90 research outputs found

    A review of technologies and design techniques of millimeter-wave power amplifiers

    Get PDF
    his article reviews the state-of-the-art millimeter-wave (mm-wave) power amplifiers (PAs), focusing on broadband design techniques. An overview of the main solid-state technologies is provided, including Si, gallium arsenide (GaAs), GaN, and other III-V materials, and both field-effect and bipolar transistors. The most popular broadband design techniques are introduced, before critically comparing through the most relevant design examples found in the scientific literature. Given the wide breadth of applications that are foreseen to exploit the mm-wave spectrum, this contribution will represent a valuable guide for designers who need a single reference before adventuring in the challenging task of the mm-wave PA design

    Broadband 300-GHz Power Amplifier MMICs in InGaAs mHEMT Technology

    Get PDF
    In this article, we report on compact solid-state power amplifier (SSPA) millimeter-wave monolithic integrated circuits (MMICs) covering the 280–330-GHz frequency range. The technology used is a 35-nm gate-length InGaAs metamorphic highelectron- mobility transistor (mHEMT) technology. Two power amplifier MMICs are reported, based on a compact unit amplifier cell, which is parallelized two times using two different Wilkinson power combiners. The Wilkinson combiners are designed using elevated coplanar waveguide and air-bridge thin-film transmission lines in order to implement low-loss 70-Ω lines in the back-endof-line of this InGaAs mHEMT technology. The five-stage SSPA MMICs achieve a measured small-signal gain around 20 dB over the 280–335-GHz frequency band. State-of-the-art output power performance is reported, achieving at least 13 dBm over the 286–310-GHz frequency band, with a peak output power of 13.7 dBm (23.4 mW) at 300 GHz. The PA MMICs are designed for a reduced chip width while maximizing the total gate width of 512 μm in the output stage, using a compact topology based on cascode and common-source devices, improving the output power per required chip width significantly

    Ultra-low power radio transceiver for wireless sensor networks

    Get PDF
    The objective of this thesis is to present the design and implementation of ultra-low power radio transceivers at microwave frequencies, which are applicable to wireless sensor network (WSN) and, in particular, to the requirement of the Speckled Computing Consortium (or SpeckNet). This was achieved through quasi-MMIC prototypes and monolithic microwave integrated circuit (MMIC) with dc power consumption of less than 1mW and radio communication ranges operating at least one metre. A wireless sensor network is made up of widely distributed autonomous devices incorporating sensors to cooperatively monitor physical environments. There are different kinds of sensor network applications in which sensors perform a wide range of activities. Among these, a certain set of applications require that sensor nodes collect information about the physical environment. Each sensor node operates autonomously without a central node of control. However, there are many implementation challenges associated with sensor nodes. These nodes must consume extremely low power and must communicate with their neighbours at bit-rates in the order of hundreds of kilobits per second and potentially need to operate at high volumetric densities. Since the power constraint is the most challenging requirement, the radio transceiver must consume ultra-low power in order to prolong the limited battery capacity of a node. The radio transceiver must also be compact, less than 5×5 mm2, to achieve a target size for sensor node and operate over a range of at least one metre to allow communication between widely deployed nodes. Different transceiver topologies are discussed to choose the radio transceiver architecture with specifications that are required in this project. The conventional heterodyne and homodyne topologies are discussed to be unsuitable methods to achieve low power transceiver due to power hungry circuits and their high complexity. The super-regenerative transceiver is also discussed to be unsuitable method because it has a drawback of inherent frequency instability and its characteristics strongly depend on the performance of the super-regenerative oscillator. Instead, a more efficient method of modulation and demodulation such as on-off keying (OOK) is presented. Furthermore, design considerations are shown which can be used to achieve relatively large output voltages for small input powers using an OOK modulation system. This is important because transceiver does not require the use of additional circuits to increase gain or sensitivity and consequently it achieves lower power consumption in a sensor node. This thesis details the circuit design with both a commercial and in-house device technology with ultra-low dc power consumption while retaining adequate RF performance. It details the design of radio building blocks including amplifiers, oscillators, switches and detectors. Furthermore, the circuit integration is presented to achieve a compact transceiver and different circuit topologies to minimize dc power consumption are described. To achieve the sensitivity requirements of receiver, a detector design method with large output voltage is presented. The receiver is measured to have output voltages of 1mVp-p for input powers of -60dBm over a 1 metre operating range while consuming as much as 420μW. The first prototype combines all required blocks using an in-house GaAs MMIC process with commercial pseudomorphic high electron mobility transistor (PHEMT). The OOK radio transceiver successfully operates at the centre frequency of 10GHz for compact antenna and with ultra-low power consumption and shows an output power of -10.4dBm for the transmitter, an output voltage of 1mVp-p at an operating range of 1 metre for the receiver and a total power consumption of 840μW. Based on this prototype, an MMIC radio transceiver at the 24GHz band is also designed to further improve the performance and reduce the physical size with an advanced 50nm gate-length GaAs metamorphic high electron mobility transistor (MHEMT) device technology

