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Abstract
One of the oldest problems in the data stream model is to approximate the p-th moment ‖X‖p

p =∑n

i=1 X
p
i of an underlying non-negative vector X ∈ Rn, which is presented as a sequence of poly(n)

updates to its coordinates. Of particular interest is when p ∈ (0, 2]. Although a tight space bound
of Θ(ε−2 logn) bits is known for this problem when both positive and negative updates are allowed,
surprisingly there is still a gap in the space complexity of this problem when all updates are positive.
Specifically, the upper bound is O(ε−2 logn) bits, while the lower bound is only Ω(ε−2 + logn) bits.
Recently, an upper bound of Õ(ε−2 +logn) bits was obtained under the assumption that the updates
arrive in a random order.

We show that for p ∈ (0, 1], the random order assumption is not needed. Namely, we give an
upper bound for worst-case streams of Õ(ε−2 + logn) bits for estimating ‖X‖p

p. Our techniques
also give new upper bounds for estimating the empirical entropy in a stream. On the other hand,
we show that for p ∈ (1, 2], in the natural coordinator and blackboard distributed communication
topologies, there is an Õ(ε−2) bit max-communication upper bound based on a randomized rounding
scheme. Our protocols also give rise to protocols for heavy hitters and approximate matrix product.
We generalize our results to arbitrary communication topologies G, obtaining an Õ(ε2 log d) max-
communication upper bound, where d is the diameter of G. Interestingly, our upper bound rules out
natural communication complexity-based approaches for proving an Ω(ε−2 logn) bit lower bound for
p ∈ (1, 2] for streaming algorithms. In particular, any such lower bound must come from a topology
with large diameter.
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1 Introduction

The streaming and distributed models of computation have become increasingly important
for the analysis of massive datasets, where the sheer size of the input imposes stringent
restrictions on the resources available to algorithms. Examples of such datasets include
internet traffic logs, sensor networks, financial transaction data, database logs, and scientific
data streams (such as huge experiments in particle physics, genomics, and astronomy). Given
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29:2 Towards Optimal Moment Estimation in Streaming and Distributed Models

their prevalence, there is a large body of literature devoted to designing extremely efficient
algorithms for analyzing streams and enormous datasets. We refer the reader to [4, 52] for
surveys of these algorithms and their applications.

Formally, the data stream model studies the evolution of a vector X ∈ Zn, called the
frequency vector. Initially, X is initialized to be the zero-vector. The frequency vector then
receives a stream of m coordinate-wise updates of the form (it,∆t) ∈ [n]× {−M, . . . ,M} for
some M > 0 and time step t ∈ [m]. Each update (it,∆t) causes the change Xit ← Xit + ∆t.
If we restrict that ∆t ≥ 0 for all t ∈ [m], this is known as the insertion-only model. If the
updates ∆t ∈ {−M, . . . ,M} can be both positive and negative, then this is known as the
turnstile-model. The p-th frequency moment of the frequency vector at the end of the stream,
Fp, is defined as Fp =

∑n
i=1 |Xi|p. For simplicity (but not necessity), it is generally assumed

that m,M = poly(n).
The study of frequency moments in the streaming model was initiated by the seminal

1996 paper of Alon, Matias, and Szegedy [1]. Since then, nearly two decades of research
have been devoted to understanding the space and time complexity of this problem. An
incomplete list of works which study frequency moments in data streams includes [16, 36, 6,
58, 35, 45, 12, 44, 11, 15, 11, 7, 13]. For p > 2, it is known that polynomial in n (rather than
logarithmic) space is required for Fp estimation [16, 36]. In the regime of p ∈ (0, 2], the space
complexity of Fp estimation in the turnstile model is now understood, with matching upper
and lower bounds of Θ(ε−2 log(n)) bits to obtain a (1± ε) approximation of Fp. Here, for
ε > 0, a (1± ε) approximation means an estimate F̃p such that (1− ε)Fp ≤ F̃p ≤ (1 + ε)Fp.
For insertion only streams, however, the best known lower bound is Ω(ε−2 + log(n)) [58].
Moreover, if the algorithm is given query access to an arbitrarily long string of random bits
(known as the random oracle model), then the lower bound is only Ω(ε−2). On the other
hand, the best upper bound is to just run the turnstile O(ε−2 log(n))-space algorithm.

In this work, we make progress towards resolving this fundamental problem. For p < 1,
we resolve the space complexity by giving an Õ(ε−2 + logn)1-bits of space upper bound.
In the random oracle model, our upper bound is Õ(ε−2)2, which also matches the lower
bound in this setting. Prior to this work, an Õ(ε−2 + log(n)) upper bound for Fp estimation
was only known in the restricted random-order model, where it is assumed that the stream
updates are in a uniformly random ordering [13]. Our techniques are based on novel analysis
of the behavior of the p-stable random variables used in the O(ε−2 log(n)) upper bound of
[35], and also give rise to a space optimal algorithm for entropy estimation.

We remark that Fp estimation in the range p ∈ (0, 1) is useful for several reasons. Firstly,
for p near 1, Fp estimation is often used as a subroutine for estimating the empirical entropy
of a stream, which itself is useful for network anomaly detection ([47], also see [31] and the
references therein). Moment estimation is also used in weighted sampling algorithms for data
streams [50, 42, 38] (see [23] for a survey of such samplers and their applications). Here, the
goal is to sample an index i ∈ [n] with probability |Xi|p/Fp. These samplers can be used to
find heavy-hitters in the stream, estimate cascaded norms [2, 50], and design representative
histograms of X on which more complicated algorithms are run [28, 27, 55, 29, 33, 24].
Furthermore, moment estimation for fractional p, such as p = .5 and p = .25, has been shown
to be useful for data mining [22].

1 the Õ here suppresses a single (log logn+log 1/ε) factor, and in general we use Õ and Ω̃ to hide log logn
and log 1/ε terms.

2 This space complexity is measured between updates. To read and process the Θ(log(n))-bit identity of
an update, the algorithm will use an additional O(log(n))-bit working memory tape during an update.
Note that all lower bounds only apply to the space complexity between updates, and allow arbitrary
space to process updates.
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For the range of p ∈ (1, 2], we prove an Õ(ε−2)-bits of max-communication upper bound
in the distributed models most frequently used to prove lower bounds for streaming. This
result rules out a large and very commonly used class of approaches for proving lower bounds
against the space complexity of streaming algorithms for Fp estimation. Our approach is
based on a randomized rounding scheme for p-stable sketches. We show that our rounding
scheme can be additionally applied to design improved protocols for the distributed heavy
hitters and approximate matrix product problems. We now introduce the model in which all
the aforementioned results hold.

