47 research outputs found

    Improved Detection for Advanced Polymorphic Malware

    Get PDF
    Malicious Software (malware) attacks across the internet are increasing at an alarming rate. Cyber-attacks have become increasingly more sophisticated and targeted. These targeted attacks are aimed at compromising networks, stealing personal financial information and removing sensitive data or disrupting operations. Current malware detection approaches work well for previously known signatures. However, malware developers utilize techniques to mutate and change software properties (signatures) to avoid and evade detection. Polymorphic malware is practically undetectable with signature-based defensive technologies. Today’s effective detection rate for polymorphic malware detection ranges from 68.75% to 81.25%. New techniques are needed to improve malware detection rates. Improved detection of polymorphic malware can only be accomplished by extracting features beyond the signature realm. Targeted detection for polymorphic malware must rely upon extracting key features and characteristics for advanced analysis. Traditionally, malware researchers have relied on limited dimensional features such as behavior (dynamic) or source/execution code analysis (static). This study’s focus was to extract and evaluate a limited set of multidimensional topological data in order to improve detection for polymorphic malware. This study used multidimensional analysis (file properties, static and dynamic analysis) with machine learning algorithms to improve malware detection. This research demonstrated improved polymorphic malware detection can be achieved with machine learning. This study conducted a number of experiments using a standard experimental testing protocol. This study utilized three advanced algorithms (Metabagging (MB), Instance Based k-Means (IBk) and Deep Learning Multi-Layer Perceptron) with a limited set of multidimensional data. Experimental results delivered detection results above 99.43%. In addition, the experiments delivered near zero false positives. The study’s approach was based on single case experimental design, a well-accepted protocol for progressive testing. The study constructed a prototype to automate feature extraction, assemble files for analysis, and analyze results through multiple clustering algorithms. The study performed an evaluation of large malware sample datasets to understand effectiveness across a wide range of malware. The study developed an integrated framework which automated feature extraction for multidimensional analysis. The feature extraction framework consisted of four modules: 1) a pre-process module that extracts and generates topological features based on static analysis of machine code and file characteristics, 2) a behavioral analysis module that extracts behavioral characteristics based on file execution (dynamic analysis), 3) an input file construction and submission module, and 4) a machine learning module that employs various advanced algorithms. As with most studies, careful attention was paid to false positive and false negative rates which reduce their overall detection accuracy and effectiveness. This study provided a novel approach to expand the malware body of knowledge and improve the detection for polymorphic malware targeting Microsoft operating systems

    An enhanced performance model for metamorphic computer virus classification and detectioN

    Get PDF
    Metamorphic computer virus employs various code mutation techniques to change its code to become new generations. These generations have similar behavior and functionality and yet, they could not be detected by most commercial antivirus because their solutions depend on a signature database and make use of string signature-based detection methods. However, the antivirus detection engine can be avoided by metamorphism techniques. The purpose of this study is to develop a performance model based on computer virus classification and detection. The model would also be able to examine portable executable files that would classify and detect metamorphic computer viruses. A Hidden Markov Model implemented on portable executable files was employed to classify and detect the metamorphic viruses. This proposed model that produce common virus statistical patterns was evaluated by comparing the results with previous related works and famous commercial antiviruses. This was done by investigating the metamorphic computer viruses and their features, and the existing classifications and detection methods. Specifically, this model was applied on binary format of portable executable files and it was able to classify if the files belonged to a virus family. Besides that, the performance of the model, practically implemented and tested, was also evaluated based on detection rate and overall accuracy. The findings indicated that the proposed model is able to classify and detect the metamorphic virus variants in portable executable file format with a high average of 99.7% detection rate. The implementation of the model is proven useful and applicable for antivirus programs

