexity every time a new type of Block content is introduced
— represented by the gray entities in Fig. 4.7. This means that whenever a new type of
content is introduced in the system, which happens somewhat frequently — from three
types of Blocks (Paragraphs, Drawings and ImageDocuments/Photos) in September 2009
to seven in April/May 2010 — it is necessary to setup a new ACTIVERECORD class (along
with all the logic for versioning) and a new CONTROLLER (MVC) to accept the requests
necessary to create, edit or delete any of these entities. Despite working as intended, this

36

Approach & Results

workflow is not adequate to the constant evolution and prototyping the document editor is
subjected to.

Figure 4.7: Current Documents Model.

4.4.2 Candidate Patterns

One of the major causes of slow and irksome development of new types of Blocks, is, as
stated in the previous section, the sheer amount of code duplication involved. This involves
painstakingly copying the Model, the Controller and all the Views from a previous existing
Block type, and then modifying the required parts. This approach is brittle and extremely
prone to errors. However, if a more general and abstract analysis is performed, a Block
type is nothing more than a very complex variable. As such, the problem can now be
approached to as finding the best way to create new types of variables, on demand, and
with as little work involved as possible — and the current research on AOM architectures
has already solved this problem, by means of the TYPE-OBJECT and PROPERTY (and,
consequently, the TYPE-SQUARE, described in 2.9.1.1, 2.9.1.2 and 2.9.1.3, respectively)
patterns.

The research on versioning and maintaining a temporal history for objects is extensive.
In [FCW08], Hugo Ferreira et al. describe the most appropriate patterns pertaining to data
and metadatada evolution within the context of AOM architectures. The most important
one is SYSTEM MEMENTO, as described in 2.9.1.6. Martin Fowler has also compiled
a collection of patterns that aim to deal with temporal changes to an object or system
state, in [Fowb]. Two of the most promising patterns described are the TEMPORAL

OBJECT [Fowd] and SNAPSHOT [Fowc]. However, neither one of the aforementioned

37

Approach & Results

patterns is completely adequate to solve the problem at hand. On one hand, TEMPORAL

OBJECT assumes the creation of a dedicated entity just to be able to access a certain object
at a given point in time — as one of the objectives of the refactoring of this hotspot is to
reduce the associated codebase and work necessary to create new types of Blocks, the usage
of this pattern must be discarded. On the other hand, the usage of SNAPSHOT assumes that
the Snapshot itself is to be used as an adapter on the underlying object, which once again
assumes the usage of a separate object to handle recording the state of any given entity in a
particular point in time.

One important part of the document editor is the validation of user input. As it is the
only focus area which deals directly with free-form user input, the validation of the values
need to be taken into account. The STRATEGY and INTERPRETER pattern (described in
2.9.1.4 and 2.9.1.5, respectively), are two patterns that would be adequate to write and
perform all of the validations required by the Block item logic. However, these two
patterns are mainly directed to when a system needs to have end-user level variability. In
this particular case, the definition and creation of new types of Blocks is a task for the
development team. As such, the usage of these patterns is unnecessary as far as validations
are regarded. In order to simplify development and validations themselves, Ruby will act as
both the language and execution engine for the validations. This is done by using a custom,
extensible DSL built atop of the language itself; thus, the STRATEGY and INTERPRETER

pattern are effectively “absorbed” by the host language (Ruby) atop of which the platform
is built.

4.4.3 Chosen Patterns & Rationale

The solution devised for the Documents infrastructure is, as required by all the necessities
stated in 4.4.1 and 4.4.2, the simplest structure possible — as seen in Fig. 4.8 — that makes
everything work as before and makes the data transition tasks as simple and seamless as
possible. This is due to the metaprogramming facilities of the Ruby language and the
excellent support present in the serialization and ACTIVERECORD tools provided by RoR.

Figure 4.8: Conceptual Documents Model.

38

Approach & Results

The pattern used is a composite design pattern as described in [Rie97], where various
smaller design patterns work in tandem to create a more complex pattern:

• SYSTEM MEMENTO - used for versioning and handling Publications as special states

• PROPERTY (simplified variant) - used for decoupling a Block item from the database
schema

The variant of the PROPERTY pattern implemented is simplified due to the highly
dynamic nature of the Ruby language — which means that, for this particular problem, it
is able to build new types of objects or even create new class definitions in runtime, which
allows discarding the PROPERTY–PROPERTYTYPE pair (see 2.9.1.2) in favour of a single
entity, item, as shown on Fig. 4.8.