1.1 Multi-Party Communication
In this work, we study a more general model than streaming, known as the message passing
multi-party communication model. All of our upper bounds apply to this model, and our
streaming algorithms are just the result of special cases of our communication protocols. In
the message passing model, there are m players, each positioned at a unique vertex in a
graph G = (V,E). The i-th player is given as input an integer vector Xi ∈ Zn. The goal
of the players is to work together to jointly approximate some function f : Rn → R of the
aggregate vector X =

∑n
i=1 Xi, such as the p-th moment f(X ) = Fp = ‖X‖pp =

∑n
i=1 |Xi|p.

In the message passing model, as opposed to the broadcast model of communication, the
players are only allowed to communicate with each other over the edges of G. Thus player i
can send a message to player j only if (i, j) ∈ E, and this message will only be received by
player j (and no other). At the end of the protocol, it is assumed that at least one player
holds the approximation to f(X ). The goal of multi-party communication is to solve the
approximation problem using small total communication between all the players over the
course of the execution. More specifically, the goal is to design protocols that use small
max-communication, which is the total number of bits sent over any edge of G. Our protocols
hold in an even more restricted setting, known as the one-shot setting, where each player is
allowed to communicate exactly once over the course of the entire protocol.

We now observe that data streams can be modeled as a special case of one-shot multi-party
communication. Here, the graph G in question is the line graph on m vertices. If the updates
to the data stream vector are (i1,∆1), . . . , (im,∆m), then the t-th player has input Xt ∈ Zn,
where (Xt)it = ∆t and (Xt)j = 0 for j 6= it. The aggregate vector X =

∑m
i=1 Xi is just the

frequency vector at the end of the stream, and the space complexity of any algorithm is just
the max-communication used over any edge of the corresponding communication protocol.
Since we are primarily interested in insertion only streams, in this work we will consider
the non-negative data model, where Xi ∈ {0, 1, . . . ,M}n for all input vectors Xi, for some
M > 0 (as in streaming, we assume M = poly(n,m) for simplicity). Note that an equivalent
condition is that each Xi ∈ Rn≥0 such that the entries of Xi can be stored in O(logM)-bits.

We are now ready to introduce our results for moment estimation in the message passing
model. Let d be the diameter of the communication graph G. Our first result is a protocol for
Fp estimation when p ∈ (1, 2] which uses a max communication of Õ(ε−2 log d) bits. Using
similar techniques, we also obtain a (optimal for d = Θ(1)) bound of Õ(ε−2 logn log d) for
the heavy hitters problem, which is to find the coordinates of X which contribute at least
an ε fraction of the total

√
F2 = ‖X‖2 of X . For p ∈ (0, 1), we give an Õ(ε−2) upper bound

for Fp estimation. Notice that this is independent of the graph topology, and thus holds for
the line graph, where we derive our Õ(ε−2) upper bound for Fp estimation in the random
oracle streaming model. We then show how the streaming algorithm can be derandomized
to not require a random oracle, now using an optimal Õ(ε−2 + log(n))-bits of space. Our
techniques also result in an Õ(ε−2) upper bound for additively approximating the empirical
entropy of the vector X .

APPROX/RANDOM 2019
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Our results for p ∈ (1, 2] have interesting implications for any attempts to prove lower-
bounds for streaming algorithms that estimate Fp, which we now describe. The link between
streaming and communication complexity is perhaps one of the most fruitful sources of
space lower bounds for algorithms in computer science. Namely, nearly all lower bounds for
the space complexity of randomized streaming algorithms are derived via reductions from
communication problems. For an incomplete list of such reductions, see [58, 61, 45, 42, 46,
10, 16, 57, 48, 49, 40] and the references therein. Now nearly all such lower bounds (and all
of the ones that were just cited) hold in either the 2-party setting (G has 2 vertices), the
coordinator model, or the black-board model. In the coordinator model there are m players,
each with a single edge to a central coordinator (i.e., G is a star graph on m+ 1 vertices).
Note that the diameter d of the coordinator graph is 2. In the multi-player black-board
model, every message that is sent is written to a shared blackboard that can be read by all
players. Observe that any one-way protocol for the coordinator model immediately results
in a protocol with the same communication for the blackboard model. Namely, each player
simply writes what it would have sent to the coordinator on the blackboard, and at the
end of the protocol the blackboard contains all the information that the coordinator would
have had. For these three settings, our protocol gives an Õ(ε−2) max-communication upper
bound for Fp estimation, p ∈ (1, 2]. This completely rules out the approach for proving lower
bounds against Fp estimation in a stream via any of these three techniques. In particular,
it appears that any lower bound for Fp estimation via communication complexity in this
regime of p will need to use a graph with Ω(n) diameter, such as the line graph, without a
black-board.

The coordinator and black-board models have also been studied in many other settings
than for proving lower bounds against streaming. For instance, in the Distributed Functional
Monitoring literature [25, 63, 60, 34, 56, 37], each player is receiving a continuous stream of
updates to their inputs Xi, and the coordinator must continuously update its approximation
to f(X ). The black-board model is also considered frequently for designing communication
upper bounds, such as those for set disjointness [6, 16, 30]. Finally, there is substantial
literature which considers numerical linear algebra and clustering problems in the coordinator
model [61, 20, 5, 62]. Thus, our upper bounds can be seen as a new and useful contribution
to these bodies of literature as well.

1.2 Our Contributions
As noted, the upper bounds in this paper all hold in the general multi-party message passing
model, over an arbitrary topology G. Our algorithms also have the additional property that
they are one-shot, meaning that each player is allowed to communicate exactly once. Our
protocols pre-specify a central vertex C ∈ V of G. Specifically, C will be a center of G, which
is a vertex with minimal max-distance to any other vertex. Our protocols then proceed in d
rounds, where d is the diameter of G. Upon termination of the protocols, the central vertex
C will hold the estimate of the protocol. We note that C can be replaced by any other vertex
v, and d will then be replaced by the max distance of any other vertex to v. A summary of
our results is given in Table 1.

We first formally state our general result for Fp estimation, 1 < p ≤ 2. Note that, while
we state all our results for constant probability of success, by repeating log(1/δ) times and
taking the median of the estimates, this is boosted to 1− δ in the standard way.

