18,141 research outputs found

    Effect of Rhesus D incompatibility on schizophrenia depends on offspring sex.

    Get PDF
    Rhesus D incompatibility increases risk for schizophrenia, with some evidence that risk is limited to male offspring. The purpose of this study is to determine whether risk for schizophrenia due to Rhesus D incompatibility differs by offspring sex using a nuclear family-based candidate gene approach and a meta-analysis approach. The genetic study is based on a sample of 277 nuclear families with RHD genotype data on at least one parent and at least one child diagnosed with schizophrenia or related disorder. Meta-analysis inclusion criteria were (1) well-defined sample of schizophrenia patients with majority born before 1970, (2) Rhesus D incompatibility phenotype or genotype data available on mother and offspring, and by offspring sex. Two of ten studies, plus the current genetic study sample, fulfilled these criteria, for a total of 358 affected males and 226 affected females. The genetic study found that schizophrenia risk for incompatible males was significantly greater than for compatible offspring (p=0.03), while risk for incompatible and compatible females was not significantly different (p=.32). Relative risks for incompatible males and females were not significantly different from each other. Meta-analysis using a larger number of affected males and females supports their difference. Taken together, these results provide further support that risk of schizophrenia due to Rhesus D incompatibility is limited to incompatible males, although a weak female incompatibility effect cannot be excluded. Sex differences during fetal neurodevelopment should be investigated to fully elucidate the etiology of schizophrenia

    Neuregulin signaling pathway in smoking behavior

    Get PDF

    Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12-16 October 2014

    Get PDF
    The XXII World Congress of Psychiatric Genetics, sponsored by the International Society of Psychiatric Genetics, took place in Copenhagen, Denmark, on 12-16 October 2014. A total of 883 participants gathered to discuss the latest findings in the field. The following report was written by student and postdoctoral attendees. Each was assigned one or more sessions as a rapporteur. This manuscript represents topics covered in most, but not all of the oral presentations during the conference, and contains some of the major notable new findings reported

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Association between oxytocin receptor gene polymorphisms and self-rated 'empathic concern' in schizophrenia

    Get PDF
    The nonapeptide oxytocin (OXT) and its receptor (OXTR) have been implicated in social cognition, empathy, emotion and stress regulation in humans. Previous studies reported associations between OXT and OXTR genetic polymorphisms and risk for disorders characterized by impaired socio-emotional functioning, such as schizophrenia and autism. Here we investigate the influence of two single nucleotide polymorphisms (SNPs) within the OXTR gene on a measure of socio-emotional functioning in schizophrenic patients. OXTR SNPs that were previously investigated in other studies were genotyped in 145 patients diagnosed with schizophrenia according to DSM-IV and 145 healthy controls matched for age and gender. The Interpersonal Reactivity Index (IRI) was used to assess cognitive ('perspective taking'), affective ('empathic concern') and self-related ('personal distress') dimensions of empathy. No group differences in genotype frequencies were observed. MANCOVA revealed a significant main (F [1,282] = 10.464; pGG) with 'empathic concern'. Within the schizophrenia group, linear regression analysis determined OXTR rs2254298 genotype, PANSS negative and general symptom score, and age of disease onset as being significantly associated with 'empathic concern'. OXTR rs2254298 significantly impacted PANSS general psychopathology scores. No associations were found for OXTR rs53576, IRI 'perspective taking' or 'personal distress' ratings. Our preliminary findings support hypotheses about an involvement of OXTR rs2254298 in emotional empathy in schizophrenic and healthy individuals, warranting independent replication

    Influence of sex differences on microRNA gene regulation in disease.

    Get PDF
    Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases
    • …
    corecore