4.4.4 Implementation

The implementation of this composite pattern takes advantage of the highly dynamic nature
of the Ruby language and the API provided by the ACTIVERECORD implementation of
Rails.

4.4.4.1 Basic Structure

Document, Block, Version and Publication are all AR objects, which means that, according
to the AR pattern and the Rails framework conventions, each one of them is stored inside
an SQL table, with a column for each one of the attributes. This structure provides the
basic blueprint (as stated in 3.3.3) for the documents to be produced by the editor — it
allows a title, an arbitrary number of orderable Blocks, and a snapshot (version) of each
modification. It also allows for publications, which essentially point to a specific version
of a document.

There is nothing really remarkable about Blocks, Documents of even Publications —
they are ordinary ACTIVERECORD objects, with associations to each other (as pictured in
Fig. 4.8), and explaining how they work is outside of the scope of this study.

4.4.4.2 Versioning & Block Items

However, a Version is a bit more complex than a simple AR object, in the sense that it
contains a full representation of another AR object at a given point in time — in this case,
a Document. This is achieved by serializing a Document and all its associations (Blocks)
in the JSON format, which preserves all the necessary information needed to rebuild a
specific Document at whichever time that Version refers to — which means that a Version
effectively implements the MEMENTO design pattern to keep a history of each Document.

39

Approach & Results

Finally, a Block item possesses special properties that, together with AR, create a
dynamic and variable foundation for the development of different types of content. As
a Block is simply a generic container for an arbitrary type of item, a Block item can’t
be constrained to a single class or object type. The solution is to serialize the content
inside the content attribute of a Block. This way, a Block item is simply a string that
represents a serialized object — which can be de-serialized, accessed and modified at
runtime. This means that, whichever a Block item may be, the item itself is responsible
for its representation and life cycle.

4.4.4.3 Validation and Defaulting Mechanisms for Block Items

In order to further simplify and streamline the development, a DocumentItem (super)class
was created. This class serves as a basis for further specialization through inheritance, and
handles cross-cutting concerns such as object initialization, default values and validations
for each of these attribute’s values. The need for a specific controller for each one of the
different Block items has also been discarded in favour of a single Controller (MVC),
responsible for handling the user input regarding the modification of Blocks and their item
contents.

The Document Editor prototype is the one that takes most advantage of the Ruby
language, by extensively using metaprogramming techniques, along with JSON [Cro]
serialization and parsing.

The defaulting and validation mechanisms implemented for the DocumentItem class
make use of the metaprogramming capabilities of the Ruby language to easily create
class-level instance variables [Nun06] that can be shared across all the instances of each
subclass of DocumentItem.

4.4.4.4 JSON Serialization

JSON is exclusively used for serialization, and its usage objectives are two-fold: allowing
serialization and de-serialization of any Ruby object, and the ability to use a serialized
object directly in Javascript, without any need for a server-side transformation. JSON
usage also allows for a more robust de-serialization of objects: as a JSON object is just a
hash of key-value pairs, objects are built from a class method, DocumentItem.from_json,
which takes a JSON-serialized object represented as a native Ruby hash, and creates an
object of the appropriate class. The difference of this approach from other serialization
methods3 is that the constructor of the class to be built is called manually4, which is
vital to deal with system evolution. If at any point during the development the definition
of a DocumentItem specialization is modified (i.e. a new attribute is added to the class

3Marshalling, YAML, etc.
4Marshalling and YAML mechanisms do not call the serialized object’s constructor, only rebuild it

40

Approach & Results

definition), the previous objects stored will not have these new attributes. The defaulting
mechanism implemented solves this problem by merging the existing default values with
the ones passed to the class constructor, thereby creating a valid object, regardless of the
information stored in the serialized object.

4.4.5 Impact Analysis

The refactoring of the Document Editor infrastructure had two major points of impact:
performance, and variability.