I Theorem 12. For p ∈ (1, 2], there is a protocol for (1± ε) approximating Fp which succeeds
with probability 3/4 in the message passing model. The protocol uses a max communication
of O( 1

ε2 (log logn+ log d+ log 1/ε)) bits, where d is the diameter of G.
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Table 1 For the communication problems above, the bounds are for the max-communication (in
bits) across any edge. For the streaming problems, the bounds are for the space requirements of the
algorithm. Here, d is the diameter of the communication network G. For all problems except point
estimation, there is a matching Ω(ε−2) lower bound. The problem of point estimation itself has a
matching Ω(ε−2 logn) lower bound for graphs with constant d.

Problem Prior best upper bound Upper Bound
(this work) Notes

Fp, 1 < p ≤ 2 O(ε−2 log(n)) [45] Õ(ε−2 log(d))
Fp, p < 1 O(ε−2 log(n))[45] Õ(ε−2)

Fp Streaming, p < 1 O(ε−2 log(n))[45] Õ(ε−2)
Entropy – Õ(ε−2)

Entropy Streaming O(ε−2 log2(n)) [21] Õ(ε−2) random oracle
Point Estimation O(ε−2 log2(n)) [18] Õ(ε−2 log(d) log(n))

Approx Matrix Prod. – Õ(1) per coordinate
of sketch

For graphs with constant diameter, such as the coordinator model, our max communication
bound of Õ(ε−2) matches the Ω(ε−2) lower bound [58, 17], which follows from a 2-player
reduction from the Gap-Hamming Distance problem. For p = 2, our total communication in
the coordinator model matches the Ω(mp−1/ε2) total communication lower bound (up to
log log(n) and log(1/ε) terms) for non-one shot protocols [60]. For one shot protocols, we
remark that there is an Ω(m/ε2) total communication lower bound for any p ∈ (0, 2] \ {1}
(see Appendix A). As discussed previously, our result also has strong implications for
streaming algorithms, demonstrating that no Ω(ε−2 logn) lower bound for Fp estimation,
p ∈ (1, 2], can be derived via the common settings of 2-party, coordinator, or blackboard
communication complexity.

Our main technique used to obtain Theorem 12 is a new randomized rounding scheme
for p-stable sketches. We next show that this randomized rounding protocol can be applied
to give improved communication upper bounds for the point-estimation problem. Here, the
goal is to output a vector X̃ ∈ Rn that approximates X well coordinate-wise. The result is
formally given below in Theorem 14.

I Theorem 14. Consider a message passing topology G = (V,E) with diameter d, where the
i-th player is given as input Xi ∈ Zn≥0 and X =

∑m
i=1 X

i. Then there is a communication
protocol which outputs an estimate X̃ ∈ Rn of X such that ‖X̃ − X‖∞ ≤ ε‖Xtail(ε−2)‖2
with probability 1 − 1/nc for any constant c ≥ 1. Here Xtail(ε−2) is X with the ε−2 largest
(in absolute value) coordinates set equal to 0. The protocol uses a max communication of
O( 1

ε2 log(n)(log logn+ log d+ log 1/ε)).

For graphs with small diameter, our protocols demonstrate an improvement over the
previously best known sketching algorithms, which use space O(ε−2 log2(n)) to solve the
point estimation problem [18]. Note that there is an Ω(ε−2 logn)-max communication lower
bound for the problem. This follows from the fact that point-estimation also solves the L2
heavy-hitters problem. Here the goal is to output a set S ⊂ [n] of size at most |S| = O(ε−2)
which contains all i ∈ [n] with |Xi| ≥ ε‖X‖2 (such coordinates are called heavy hitters). The
lower bound for heavy hitters is simply the result of the space required to store the log(n)-bit
identities of all possible ε−2 heavy hitters. Note that for the heavy hitters problem alone,
there is an optimal streaming O(ε−2 log(n))-bits of space upper bound called BPTree [9].
However, BPTree cannot be used in the general distributed setting, since it crucially relies
on the sequential natural of a stream.

APPROX/RANDOM 2019



29:6 Towards Optimal Moment Estimation in Streaming and Distributed Models

Next, we demonstrate that Fp estimation for p < 1 is in fact possible with max commu-
nication independent of the graph topology. After derandomizing our protocol, this results in
a optimal streaming algorithm for Fp estimation, p < 1, which closes a long line of research
on the problem for this particular range of p [58, 35, 45, 44, 15, 13].

I Theorem 21. For p ∈ (0, 1), there is a protocol for Fp estimation in the message passing
model which succeeds with probability 2/3 and has max-communication of O( 1

ε2 (log logn+
log 1/ε)).

I Theorem 22. There is a streaming algorithm for Fp estimation, p ∈ (0, 1), which outputs
a value R̃ such that with probability at least 2/3, we have that |R̃ − ‖X‖p| ≤ ε‖X‖p. The
algorithm uses O(( 1

ε2 (log logn+ log 1/ε) + log 1/ε
log log 1/ε logn)-bits of space. In the random oracle

model, the space is O( 1
ε2 (log logn+ log 1/ε)).

The above bound matches the Ω(ε−2) max communication lower bound of [58] in the shared
randomness model, which comes from 2-party communication complexity. Moreover, our
streaming algorithm matches the Ω(logn) lower bound for streaming when a random oracle
is not allowed. As an application of our protocol for Fp estimation, p < 1, we demonstrate a
communication optimal protocol for additive approximation of the empirical Shannon entropy
H(X ) of the aggregate vector X . Here, H = H(X ) is defined by H =

∑n
i=1 pi log(1/pi)

where pi = |Xi|/‖X‖1 for i ∈ [n]. The goal of our protocols is to produce an estimate H̃ ∈ R
of H such that |H̃ −H| ≤ ε. Our result is as follows.

I Theorem 26. There is a multi-party communication protocol in the message passing
model that outputs a ε-additive error of the Shannon entropy H. The protocol uses a
max-communication of O( 1

ε2 (log log(n) + log(1/ε))-bits.

Note that for a multiplicative approximation of the Shannon entropy, there is a Ω̃(ε−2)
lower bound [14]. For additive estimation, [43] gives a Ω(ε−2 log(n)) lower bound in the
turnstile model. Using a similar reduction, we prove a matching Ω(ε−2) lower bound
for additive ε approximation in the insertion only model (see Appendix B for the proof).
Furthermore, our protocol directly results in an Õ(ε−2)-bits of space, insertion only streaming
algorithm for entropy estimation in the random oracle model. Here, the random oracle
model means that the algorithm is given query access to an arbitrarily long string of random
bits. We note that many lower bounds in communication complexity (and all of the bounds
discussed in this paper except for the Ω(logn) term in the lower bound for Fp estimation)
also apply to the random oracle model. Previously, the best known algorithm for the insertion
only random oracle model used O(ε−2 log(n))-bits [47, 21], whereas the best known algorithm
for the non-random oracle model uses O(ε−2 log2(n))-bits (the extra factor of log(n) comes
from a standard application of Nisan’s pseudo-random generator [53]).