    Improvement of AlGaN/GaN HEMTs Linearity Using Etched-Fin Gate Structure for Ka Band Applications

    Get PDF
    In this paper, AlGaN/GaN high electron mobility transistors (HEMTs) with etched-fin gate structures fabricated to improve device linearity for Ka-band application are reported. Within the proposed study of planar, one-etched-fin, four-etched-fin, and nine-etched-fin devices, which have 50- m, 25- m, 10- m, and 5- m partial gate widths, respectively, the four-etched-fin gate AlGaN/GaN HEMT devices have demonstrated optimized device linearity with respect to the extrinsic transconductance (Gm) value, the output third order intercept point (OIP3), and the thirdorder intermodulation output power (IMD3) level. The IMD3 is improved by 7 dB at 30 GHz for the 4 50 m HEMT device. The OIP3 is found to reach a maximum value of 36.43 dBm with the four-etched-fin device, which exhibits high potential for the advancement of wireless power amplifier components for Ka band applications.Center for the Semiconductor Technology ResearchFeatured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in TaiwanMinistry of Science and Technology, Taiwan, under Grants NSTC 111-2218- E-A49-021NSTC 111-2634-F-A49-008NSTC 111-2221-E-A49 -173 -MY3NSTC 112-2622-8-A49 -013 –S

    Ka-band full-hybrid cryogenic low- noise amplifier

    Get PDF
    This paper describes the design and implementation of a broad-band full-hybrid cryogenic lownoise amplifier (MIC LNA) in the 26 – 36 frequency band, aimed for the front-end module in radio-astronomy receivers. A metamorphic technology process (mHEMT) of 50 nm gate length is used to manufacture the transistor. Design is based on a three stage common source transistor configuration and surface mounted devices (SMD) with high quality factors. Therefore, gain and noise performance are improved compared with monolithic technology (MMIC). At room temperature the mean measured gain is G = 22.4 dB and the noise temperature is Tn = 175 K. When cooled to Tp = 13 K, insertion gain is Gi = 23.8 dB and the noise temperature is Tn = 26 K. The DC power consumption is extremely low, PDC = 5.7 mW at cryogenic temperatures.This work was supported by the Ministerio de Economía y Competitividad from Spain under the CONSOLIDER-INGENIO 2010 program CSD2010- 00064 reference, and the research program FPI BES- 2011-046199

    Feasibility study and design of a robust low-noise amplifier operating at millimeter-wave for high reliability applications

    Get PDF
    A feasibility study and the corresponding design flow for robust millimeter wave GaN LNAs is provided in this paper. Particular attention is devoted to the selection of the optimum geometry of the first stage active device. A trade-off is shown between noise performance and robustness requirements. The beneficial effects of source degenerative feedback are shown. The LNA's simulated performance are gain > 20B, NF < 1.7dB and power handling capability verified up to +20 dBm input power in CW operation. This design is well suited for operation in high reliability systems, such as space operation on airborne applications

    Millimeter-Wave MMICs and Applications

    Get PDF
    As device technology improves, interest in the millimeter-wave band grows. Wireless communication systems migrate to higher frequencies, millimeter-wave radars and passive sensors find new solid-state implementations that promise improved performance, and entirely new applications in the millimeter-wave band become feasible. The circuit or system designer is faced with a new and unique set of challenges and constraints to deal with in order to use this portion of the spectrum successfully. In particular, the advantages of monolithic integration become increasingly important. This thesis presents many new developments in Monolithic Millimeter-Wave Integrated Circuits (MMICs), both the chips themselves and systems that use them. It begins with an overview of the various applications of millimeter waves, including a discussion of specific projects that the author is involved in and why many of them demand a MMIC implementation. In the subsequent chapters, new MMIC chips are described in detail, as is the role they play in real-world projects. Multi-chip modules are also presented with specific attention given to the practical details of MMIC packaging and multi-chip integration. The thesis concludes with a summary of the works presented thus far and their overall impact on the field of millimeter-wave engineering.</p

    Amplificador monolítico de bajo ruido en banda Ka con tecnología GaAs mHEMT

    Get PDF
    This document presents the design and measurement results of a monolithic low noise amplifier for the 26–36 GHz band. The 3x1 mm2 chip has been designed using the D01MH process from OMMIC foundry (0.13μm mHEMT, GaInAs-InAlAs with 40% indium content) and a home-made transistor model. On-wafer measurements show a gain of S21 = 30.9 ± 1.9 dB with a mean noise figure of NF = 1.8 dB in the band of interest (minimun NF = 1.4 dB at 31 GHz). Input return loss is generally better than 10 dB while output return loss is better than 15 dB in the same band
    • …
    corecore