With the current foundation for the editor, the number of queries grows linearly with
the number of Blocks that constitute a document, as it is necessary to perform a query
for each one the items related to each one of the Blocks. The usage of eager loading is
limited due to the polymorphic nature of the Blocks and each respective content, which is
unknown a priori.

From an universe of 4000 documents used in the study, the graph present in Fig. 4.9
shows a linear growth in the number of queries necessary to render a Document: the number
of queries necessary are directly proportional to the number of Blocks in a document with
a 1:1 ratio. Just like in 4.3.5, this represents a serious performance issue: as the most used
feature in the escolinhas.pt platform, a sustainable growth is very difficult to achieve if the
database load increases linearly with the number of existent Blocks in Documents.

The introduction of the model described in 4.4.3 makes the number of queries necessary
to display a Document to be constant (only 2 queries are performed), as only the Blocks
and the Document itself are AR objects — as the item that constitutes a Block is an integral
part of a Block, no queries are necessary to fetch it.

Using the aforementioned infrastructure for the document editor, the work necessary
to create new types of Blocks has been greatly reduced. This allows for much shorter
prototyping and testing iteration times — no database schemas or migrations to worry about,
allowing the developers to focus on the details of the model rather than implementation
details — which ultimately leads to a higher degree of variability.

Listings 4.2 and 4.3 show how the work necessary to create a Block item has been
greatly reduced, while keeping the necessary logic to a minimum. The logic for versioning
is now handled by the item Block instead of the item itself, which allows its logic and
structure to be succinctly described.

41

Approach & Results

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

Q
ue

rie
s

pe
rf

or
m

ed

Number of Blocks in a Document

old design
new design

Figure 4.9: Average number of queries performed per number of Blocks in a single Document.

42

Approach & Results

1 class GoogleMapsMap < ActiveRecord::Base
2

3 acts_as_paranoid_manually_versioned
4 has_one :block, :as : :item
5

6 has_many :google_maps_markers, :dependent : :destroy
7

8 # shortcut methods
9 def markers

10 self.google_maps_markers
11 end
12

13 # save markers associations
14 def before_save
15 self.markers_for_version = self.markers.map(&:id).to_yaml
16 end
17

18 def before_update
19 self.block.document.head.version += 1
20 self.block.document.head.save
21

22 self.set_new_version(self.block.document.head.version)
23 self.save_version(self.block.document.head.version)
24 end
25 end

Listing 4.2: Original “Map” Block item.

1 class DocumentItem::Map < DocumentItem
2

3 attr_accessor :lat, :lng, :map_type, :markers
4

5 defaults :lat, 0.0
6 defaults :lng, 0.0
7 defaults :map_type, ’roadmap’
8 defaults :markers, []
9

10 end

Listing 4.3: Refactored “Map” Block item.

43

Approach & Results

4.5 Conclusions

This chapter detailed how the study of the current design of the platform was conducted,
and the tools used to do so. It described how the data gathered from that study was used to
identify what the main problems within the platform were, and how they could be solved.
It also described a vast set of applicable design patterns and how this set was reduced to
choose the patterns that best solved the problem at hand. Finally, this chapter details the
impact regarding the usage of each chosen pattern in terms of variability and performance.

It was shown that the usage of the appropriate design patterns solved the problems that
were identified in section 3.3: for each one the the areas described in 4.2, 4.3 and 4.4, the
problem was analyzed, and from a set of possible solutions, the most appropriate one was
chosen. Small, focused, proof-of-concept prototypes were built to verify the validity of
the chosen solutions — which lead to an overall increase in variability for each one of
the aforementioned areas. Along with an increase in variability, performance was also
increased in two areas — the Social Network and Documents — although this increase was
not always a direct objective: regarding the Social Network, performance was a serious
factor for choosing the appropriate solution, while for the Documents it was simply a
side-effect that arose from good design.

44

Chapter 5

Conclusion

The problem described in chapter 3 has been solved according to the solution presented
in chapter 4 and the results achieved from this approach have been presented in the same
chapter. In this last chapter, Section 5.1, some last remarks will be made about this study,
as well as a summary of the main achievements and results. In Section 5.2 the further
improvements to the project will be presented.