    Energy Efficient and Secure Wireless Sensor Networks Design

    Get PDF
    Wireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense, process, communicate, and transmit information to a destination, and they are expected to have significant impact on the efficiency of many applications in various fields. The resource constraint such as limited battery power, is the greatest challenge in WSNs design as it affects the lifetime and performance of the network. An energy efficient, secure, and trustworthy system is vital when a WSN involves highly sensitive information. Thus, it is critical to design mechanisms that are energy efficient and secure while at the same time maintaining the desired level of quality of service. Inspired by these challenges, this dissertation is dedicated to exploiting optimization and game theoretic approaches/solutions to handle several important issues in WSN communication, including energy efficiency, latency, congestion, dynamic traffic load, and security. We present several novel mechanisms to improve the security and energy efficiency of WSNs. Two new schemes are proposed for the network layer stack to achieve the following: (a) to enhance energy efficiency through optimized sleep intervals, that also considers the underlying dynamic traffic load and (b) to develop the routing protocol in order to handle wasted energy, congestion, and clustering. We also propose efficient routing and energy-efficient clustering algorithms based on optimization and game theory. Furthermore, we propose a dynamic game theoretic framework (i.e., hyper defense) to analyze the interactions between attacker and defender as a non-cooperative security game that considers the resource limitation. All the proposed schemes are validated by extensive experimental analyses, obtained by running simulations depicting various situations in WSNs in order to represent real-world scenarios as realistically as possible. The results show that the proposed schemes achieve high performance in different terms, such as network lifetime, compared with the state-of-the-art schemes

    Exploiting tactics, techniques, and procedures for malware detection

    Get PDF
    There has been a meteoric rise in the use of malware to perpetrate cybercrime and more generally, serve the interests of malicious actors. As a result, malware has evolved both in terms of its sheer variety and sophistication. There is hence a need for developing effective malware detection systems to counter this surge. Typically, most such systems nowadays are purely data-driven - they utilise Machine Learning (ML) based approaches which rely on large volumes of data, to spot patterns, detect anomalies, and thus detect malware. In this thesis, we propose a methodology for malware detection on networks that combines human domain knowledge with conventional malware detection approaches to more effectively identify, reason about, and be resilient to malware. Specifically, we use domain knowledge in the form of the Tactics, Techniques, and Procedures (TTPs) described in the MITRE ATT\&CK ontology of adversarial behaviour to build Network Intrusion Detection Systems (NIDS). Through the course of our research, we design and evaluate the first such NIDS that can effectively exploit TTPs for the purpose of malware detection. We then attempt to expand the scope of usability of these TTPs to systems other than our specialised NIDS, and develop a methodology that lets any generic ML-based NIDS exploit these TTPs as model features. We further expand and generalise our approach by modelling it as a multi-label classification problem, which enables us to: (i) detect malware more precisely on the basis of individual TTPs, and (ii) identify the malicious usage of uncommon or rarely-used TTPs. Throughout all our experiments, we rigorously evaluate all our systems on several metrics using large datasets of real-world malware and benign samples. We empirically demonstrate the usefulness of TTPs in the malware detection process, the benefits of a TTP-based approach in reasoning about malware and responding to various challenging conditions, and the overall robustness of our systems to adversarial attack. As a consequence, we establish and improve the state-of-the-art when it comes to detecting network-based malware using TTP-based information. This thesis overall represents a step forward in building automated systems that combine purely-data driven approaches with human expertise in the field of malware analysis

    Measuring and Disrupting Malware Distribution Networks: An Interdisciplinary Approach

    Get PDF
    Malware Delivery Networks (MDNs) are networks of webpages, servers, computers, and computer files that are used by cybercriminals to proliferate malicious software (or malware) onto victim machines. The business of malware delivery is a complex and multifaceted one that has become increasingly profitable over the last few years. Due to the ongoing arms race between cybercriminals and the security community, cybercriminals are constantly evolving and streamlining their techniques to beat security countermeasures and avoid disruption to their operations, such as by security researchers infiltrating their botnet operations, or law enforcement taking down their infrastructures and arresting those involved. So far, the research community has conducted insightful but isolated studies into the different facets of malicious file distribution. Hence, only a limited picture of the malicious file delivery ecosystem has been provided thus far, leaving many questions unanswered. Using a data-driven and interdisciplinary approach, the purpose of this research is twofold. One, to study and measure the malicious file delivery ecosystem, bringing prior research into context, and to understand precisely how these malware operations respond to security and law enforcement intervention. And two, taking into account the overlapping research efforts of the information security and crime science communities towards preventing cybercrime, this research aims to identify mitigation strategies and intervention points to disrupt this criminal economy more effectively
    corecore