I Theorem 27. There is a streaming algorithm for ε-additive approximation of the empirical
Shannon entropy of an insertion only stream in the random oracle model, which succeeds
with probability 3/4. The space required by the algorithm is O( 1

ε2 (log log(n) + log(1/ε)) bits.

Finally, we show how our techniques can be applied to the important numerical linear
algebraic primitive of approximate matrix product, which we now define.

I Definition 1. The multi-party approximate matrix product problem is defined as follows.
Instead of vector valued inputs, each player is given Xi ∈ {0, 1, . . . ,M}n×t1 and Yi ∈
{0, 1, . . . ,M}n×t2 , where X =

∑
iXi and Y =

∑
i Yi. Here, it is generally assumed that

n >> t1, t2 (but not required). The players must work together to jointly compute a matrix
R ∈ Rt1×t2 such that ‖R−X TY‖F ≤ ε‖X‖F ‖Y‖F , where for a matrix A ∈ Rn×m, ‖A‖F =
(
∑n
i=1
∑m
j=1 A

2
i,j)1/2 is the Frobenius norm of A.
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I Theorem 29. There is a protocol which outputs, at the central vertex C, a matrix R ∈ Rt1×t2
which solves the approximate communication protocol with probability 3/4 3. The max
communication required by the protocol is O

(
ε−2(t1 + t2)(log logn+ log 1/ε+ log d)

)
, where

d is the diameter of the communication topology G.

We remark that an upper bound of O
(
ε−2(t1 + t2) logn

)
was already well-known from

sketching theory [59], and our main improvement is removing the log(n) factor for small
diameter graphs, such as the coordinator model where distributed numerical linear algebra is
usually considered.

1.3 Other Related Work
As mentioned, a closely related line of work is in the distributed functional monitoring model.
Here, there are m machines connected to a central coordinator (the coordinator topology).
Each machine then receives a stream of updates, and the coordinator must maintain at all
time steps an approximation of some function, such as a moment estimation or a uniform
sample, of the union of all streams. We note that there are two slightly different models
here. One model is where the items (coordinates) being updated in the separate streams are
considered disjoint, and each time an insertion is seen it is to a unique item. This model is
considered especially for the problem of maintaining a uniform sample of the items in the
streams [25, 34, 56, 37]. The other model, which is more related to ours, is where each player
is receiving a stream of updates to a shared overall data vector X ∈ Rn. This can be seen
as a distributed streaming setting, where the updates to a centralized stream are split over
m servers, and is considered in [60, 25, 3]. For the restricted setting of one-way algorithms,
which only transmit messages from the sites to the coordinators, any such algorithm can
be made into a one-shot protocol for the multi-party message passing model. Here, each
machine just simulates a stream on their fixed input vectors Xi, and sends all the messages
that would have been sent by the functional monitoring protocol.

Perhaps the most directly related result to our upper bound for for Fp estimation, p ∈ (1, 2],
is in the distributed functional monitoring model, where Woodruff and Zhang [60] show a
O(mp−1poly(log(n), 1/ε) + mε−1 log(n) log(log(n)/ε))4 total communication upper bound.
We remark here, however, that the result of [60] is incomparable to ours for several reasons.
Firstly, their bounds are only for total communication, whereas their max communication can
be substantially larger than O(1/ε2). Secondly, while it is claimed in the introduction that
the protocols are one way (i.e., only the players speak to the coordinator, and not vice versa),
this is for their threshold problem and not for Fp estimation5. As remarked before, there is
an Ω(m/ε2) total communication lower bound for one-way protocols, which demonstrates
that their complexity could not hold in our setting (we sketch a proof of this in Appendix A).

3 We remark that there are standard techniques to boost the probability of the matrix sketching results
to 1− δ, using a blow-up of log(δ) in the communication. See e.g. Section 2.3 of [59]

4 We remark that the poly(log(n), 1/ε) terms here are rather large, and not specified in the analysis of [60].
5 The reason for this is as follows. Their algorithm reduces Fp estimation to the threshold problem,
where for a threshold τ , the coordinator outputs 1 when the Fp first exceeds τ(1 + ε), and outputs 0
whenever the Fp is below τ(1− ε). To solve Fp estimation, one then runs this threshold procedure for
the log(mMn)/ε thresholds τ = (1 + ε), (1 + ε)2, . . . , (mMn)2 in parallel. However, the analysis from
[60] only demonstrates a total communication of O(k1−ppoly(log(n), ε−1)) for the time steps before the
threshold τ is reached. Once the threshold is reached, the communication would increase significantly,
thus the coordinator must inform all players when a threshold τ is reached so that they stop sending
messages for τ , violating the one-way property. This step also requires an additive k messages for each
of the O(ε−1 log(n)) thresholds, which results in the O(mε−1 log(n) log(log(n)ε))) term.

APPROX/RANDOM 2019
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The message passing model itself has been the subject of significant research interest
over the past two decades. The majority of this work is concerned with exact computation
of Boolean functions of the inputs. Perhaps the canonical multi-party problem, and one
which has strong applications to streaming, is set disjointness, where each player has a
subset Si ⊂ [n] and the players want to know if ∩mi=1Si is empty. Bar-Yossef et al. [6]
demonstrated strong bounds for this problem in the black-board model. This lower bound
resulted in improved (polynomially sized) lower bounds for streaming Fp estimation for
p > 2. These results for disjointness have since been generalized and improved using new
techniques [16, 30, 41, 8]. Finally, we remark that while most results in the multi-party
message passing model are not topology dependent, Chattopadhyay, Radhakrishnan, and
Rudra have demonstrated that tighter topology-dependent lower bounds are indeed possible
in the message passing model [19].

2 Preliminaries

Let f be a function f : Rn → R. Let G = (V,E) be a connected undirected graph with
m vertices, i.e. V = {1, . . . ,m}. In the message passing model on the graph topology G,
there are m players, each placed at a unique vertex of G, with unbounded computational
power. Player i is given as input only a vector Xi ∈ Zn, which is known as the Number
in Hand (NIH) model of communication. Let X =

∑n
i=1 Xi be the aggregate vector of the

players inputs. The goal of the players is to jointly compute or approximate the function
f(X ) by carrying out some previously unanimously agreed upon communication protocol. It
is assumed that the graph topology of G is known to all players.