5.1 Conclusions

Adaptive Object-Model architectures provide the best framework for building adaptable
systems that are liable of modification by the end-users (which assumes no compilation or
deployment processes). A lot of thought and research has gone into the best practices for
the complete implementation of these types of systems, from model creation, maintenance
and persistence to GUI generation.

Despite being built with a MVC architecture, the Ruby On Rails framework is, using the
right approach, capable of working with some architectural and design patterns — present
in AOM architectures — not obviously connected with MVC and AR. The application of
these patterns is capable of increasing the level of variability present in a common Rails
application, and a harmonious integration with the Rails 2.3.x infrastructure — especially
the ACTIVERECORD engine — is possible and works elegantly.

Although the majority of the work present in this dissertation is concerned with in-
creasing the variability of software systems built on top of the Ruby on Rails framework,
it is possible to conclude that the application of the appropriate design patterns is able to
increase not only the variability and configurability needs of a specific part of an applica-
tion, but also its performance. However, this should not be taken as an universal truth, as it
depends on a series of factors that may not be present in all implementations, such as a
previous innapropriate design.

45

Conclusion

5.2 Further Work

The main improvements and additions that can be made to the final work presented are
divided into 2 groups: implementation and optimizations.

Regarding implementation, each one of the prototypes herein described are in pre-
alpha state: they provide working prototypes that, despite functional, are not yet ready
for production. Further work is needed to integrate them within the platform so that these
prototypes can be successfully put to good use.

In regards to optimizations, perhaps one of the most important optimizations to be
performed deals with the Social Network and the Accountabilities created: while it is a
relatively inexpensive process, it must be taken into account that the task of fetching an
user’s contacts and identifying each one still requires 11 queries to the database. For a
platform with a substantial amount of active users, this could pose as a problem if this
number suddenly begins to rise. As such, there are two possible optimizations for this area:
trying to reduce the number of queries performed by using raw SQL instead of the RoR
ACTIVERECORD API; another possible solution would be to keep all the accountabilities
in memory, in order to reduce the heavy usage of the database server. This could be
achieved by using a memcached1 server to create an in-memory cache of the desired
database contents.

1http://www.memcached.org/

46

http://www.memcached.org/

References

[AdOdSBD07] Nicolas Anquetil, Káthia M. de Oliveira, Kleiber D. de Sousa, and Már-
cio G. Batista Dias. Software maintenance seen as a knowledge manage-
ment issue. Inf. Softw. Technol., 49(5):515–529, 2007.

[AIS+77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson,
Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford
University Press, New York, 1977.

[Bas87] P. G. Bassett. Frame-based software engineering. IEEE Softw., 4(4):9–16,
1987.

[Bat] Ryan Bates. Cancan. https://github.com/ryanb/cancan.

[BMR+96a] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. Wiley, Chichester, UK, 1996.

[BMR+96b] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-oriented software architecture volume 1: A system
of patterns. Wiley, August 1996.

[BRSW97] D. Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. The role object
pattern. In Proceedings of PLoP, volume 97, pages 97–34, 1997.

[Che08] Frederick Cheung. Migrations. http://guides.rubyonrails.
org/migrations.html#creating-a-migration, September
2008. [Online] Accessed 16th July 2010.

[CI84] Robert D. Cameron and M. Robert Ito. Grammar-Based Definition of
Metaprogramming Systems. ACM Transactions on Programming Lan-
guages and Systems, 6(1):20–54, January 1984.

[Cle88] J. Craig Cleaveland. Building application generators. IEEE Softw., 5(4):25–
33, 1988.

[Cro] Douglas Crockford. The application/json media type for javascript object
notation (json).

[DH04] Ivo Damyanov and Nick Holmes. Metadata driven code generation using
.net framework. In CompSysTech ’04: Proceedings of the 5th international
conference on Computer systems and technologies, pages 1–6, New York,
NY, USA, 2004. ACM.

47

https://github.com/ryanb/cancan
http://guides.rubyonrails.org/migrations.html#creating-a-migration
http://guides.rubyonrails.org/migrations.html#creating-a-migration

REFERENCES

[EGHN] Eric Evans, Vladimir Gitlevich, Ying Hu, and Jimmy Nilsson. What is
domain-driven design? | domain-driven design community. http://www.
domaindrivendesign.org/resources/what_is_ddd. [Online]
Accessed 10 January 2011.

