971 research outputs found

    Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and Research Opportunities

    Full text link
    Evolutionary algorithms (EA), a class of stochastic search methods based on the principles of natural evolution, have received widespread acclaim for their exceptional performance in various real-world optimization problems. While researchers worldwide have proposed a wide variety of EAs, certain limitations remain, such as slow convergence speed and poor generalization capabilities. Consequently, numerous scholars actively explore improvements to algorithmic structures, operators, search patterns, etc., to enhance their optimization performance. Reinforcement learning (RL) integrated as a component in the EA framework has demonstrated superior performance in recent years. This paper presents a comprehensive survey on integrating reinforcement learning into the evolutionary algorithm, referred to as reinforcement learning-assisted evolutionary algorithm (RL-EA). We begin with the conceptual outlines of reinforcement learning and the evolutionary algorithm. We then provide a taxonomy of RL-EA. Subsequently, we discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature. The RL-assisted procedure is divided according to the implemented functions including solution generation, learnable objective function, algorithm/operator/sub-population selection, parameter adaptation, and other strategies. Finally, we analyze potential directions for future research. This survey serves as a rich resource for researchers interested in RL-EA as it overviews the current state-of-the-art and highlights the associated challenges. By leveraging this survey, readers can swiftly gain insights into RL-EA to develop efficient algorithms, thereby fostering further advancements in this emerging field.Comment: 26 pages, 16 figure

    Modified and Ensemble Intelligent Water Drop Algorithms and Their Applications

    Get PDF
    1.1 Introduction Optimization is a process that concerns with finding the best solution of a given problem from among the possible solutions within an affordable time and cost (Weise et al., 2009). The first step in the optimization process is formulating the optimization problem through an objective function and a set of constrains that encompass the problem search space (ie, regions of feasible solutions). Every alternative (ie, solution) is represented by a set of decision variables. Each decision variable has a domain, which is a representation of the set of all possible values that the decision variable can take. The second step in optimization starts by utilizing an optimization method (ie, search method) to find the best candidate solutions. Candidate solution has a configuration of decision variables that satisfies the set of problem constrains, and that maximizes or minimizes the objective function (Boussaid et al., 2013). It converges to the optimal solution (ie, local or global optimal solution) by reaching the optimal values of the decision variables. Figure 1.1 depicts a 3D-fitness landscape of an optimization problem. It shows the concept of the local and global optima, where the local optimal solution is not necessarily the same as the global one (Weise et al., 2009). Optimization can be applied to many real-world problems in various domains. As an example, mathematicians apply optimization methods to identify the best outcome pertaining to some mathematical functions within a range of variables (Vesterstrom and Thomsen, 2004). In the presence of conflicting criteria, engineers use optimization methods t

    Gnowee: A Hybrid Metaheuristic Optimization Algorithm for Constrained, Black Box, Combinatorial Mixed-Integer Design

    Full text link
    This paper introduces Gnowee, a modular, Python-based, open-source hybrid metaheuristic optimization algorithm (Available from https://github.com/SlaybaughLab/Gnowee). Gnowee is designed for rapid convergence to nearly globally optimum solutions for complex, constrained nuclear engineering problems with mixed-integer and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Gnowee's hybrid metaheuristic framework is a new combination of a set of diverse, robust heuristics that appropriately balance diversification and intensification strategies across a wide range of optimization problems. This novel algorithm was specifically developed to optimize complex nuclear design problems; the motivating research problem was the design of material stack-ups to modify neutron energy spectra to specific targeted spectra for applications in nuclear medicine, technical nuclear forensics, nuclear physics, etc. However, there are a wider range of potential applications for this algorithm both within the nuclear community and beyond. To demonstrate Gnowee's behavior for a variety of problem types, comparisons between Gnowee and several well-established metaheuristic algorithms are made for a set of eighteen continuous, mixed-integer, and combinatorial benchmarks. These results demonstrate Gnoweee to have superior flexibility and convergence characteristics over a wide range of design spaces. We anticipate this wide range of applicability will make this algorithm desirable for many complex engineering applications.Comment: 43 pages, 7 tables, 6 figure

    A statistical learning based approach for parameter fine-tuning of metaheuristics

    Get PDF
    Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selection of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.Peer ReviewedPostprint (published version

    Water Flow-Like Algorithm with Simulated Annealing for Travelling Salesman Problems

    Get PDF
    Water Flow-like Algorithm (WFA) has been proved its ability obtaining a fast and quality solution for solving Travelling Salesman Problem (TSP). The WFA uses the insertion move with 2-neighbourhood search to get better flow splitting and moving decision. However, the algorithms can be improved by making a good balance between its solution search exploitation and exploration. Such improvement can be achieved by hybridizing good search algorithm with WFA.  This paper presents a hybrid of WFA with various three neighbourhood search in Simulated Annealing (SA) for TSP problem. The performance of the proposed method is evaluated using 18 large TSP benchmark datasets. The experimental result shows that the hybrid method has improved the solution quality compare with the basic WFA and state of art algorithm for TSP

    The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems

    Get PDF
    The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems

    Second order swarm intelligence

    Get PDF
    An artificial Ant Colony System (ACS) algorithm to solve general-purpose combinatorial Optimization Problems (COP) that extends previous AC models [21] by the inclusion of a negative pheromone, is here described. Several Travelling Salesman Problem (TSP) were used as benchmark. We show that by using two different sets of pheromones, a second-order co-evolved compromise between positive and negative feedbacks achieves better results than single positive feedback systems. The algorithm was tested against known NP-complete combinatorial Optimization Problems, running on symmetrical TSP's. We show that the new algorithm compares favourably against these benchmarks, accordingly to recent biological findings by Robinson [26,27], and Gruter [28] where "No entry" signals and negative feedback allows a colony to quickly reallocate the majority of its foragers to superior food patches. This is the first time an extended ACS algorithm is implemented with these successful characteristics.info:eu-repo/semantics/acceptedVersio

    A survey on metaheuristics for stochastic combinatorial optimization

    Get PDF
    Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this fiel
    corecore