In this paper, we are concerned with the non-negative input model. Namely, the inputs
Xi satisfy Xi ∈ {0, 1, . . . ,M}n for all players i. Note an equivalent assumption to is that
(Xi)j ≥ 0 for all i, and that the (Xi)j ’s can be specified in O(log(M)) bits.

I Remark 2. For ease of presentation, we assume that m,M = O(nc) for some constant c.
This allows us to simplify complexity bounds and write log(nmM) = O(logn). This is a
common assumption in the streaming literature, where m corresponds to the length of the
stream. We remark, however, that all our results hold for general m,n,M , by replacing each
occurrence of n in the communication complexity with (mnM).

During execution of the protocol, a player i ∈ V is only allowed to send a message to a
player j if (i, j) ∈ E. Thus, players may only communicate directly with their neighbors in
the graph G. In contrast to the broadcast and blackboard models of communication, in the
message passing model the message sent by player i to player j is only received by player
j, and no other player. Upon termination of the protocol, at least one player must hold an
approximation of the value f(X ). For the protocols considered in this paper, this player will
be fixed and specified by the protocol beforehand. We use C ∈ V to denote the distinguished
player specified by the protocol to store the approximation at the end of the execution.

Every such communication protocol in this model can be divided into rounds, where on
the j-th round some subset Sj ⊆ V of the players simultaneously send a message across one
of their edges. Although it is not a restriction in the message passing model, our protocols
satisfy the additional property that each player communicates exactly once, across one of its
edges, and that each player will receive messages from its neighbors in exactly one round.
Specifically, for each player i, there will be exactly one round j where some subset of its
neighbors send player i a message, and then player i will send a single message in round
j + 1, and never again communicate. Such protocols are called one-shot protocols.
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The total communication cost of a protocol is the total number of bits sent in all the
messages during its execution. The max-communication of a protocol is the maximum number
of bits sent across any edge over the execution of the protocol. Communication protocols can
be either deterministic or randomized. In this paper we consider the standard public-coin
model of communication, where each player is given shared access to an arbitrarily long
string of random bits. This allows players to jointly utilize the same source of randomness
without having to communicate it.

Our protocols for Fp estimation will utilize the p-stable distribution, Dp, which we will
now introduce. For p = 2, the distribution D2 is the just standard Gaussian distribution.
Note for p < 2, the distributions have heavy tails – they decay like x−p. Thus, for p < 2, the
variance is infinite, and for p ≤ 1, the expectation is undefined.

I Definition 3. For 0 < p ≤ 2, there exists a probability distribution Dp called the p-
stable distribution. If Z ∼ Dp, p < 2, then the characteristic function of Dp is given by
E[eitZ ] = e−|t|

p . For p = 2, D2 is the standard Gaussian distribution. Moreover, for any
n, and any x ∈ Rn, if Z1, . . . , Zn ∼ Dp are independent, then

∑n
i=1 Zixi ∼ ‖x‖pZ, where

Z ∼ Dp, and ∼ means distributed identically to.

Standard methods for generating p-stable random variables are discussed in [54]. Note
that all protocols in this paper will generate these variables only to precision 1/poly(n). For a
distribution Dp, we write Dn

p to denote the product distribution of Dp. Thus Z ∼ Dn
p means

Z ∈ Rn and Z1, . . . , Zn are drawn i.i.d. from Dp. For reals a, b ∈ R, we write a = (1± ε)b to
denote the containment a ∈ [(1− ε)b, (1 + ε)b]. For an integer t ≥ 0, we write [t] to denote
the set {1, 2, . . . , t}.

3 Message Passing Fp Estimation, p > 1

In this section, we provide our algorithm for Fp estimation, 1 ≤ p ≤ 2, in the message passing
model. We begin by specifying the distinguished vertex C ∈ V which will hold and output
the Fp approximation at the end of the protocol. For a vertex v ∈ G, define its eccentricity
ecc(v) = maxu∈V d(v, u), where d(v, u) is the graph distance between v, u. We then set
C ∈ V to be any vertex with minimal eccentricity. Such a vertex is known as a center of G.
We now fix a shortest path spanning tree T for G, rooted at the distinguished player C. The
spanning tree T has the property that the path between C and any vertex v ∈ V in the tree
T is also a shortest path between C and v in G. Thus the distance between C and any vertex
v ∈ V is the same in T as it is in G. The fact that the depth of T is at most d, where d is
the diameter of G, now follows naturally. Such a shortest path spanning tree T can be easily
obtained via a breath first search. First, we will need a technical Lemma about the behavior
of p-stables. To prove it, we first use the following fact about the tails of p stables, which
can be found in [54].

I Proposition 4. If Z ∼ Dp for 0 < p < 2, then Pr[|Z| ≥ λ] ≤ O( 1
λp ).

Also, we use the straightforward fact that ‖Xi‖pp ≤ ‖
∑m
i=1 Xi‖pp for non-negative vectors Xi

and p ≥ 1.

I Fact 5. If X1, . . . , Xm ∈ Rn are entry-wise non-negative vectors and 1 ≤ p ≤ 2, then∑m
i=1 ‖Xi‖pp ≤ ‖

∑m
i=1 Xi‖pp.

APPROX/RANDOM 2019
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I Lemma 6. Fix 1 ≤ p ≤ q ≤ 2, and let Z = (Z1, Z2, . . . , Zn) ∼ Dm
p . Suppose X1, . . . , Xm ∈

Rn are non-negative vectors, with X =
∑
j Xj. Then for any λ ≥ 1, if either q − p ≥ c > 0

for some constant c independent of m, or if p = 2, we have

Pr

 m∑
j=1
|〈Z,Xj〉|q ≥ Cλq‖X‖qp

 ≤ 1
λp

Otherwise, we have Pr[
∑m
j=1 |〈Z,Xj〉|q ≥ C log(λm)λq‖X‖qp] ≤ 1

λp , where C is some constant
(depending only on c in the first case).