[Eva03] Eric Evans. Domain-driven design: Tackling complexity in the heart of
software. Addison-Wesley Professional, August 2003.

[FCAF10] Hugo Sereno Ferreira, Filipe Figueiredo Correia, Ademar Aguiar, and
João Pascoal Faria. Adaptive Object-Models: a Research Roadmap. 2010.

[FCW08] Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Leon Welicki. Pat-
terns for data and metadata evolution in adaptive object-models. In Pro-
ceedings of the 15th Conference on Pattern Languages of Programs, PLoP
’08, pages 5:1–5:9, New York, NY, USA, 2008. ACM.

[Fer10] Hugo Sereno Ferreira. Adaptive Object-Modelling: Patterns, Tools and
Applications. PhD thesis, Faculdade de Engenharia da Universidade do
Porto, December 2010. To be published.

[Fowa] Martin Fowler. Organization Structures.

[Fowb] Martin Fowler. Patterns for things that change with time. http:
//martinfowler.com/ap2/timeNarrative.html. [Online] Ac-
cessed January 12 2011.

[Fowc] Martin Fowler. Snapshot. http://martinfowler.com/ap2/
snapshot.html. [Online] Accessed January 12 2011.

[Fowd] Martin Fowler. Temporal object. http://martinfowler.com/ap2/
temporalObject.html. [Online] Accessed January 12 2011.

[Fow97] Martin Fowler. Analysis Patterns, Reusable Object Models. Addison-
Wesley, 1997.

[FY97] B. Foote and J. Yoder. Pattern Languages of Program Designs. Addison-
Wesley, 1997.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design patterns:Elements of reusable object-oriented software. Addison-
Wesley Professional, November 1994.

[Han] David Heinemeier Hansson. Ruby on rails. http://rubyonrails.
org/. [Online] Accessed 16th July 2010.

[Hay98] David Hay. Data Model Patterns, Conventions of Thought. Dorset House
Publishing, 1998.

[Jet] Jetbrains. Rubymine. http://www.jetbrains.com/ruby/.

[JY97] Brian Foote Joseph and Joseph Yoder. Big ball of mud. In Pattern
Languages of Program Design, pages 653–692. Addison-Wesley, 1997.

48

http://www.domaindrivendesign.org/resources/what_is_ddd
http://www.domaindrivendesign.org/resources/what_is_ddd
http://martinfowler.com/ap2/timeNarrative.html
http://martinfowler.com/ap2/timeNarrative.html
http://martinfowler.com/ap2/snapshot.html
http://martinfowler.com/ap2/snapshot.html
http://martinfowler.com/ap2/temporalObject.html
http://martinfowler.com/ap2/temporalObject.html
http://rubyonrails.org/
http://rubyonrails.org/
http://www.jetbrains.com/ruby/

REFERENCES

[KM05] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and
modular reasoning. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 49–58, New York, NY, USA,
2005. ACM.

[LC03] Donal Lafferty and Vinny Cahill. Language-independent aspect-oriented
programming. Proceedings of the 18th annual ACM SIGPLAN, 38(11):1,
November 2003.

[Mat] Yukihiro Matsumoto. Ruby programming language. http://
ruby-lang.org. Accessed 16th July 2010.

[Mic] Microsoft. Xna. http://www.xna.com/. Accessed July 16, 2010.

[Mil03] J. Miller. MDA Guide Version 1.0. 1. Object Management Group, (June),
2003.

[MMN02] C.J. McCollum, J.R. Messing, and L. Notargiacomo. Beyond the pale
of MAC and DAC-defining new forms of access control. In Research in
Security and Privacy, 1990. Proceedings., 1990 IEEE Computer Society
Symposium on, pages 190–200. IEEE, 2002.

[MS03] David Mertz and Michele Simionato. Metaclass programming
in python. http://www.ibm.com/developerworks/linux/
library/l-pymeta.html, 2003. [Online] Accessed July 16 2010.

[Nun06] John Nunemaker. Class and instance variables in ruby // railstips by john
nunemaker. http://railstips.org/blog/archives/2006/
11/18/class-and-instance-variables-in-ruby/, Novem-
ber 2006. [Online] Accessed January 12 2011.

