529 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Microservices-based IoT Applications Scheduling in Edge and Fog Computing: A Taxonomy and Future Directions

    Full text link
    Edge and Fog computing paradigms utilise distributed, heterogeneous and resource-constrained devices at the edge of the network for efficient deployment of latency-critical and bandwidth-hungry IoT application services. Moreover, MicroService Architecture (MSA) is increasingly adopted to keep up with the rapid development and deployment needs of the fast-evolving IoT applications. Due to the fine-grained modularity of the microservices along with their independently deployable and scalable nature, MSA exhibits great potential in harnessing both Fog and Cloud resources to meet diverse QoS requirements of the IoT application services, thus giving rise to novel paradigms like Osmotic computing. However, efficient and scalable scheduling algorithms are required to utilise the said characteristics of the MSA while overcoming novel challenges introduced by the architecture. To this end, we present a comprehensive taxonomy of recent literature on microservices-based IoT applications scheduling in Edge and Fog computing environments. Furthermore, we organise multiple taxonomies to capture the main aspects of the scheduling problem, analyse and classify related works, identify research gaps within each category, and discuss future research directions.Comment: 35 pages, 10 figures, submitted to ACM Computing Survey

    SHARING WITH LIVE MIGRATION ENERGY OPTIMIZATION TASK SCHEDULER FOR CLOUD COMPUTING DATACENTRES

    Get PDF
    The use of cloud computing is expanding, and it is becoming the driver for innovation in all companies to serve their customers around the world. A big attention was drawn to the huge energy that was consumed within those datacentres recently neglecting the energy consumption in the rest of the cloud components. Therefore, the energy consumption should be reduced to minimize performance losses, achieve the target battery lifetime, satisfy performance requirements, minimize power consumption, minimize the CO2 emissions, maximize the profit, and maximize resource utilization. Reducing power consumption in the cloud computing datacentres can be achieved by many ways such as managing or utilizing the resources, controlling redundancy, relocating datacentres, improvement of applications or dynamic voltage and frequency scaling. One of the most efficient ways to reduce power is to use a scheduling technique that will find the best task execution order based on the users demands and with the minimum execution time and cloud resources. It is quite a challenge in cloud environment to design an effective and an efficient task scheduling technique which is done based on the user requirements. The scheduling process is not an easy task because within the datacentre there is dissimilar hardware with different capacities and, to improve the resource utilization, an efficient scheduling algorithm must be applied on the incoming tasks to achieve efficient computing resource allocating and power optimization. The scheduler must maintain the balance between the Quality of Service and fairness among the jobs so that the efficiency may be increased. The aim of this project is to propose a novel method for optimizing energy usage in cloud computing environments that satisfy the Quality of Service (QoS) and the regulations of the Service Level Agreement (SLA). Applying a power- and resource-optimised scheduling algorithm will assist to control and improve the process of mapping between the datacentre servers and the incoming tasks and achieve the optimal deployment of the data centre resources to achieve good computing efficiency, network load minimization and reducing the energy consumption in the datacentre. This thesis explores cloud computing energy aware datacentre structures with diverse scheduling heuristics and propose a novel job scheduling technique with sharing and live migration based on file locality (SLM) aiming to maximize efficiency and save power consumed in the datacentre due to bandwidth usage utilization, minimizing the processing time and the system total make span. The propose SLM energy efficient scheduling strategy have four basic algorithms: 1) Job Classifier, 2) SLM job scheduler, 3) Dual fold VM virtualization and 4) VM threshold margins and consolidation. The SLM job classifier worked on categorising the incoming set of user requests to the datacentre in to two different queues based on these requests type and the source file needed to process them. The processing time of each job fluctuate based on the job type and the number of instructions for each job. The second algorithm, which is the SLM scheduler algorithm, dispatch jobs from both queues according to job arrival time and control the allocation process to the most appropriate and available VM based on job similarity according to a predefined synchronized job characteristic table (SJC). The SLM scheduler uses a replicated hostā€™s infrastructure to save the wasted idle hosts energy by maximizing the basic hostā€™s utilization as long as the system can deal with workflow while setting replicated hosts on off mode. The third SLM algorithm, the dual fold VM algorithm, divide the active VMs in to a top and low level slots to allocate similar jobs concurrently which maximize the host utilization at high workload and reduce the total make span. The VM threshold margins and consolidation algorithm set an upper and lower threshold margin as a trigger for VMs consolidation and load balancing process among running VMs, and deploy a continuous provisioning of overload and underutilize VMs detection scheme to maintain and control the system workload balance. The consolidation and load balancing is achieved by performing a series of dynamic live migrations which provides auto-scaling for the servers with in the datacentres. This thesis begins with cloud computing overview then preview the conceptual cloud resources management strategies with classification of scheduling heuristics. Following this, a Competitive analysis of energy efficient scheduling algorithms and related work is presented. The novel SLM algorithm is proposed and evaluated using the CloudSim toolkit under number of scenarios, then the result compared to Particle Swarm Optimization algorithm (PSO) and Ant Colony Algorithm (ACO) shows a significant improvement in the energy usage readings levels and total make span time which is the total time needed to finish processing all the tasks

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that oļ¬€ers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and eļ¬€ective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying usersā€™ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our ļ¬rst contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The ļ¬rst sub-problem is the server power mode detection (sleep or active). The second sub-problem is to ļ¬nd an eļ¬€ective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our ļ¬fth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy eļ¬ƒciency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Resource Management Techniques in Cloud-Fog for IoT and Mobile Crowdsensing Environments

    Get PDF
    The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks

    A Literature Survey on Resource Management Techniques, Issues and Challenges in Cloud Computing

    Get PDF
    Cloud computing is a large scale distributed computing which provides on demand services for clients. Cloud Clients use web browsers, mobile apps, thin clients, or terminal emulators to request and control their cloud resources at any time and anywhere through the network. As many companies are shifting their data to cloud and as many people are being aware of the advantages of storing data to cloud, there is increasing number of cloud computing infrastructure and large amount of data which lead to the complexity management for cloud providers. We surveyed the state-of-the-art resource management techniques for IaaS (infrastructure as a service) in cloud computing. Then we put forward different major issues in the deployment of the cloud infrastructure in order to avoid poor service delivery in cloud computing
    • ā€¦
    corecore