I Corollary 7. Suppose Z = (Z1, . . . , Zm) where the Zi’s are uniform over {1,−1} and
pairwise independent, and let X1, . . . , Xm be non-negative vectors with X =

∑
j Xj. Then

for any λ ≥ 1, we have Pr[
∑m
j=1 |〈Z,Xj〉|2 ≥ λ‖X‖2

2] ≤ 1
λ

I Corollary 8. Let Z = (Z1, Z2, . . . , Zn) ∼ Dm
2 be i.i.d. Gaussian. Suppose X1, . . . , Xm ∈ Rn

are non-negative vectors, with X =
∑
j Xj. Then for any λ ≥ c log(m) for some sufficiently

large constant c, we have Pr[
∑m
j=1 |〈Z,Xj〉| ≥ λ‖X‖2

2] ≤ exp(−Cλ), where C is some
universal constant.

3.1 Randomized Rounding of Sketches
We now introduce our randomized rounding protocol. Consider non-negative integral vectors
X1, X2, . . . , Xm ∈ Zn≥0, with X =

∑n
i=1 Xi. Fix a message passing topology G = (V,E),

where each player i ∈ V is given as input Xi. Fix any vertex C that is a center of G, and let
T be a shortest path spanning tree of G rooted at C as described at the beginning of the
section. Let d be the depth of T . The players use shared randomness to choose a random
vector Z ∈ Rn, and their goal is to approximately compute 〈Z,X〉 = 〈Z,

∑m
i=1 Xi〉. The goal

of this section is to develop a d-round randomized rounding protocol, so that at the end of
the protocol the approximation to 〈Z,X〉 is stored at the vertex C.

We begin by introducing the rounding primitive which we use in the protocol. Fix ε > 0,
and let γ = (εδ/ log(nm))C , for a sufficiently large constant C > 1. For any real value r ∈ R,
let ir ∈ Z and αi ∈ {1,−1} be such that (1 + γ)ir ≤ αir ≤ (1 + γ)ir+1. Now fix pr such that:
αir = pr(1 +γ)ir+1 + (1− pr)(1 +γ)ir . We then define the rounding random variable Γ(r) by

Γ(r) =


0 if r = 0
αi(1 + γ)ir+1 with probability pr
αi(1 + γ)ir with probability 1− pr

The following proposition is clear from the construction of pr and the fact that the error
is deterministically bounded by γ|r|.

I Proposition 9. For any r ∈ R, We have E[Γ(r)] = r and Var[Γ(r)] ≤ r2γ2

We partition T into d layers, so that all nodes at distance d− t from C in T are put in
layer t. Define Lt ⊂ [n] to be the set of players at layer t in the tree. For any vertex u ∈ G,
let Tu be the subtree of T rooted at u (including the vertex u). For any player i, let Ci ⊂ [n]
be the set of children of i in the tree T . The procedure for all players j ∈ V is then given as
Algorithm 1.
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Algorithm 1 Recursive Randomized Rounding.

Procedure for node j in layer i:
1. Choose random vector Z ∈ Rn using shared randomness.
2. Receive rounded sketches rj1 , rj2 , . . . , rjtj

∈ R from the tj children of node j in the prior
layer (if any such children exist).

3. Compute xj = 〈Xj , Z〉+ rj1 + rj2 + · · ·+ rjt ∈ R.
4. Compute rj = Γ(xj). If player j 6= C, then send rj it to the parent node of j in T . If

j = C, then output rj as the approximation to 〈Z,X〉.

For each player i in layer 0, they take their input Xi, and compute 〈Z,Xi〉. They then
round their values as ri = Γ(〈Z,Xi〉), where the randomness used for the rounding function
Γ is drawn independently for each call to Γ. Then player i sends ri to their parent in
T . In general, consider any player i at depth j > 0 of T . At the end of the j-th round,
player i will receive a rounded value r` for every child vertex ` ∈ Ci. They then compute
xi = 〈Z,Xi〉+

∑
`∈Ci

r`, and ri = Γ(xi), and send ri to their parent in T . This continues
until, on round d, the center vertex C receives r` for all children ` ∈ CC . The center C then
outputs rC = 〈Z,XC〉+

∑
`∈CC r` as the approximation.

For any player i, let Qi =
∑
u∈Ti

Xu, and yi = 〈Z,Qi〉. Then define the error ei at player
i as ei = yi − ri. We first prove a proposition that states the expectation of the error ei for
any player i is zero, and then the main lemma which bounds the variance of ei. The error
bound of the protocol at C then results from an application of Chebyshev’s inequality.

I Proposition 10. For any player i, we have E[ei] = 0. Moreover, for any players i, j such
that i /∈ Tj and j /∈ Ti, the variables ei and ej are statistically independent.

I Lemma 11. Fix p ∈ [1, 2], and let Z = (Z1, Z2, . . . , Zn) ∼ Dn
p . Then the above procedure

when run on γ = (εδ/(d log(nm)))C for a sufficiently large constant C, produces an estimate
rC of 〈Z,X〉, held at the center vertex C, such that E[rC] = 〈Z,X〉. Moreover, over the
randomness used to draw Z, with probability 1− δ for p < 2, and with probability 1− e−1/δ

for Gaussian Z, we have E[(rC − 〈Z,X〉)2] ≤ (ε/δ)2‖X‖p. Thus, with probability at least
1 − O(δ), we have |rC − 〈Z,X〉| ≤ ε‖X‖p. Moreover, if Z = (Z1, Z2, . . . , Zn) ∈ Rn where
each Zi ∈ {1,−1} is a 4-wise independent Rademacher variable, then the above bound holds
with p = 2 (and with probability 1− δ).

I Theorem 12. For p ∈ (1, 2], there is a protocol for Fp estimation which succeeds with
probability 3/4 in the message passing model, which uses a total of O(mε2 (log(log(n))+log(d)+
log(1/ε))) communication, and a max communication of O( 1

ε2 (log(log(n))+log(d)+log(1/ε))),
where d is the diameter of the communication network.