[OMG06] OMG. Meta Object Facility (MOF) Core Specification. Citeseer, (Jan-
uary), 2006.

[OMG10] OMG. Omg unified modeling language (omg uml), infrastructure. March
2010.

[ORP] Tim O’Reilly, Sam Ruby, and Bruce Perens. Ruby on rails: Quotes. http:
//rubyonrails.org/quotes. [Online] Accessed 14th January 2011.

[PT07] Carla Pacheco and Edmundo Tovar. Stakeholder identification as an
issue in the improvement of software requirements quality. In CAiSE’07:
Proceedings of the 19th international conference on Advanced information
systems engineering, pages 370–380, Berlin, Heidelberg, 2007. Springer-
Verlag.

[PW03] Richard Pawson and Vincent Wade. Agile development using naked
objects. In Michele Marchesi and Giancarlo Succi, editors, Extreme
Programming and Agile Processes in Software Engineering, volume 2675
of Lecture Notes in Computer Science, pages 1010–1010. Springer Berlin
/ Heidelberg, 2003.

49

http://ruby-lang.org
http://ruby-lang.org
http://www.xna.com/
http://www.ibm.com/developerworks/linux/library/l-pymeta.html
http://www.ibm.com/developerworks/linux/library/l-pymeta.html
http://railstips.org/blog/archives/2006/11/18/class-and-instance-variables-in-ruby/
http://railstips.org/blog/archives/2006/11/18/class-and-instance-variables-in-ruby/
http://rubyonrails.org/quotes
http://rubyonrails.org/quotes

REFERENCES

[Rie97] Dirk Riehle. Composite design patterns. In Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’97, pages 218–228, New York,
NY, USA, 1997. ACM.

[Sch06] D.C. Schmidt. Model-driven engineering. IEEE computer, 39(2):25–31,
2006.

[Ste06] Friedrich Steimann. The paradoxical success of aspect-oriented program-
ming. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and
applications, pages 481–497, New York, NY, USA, 2006. ACM.

[TC] Lda. Tecla Colorida. Escolinhas :: Plataforma colaborativa e social para o
eb1/2. http://www.escolinhas.pt/. Accessed July 8th 2010.

[TC06] Kun Tian and Kendra Cooper. Agile and software product line methods:
are they so different. 1st International Workshop on Agile Product Line,
2006.

[Tho07] Dave Thomas. Metaprogamming - extending ruby for fun and profit, De-
cember 2007. [Presentation, Online]. Available: http://www.infoq.
com/presentations/metaprogramming-ruby.

[Tim] Rolf Timmermans. Rails erd. http://rails-erd.rubyforge.
org/.

[WC03] Laurie Williams and Alistair Cockburn. Guest editors’ introduction: Ag-
ile software development: It’s about feedback and change. Computer,
36(6):39–43, 2003.

[WYWB07] León Welicki, Joseph W. Yoder, and Rebecca Wirfs-Brock. Rendering
patterns for adaptive object-models. In PLOP ’07: Proceedings of the
14th Conference on Pattern Languages of Programs, pages 1–12, New
York, NY, USA, 2007. ACM.

[YBJ01] Joseph W. Yoder, Federico Balaguer, and Ralph Johnson. Architecture and
design of adaptive object-models. SIGPLAN Not., 36(12):50–60, 2001.

[YFRT98] Joseph W. Yoder, Brian Foote, Dirk Riehle, and Michel Tilman. Metadata
and active object-models. In Addendum to the 1998 proceedings of the
conference on Object-oriented programming, systems, languages, and
applications (Addendum), pages –A22, New York, NY, USA, 1998. ACM.

[YJ02] Joseph W. Yoder and Ralph E. Johnson. The adaptive object-model
architectural style. In WICSA 3: Proceedings of the IFIP 17th World
Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software
Architecture, pages 3–27, Deventer, The Netherlands, The Netherlands,
2002. Kluwer, B.V.

50

http://www.escolinhas.pt/
http://www.infoq.com/presentations/metaprogramming-ruby
http://www.infoq.com/presentations/metaprogramming-ruby
http://rails-erd.rubyforge.org/
http://rails-erd.rubyforge.org/

