34,749 research outputs found

    Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective

    Get PDF
    Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated, Figs. 1 to 3 replace

    Software architecture for a distributed real-time system in Ada, with application to telerobotics

    Get PDF
    The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects

    A multiarchitecture parallel-processing development environment

    Get PDF
    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems

    Mark 4A antenna control system data handling architecture study

    Get PDF
    A high-level review was conducted to provide an analysis of the existing architecture used to handle data and implement control algorithms for NASA's Deep Space Network (DSN) antennas and to make system-level recommendations for improving this architecture so that the DSN antennas can support the ever-tightening requirements of the next decade and beyond. It was found that the existing system is seriously overloaded, with processor utilization approaching 100 percent. A number of factors contribute to this overloading, including dated hardware, inefficient software, and a message-passing strategy that depends on serial connections between machines. At the same time, the system has shortcomings and idiosyncrasies that require extensive human intervention. A custom operating system kernel and an obscure programming language exacerbate the problems and should be modernized. A new architecture is presented that addresses these and other issues. Key features of the new architecture include a simplified message passing hierarchy that utilizes a high-speed local area network, redesign of particular processing function algorithms, consolidation of functions, and implementation of the architecture in modern hardware and software using mainstream computer languages and operating systems. The system would also allow incremental hardware improvements as better and faster hardware for such systems becomes available, and costs could potentially be low enough that redundancy would be provided economically. Such a system could support DSN requirements for the foreseeable future, though thorough consideration must be given to hard computational requirements, porting existing software functionality to the new system, and issues of fault tolerance and recovery

    Towards Optimal Moment Estimation in Streaming and Distributed Models

    Get PDF
    One of the oldest problems in the data stream model is to approximate the p-th moment ||X||_p^p = sum_{i=1}^n X_i^p of an underlying non-negative vector X in R^n, which is presented as a sequence of poly(n) updates to its coordinates. Of particular interest is when p in (0,2]. Although a tight space bound of Theta(epsilon^-2 log n) bits is known for this problem when both positive and negative updates are allowed, surprisingly there is still a gap in the space complexity of this problem when all updates are positive. Specifically, the upper bound is O(epsilon^-2 log n) bits, while the lower bound is only Omega(epsilon^-2 + log n) bits. Recently, an upper bound of O~(epsilon^-2 + log n) bits was obtained under the assumption that the updates arrive in a random order. We show that for p in (0, 1], the random order assumption is not needed. Namely, we give an upper bound for worst-case streams of O~(epsilon^-2 + log n) bits for estimating |X |_p^p. Our techniques also give new upper bounds for estimating the empirical entropy in a stream. On the other hand, we show that for p in (1,2], in the natural coordinator and blackboard distributed communication topologies, there is an O~(epsilon^-2) bit max-communication upper bound based on a randomized rounding scheme. Our protocols also give rise to protocols for heavy hitters and approximate matrix product. We generalize our results to arbitrary communication topologies G, obtaining an O~(epsilon^2 log d) max-communication upper bound, where d is the diameter of G. Interestingly, our upper bound rules out natural communication complexity-based approaches for proving an Omega(epsilon^-2 log n) bit lower bound for p in (1,2] for streaming algorithms. In particular, any such lower bound must come from a topology with large diameter
    • …
    corecore