3.2 Heavy Hitters and Point Estimation
In this section, we show how our randomized rounding protocol can be used to solve the L2
heavy hitters problem. For a vector X ∈ Rn, let Xtail(k) be X with the k largest (in absolute
value) entries set equal to 0. Formally, given a vector X ∈ Rn, the heavy hitters problem is to
output a set of coordinates H ⊂ [n] of size at most |H| = O(ε−2) that contains all i ∈ [n] with
|Xi| ≥ ε‖Xtail(1/ε2)‖2. Our protocols solve the strictly harder problem of point-estimation.
The point estimation problem is to output a X̃ ∈ Rn such that ‖X̃ − X‖∞ ≤ ε‖Xtail(1/ε2)‖2.
Our protocol uses the well-known count-sketch matrix S [18], which we now introduce.
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I Definition 13. Given a precision parameter ε and an input vector X ∈ Rn, count-sketch
stores a table A ∈ R`×6/ε2 , where ` = Θ(log(n)). Count-sketch first selects pairwise in-
dependent hash functions hj : [n] → [6/ε2] and 4-wise independent gj : [n] → {1,−1},
for j = 1, 2, . . . , `. Then for all i ∈ [`], j ∈ [6/ε2], it computes the following linear
function Ai,j =

∑
k∈[n],hi(k)=j gi(k)Xk, and outputs an approximation X̃ of X given by

X̃k = mediani∈[`]{gi(k)Ai,hi(k)}

Observe that the table A ∈ R`×6/ε2 can be flattened into a vector A ∈ R6`/ε2 . Given
this, A can be represented as A = SX for a matrix S ∈ R6`/ε2×n. For any i ∈ [`], j ∈ [6/ε2],
and ` ∈ [n], the matrix S is given by S(i−1)(6/ε2)+j,` = δi,j,`gj(`), where δi,j,` indicates the
event that hi(`) = j. Given SX , one can solve the point-estimation problem as described in
Definition 13 [18]. In order to reduce the communication from sending each coordinate of
SX exactly, we can use our rounding procedure to approximately compute the sketch SX ,
which will give us the following theorem.

I Theorem 14. Consider a message passing topology G = (V,E) with diameter d, where the
i-th player is given as input Xi ∈ Zn≥0 and X =

∑m
i=1 Xi. Then there is a communication

protocol which outputs an estimate X̃ ∈ Rn of X such that ‖X̃ − X‖∞ ≤ ε‖Xtail(1/ε2)‖2 with
probability 1−1/nc for any constant c ≥ 1. The protocol uses O(mε2 log(n)(log(log(n))+log(d)+
log(1/ε))) total communication, and a max communication of O( 1

ε2 log(n)(log(log(n)) +
log(d) + log(1/ε))).

4 Fp Estimation for p < 1

In this section, we develop algorithms for Fp estimation for p < 1 in the message passing
model, and in the process obtain improved algorithms for entropy estimation. We begin
by reviewing the fundamental sketching procedure used in our estimation protocol. The
algorithm is known as a Morris counter [51, 26]. The algorithm first picks a base 1 < b ≤ 2,
and initializes a counter C ← 0. Then, every time it sees an insertion, it increments the
counter C ← C + δ, where δ = 1 with probability b−C , and δ = 0 otherwise (in which
case the counter remains unchanged). After n insertions, the value n can be estimated by
ñ = (bC − b)/(b− 1) + 1.

I Definition 15. The approximate counting problem is defined as follows. Each player i is
given a positive integer value xi ∈ Z≥0, and the goal is for some player at the end to hold an
estimate of x =

∑
i xi.

I Proposition 16 (Proposition 5 [26]). If Cn is the value of the Morris counter after n
updates, then E[ñ] = n, and Var[ñ] = (b− 1)n(n+ 1)/2.

I Corollary 17. If Cn is the value of a Morris counter run on a stream of n insertions
with base b = (1 + (εδ)2), then with probability at least 1 − δ, we have ñ = (1 ± ε)n with
probability at least 1− δ. Moreover, with probability at least 1− δ, the counter Cn requires
O(log log(n) + log(1/ε) + log(1/δ))-bits to store.

I Lemma 18. Given Morris counters X,Y run on streams of length n1, n2 respectively,
There is a merging procedure that produces a Morris counter Z which is distributed identically
to a Morris counter that was run on a stream of n1 + n2 insertions.

I Corollary 19. There is a protocol for F1 estimation of non-negative vectors, equivalently
for the approximate counting problem, in the message passing model which succeeds with
probability 1− δ and uses a max-communication of O((log log(n) + log(1/ε) + log(1/δ))-bits.
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We now note that Morris counters can easily used as approximate counters for streams
with both insertions and deletions (positive and negative updates), by just storing a separate
Morris counter for the insertions and deletions, and subtracting the estimate given by one
from the other at the end.

I Corollary 20. Using two Morris counters separately for insertions and deletions, on a
stream of I insertions and D deletions, there is an algorithm, called a signed Morris counter,
which produces ñ with |ñ − n| ≤ ε(I + D), where n = I −D, with probability 1 − δ, using
space O(log log(I +D) + log(1/ε) + log(1/δ)).

Hereafter, when we refer to a Morris counter that is run on a stream which contains
both positive and negative updates as a signed Morris counter. Therefore, the guarantee of
Corollary 20 apply to such signed Morris counters, and moreover such signed Morris counters
can be Merged as in Lemma 18 with the same guarantee.

Algorithm 2 Multi-party Fp estimation protocol, p < 1.

Procedure for player j

k ← Θ(1/ε2), ε′ ← Θ(ε δ1/p

log(n/δ) ), δ ← 1/(200k)
1. Using shared randomness, choose sketching matrix S ∈ Rk×n of i.i.d. p-stable random

variables, with k = Θ(1/ε). Generate S up to precision η = poly(1/(n,m,M)), so that
η−1S has integral entries.

2. For each i ∈ [k], receive signed Morris counters yj1,i, yj2,i, . . . , yjt,i from the t ∈ {0, . . . ,m}
children of node j in the prior layer.

3. Compute η−1〈Si, Xj〉 ∈ Z, where Si is the i-th row of S, and run a new signed Morris
counter C on η−1〈Si, Xj〉 with parameters (ε′, δ′).

4. Merge the signed Morris counters yj1,i, yj2,i, . . . , yjt,i, C into a counter yj,i.
5. Send the merged signed Morris counter yj,i to the parent of player j. If player j is the

root node C, then set Ci to be the estimate of the signed Morris counter yj,i, and return
the estimate η ·median { |C1|

θp
, . . . , |Ck|

θp
}, where θp is the median of the distribution Dp.

We now provide our algorithm for Fp estimation in the message passing model with p ≤ 1.
Our protocol is similar to our algorithm for p ≥ 1. We fix a vertex C which is a center of
the communication topology. We then consider the shortest path tree T rooted at C, which
has depth at most d, where d is the diameter of G. The players then choose random vectors
Si ∈ Rn for i ∈ [k], and the j-th player computes 〈Si, Xj〉, and adds this value to a Morris
counter. Each player receives Morris counters from their children in T , and thereafter merges
these Morris counters with its own. Finally, it sends this merged Morris counter, containing
updates from all players in the subtree rooted at j, to the parent of j in T . At the end, the
center C holds a Morris counter Ci which approximates

∑
j〈Si, Xj〉. The main algorithm for

each player j is given formally as Algorithm 2.

I Theorem 21. For p ∈ (0, 1), there is a protocol for Fp estimation in the message passing
model which succeeds with probability 2/3 and uses a total communication of O(mε2 (log log(n)+
log(1/ε))-bits, and a max-communication of O( 1

ε2 (log log(n) + log(1/ε))-bits. The protocol
requires a total of at most d rounds, where d is the diameter of the communication topology G.
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4.1 The Streaming Algorithm for Fp Estimation, p < 1
As discussed earlier, the insertion-only streaming model of computation is a special case of
the above communication setting, where the graph in question is the line graph, and each
player receives vector Xi ∈ Rn which is the standard basis vector ej ∈ Rn for some j ∈ [n].
The only step remaining to fully generalize the result to the streaming setting is an adequate
derandomization of the randomness required to generate the matrix S. Our derandomization
will follow from the results of [45], which demonstrate that, using a slightly different estimator
known as the log-cosine estimator, the entries of each row Si can be generated with only
Θ(log(1/ε)/ log log(1/ε))-wise independence, and the seeds used to generate separate rows
of Si need only be pairwise independent. Thus, storing the randomness used to generate S
requires only O( log(1/ε)

log log(1/ε) log(n))-bits of space.
We now discuss the estimator of [45] precisely. The algorithm generates a matrix S ∈ Rk×n

and S′ ∈ Rk′×n with k = Θ(1/ε2) and k′ = Θ(1), where each entry of S, S′ is drawn from
Dp. For a given row i of S, the entries Si,j are Θ(log(1/ε)/ log log(1/ε))-wise independent,
and for i 6= i′, the seeds used to generate {Si,j}nj=1 and {Si′,j}nj=1 are pairwise independent.
S′ is generated with only Θ(1)-wise independence between the entries in a given row in
S′, and pairwise independence between rows. The algorithm then maintains the vectors
y = SX and y′ = S′X throughout the stream, where X ∈ Zn≥0 is the stream vector. Define
y′med = median{|y′i|}k

′

i=1/θp, where θp is the median of the distribution Dp ([45] discusses
how this can be approximated to (1± ε) efficiently). The log-cosine estimator R of ‖X‖p is
then given by R = y′med ·

(
− ln

(
1
k

∑k
i=1 cos

(
yi

y′
med

)))
I Theorem 22. There is a streaming algorithm for insertion only Fp estimation, p ∈ (0, 1),
outputs a value R̃ such that with probability at least 2/3, we have that |R̃− ‖X‖p| ≤ ε‖X‖p
where X ∈ Rn is the state of the stream vector at the end of the stream. The algorithm uses
O(( 1

ε2 (log log(n) + log(1/ε)) + log(1/ε)
log log(1/ε) log(n))-bits of space.

5 Entropy Estimation

In this section, we show how our results imply improved algorithms for entropy estimation
in the message-passing model. Here, for a vector X ∈ Rn, the Shannon entropy is given
by H =

∑n
i=1

|Xi|
‖X‖1

log(‖|X‖1
|Xi| ). We follow the approach taken by [21, 47, 31, 32] for entropy

estimation in data streams, which is to use sketched of independent maximally-skewed stable
random variables. While we introduced p-stable random variables in Definition 3 as the
distribution with characteristic function E[eitZ ] = e−|t|

p , we remark now that the p-stable
distribution is also parameterized by an additional skewness parameter β ∈ [−1, 1]. Up until
this point, we have assumed β = 0. In this section, however, we will be using maximally
skewed, meaning β = −1, p = 1-stable random variables. We introduce these now

I Definition 23 (Stable distribution, general). There is a distribution F (p, β, γ, δ) called
the p-stable distribution with skewness parameter β ∈ [−1, 1], scale γ, and position δ. The
characteristic function of a Z ∼ F (p, β, γ, δ) variable Z is given by:

E[e−itZ ] =
{

exp
(
−γp|t|p

[
1− iβ tan(πp2 )sign(t)

]
+ iδt

)
if p ∈ (0, 2] \ {1}

exp
(
−γ|t|

[
1 + iβ 2

π sign(t) log(|t|)
]

+ iδt
)

if p = 1

where sign(t) ∈ {1,−1} is the sign of a real t ∈ R. Moreover, if Z ∼ F (p, β, γ, 0) for any
β ∈ [−1, 1] and 0 < p < 2, for any λ > 0 we have Pr[|Z| > Cλ] ≤ (γλ )p, where C is some
universal constant. We refer the reader to [54] for a further discussion on the parameterization
and behavior of p-stable distributions with varying rates.
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Algorithm 3 Entropy Estimation algorithm of [21].

Sketching algorithm for Entropy Estimation

Input: X ∈ Rn
1. Generate S ∈ Rk×n for k = Θ(1/ε2) of i.i.d. F (1,−1, π/2, 0) random variables to precision

η = 1/poly(M,n).
2. Compute SX ∈ Rk.
3. Set yi ← (SX )i/‖X‖1 for i ∈ [k]
4. Return H̃ = − log

(
1
k

∑k
i=1 e

yi

)

The algorithm of [21] is given formally as Algorithm 3. The guarantee of the algorithm is
given in Theorem 24.

I Theorem 24 ([21]). The above estimate H̃ satisfies |H̃ −H| < ε with probability at least
9/10.

I Lemma 25. Fix 0 < ε0 < ε. Let S ∈ Rk×n with k = Θ(1/ε2) be a matrix of i.i.d.
F (1,−1, π/2, 0) random variables to precision η = 1/poly(M,n). Then there is a protocol in
the message passing model that outputs Y ∈ Rk at a centralized vertex with ‖Y − SX‖∞ ≤
ε0‖X‖1 with probability 9/10. The protocol uses a total communication of O(mε2 (log log(n) +
log(1/ε0))-bits, and a max-communication of O( 1

ε2 (log log(n) + log(1/ε0)))-bits.

I Theorem 26. There is a multi-party communication protocol in the message passing
model that outputs a ε-additive error of the Shannon entropy H. The protocol uses a
max-communication of O( 1

ε2 (log log(n) + log(1/ε))-bits.

Since our protocol does not depend on the topology of G, a direct corollary is that we
obtain a Õ(ε−2)-bits of space streaming algorithm for entropy estimation in the random
oracle model. Recall that the random oracle model allows the streaming algorithm query
access to an arbitrarily long tape of random bits. This fact is used to store the random
sketching matrix S.

I Theorem 27. There is a streaming algorithm for ε-additive approximation of the empirical
Shannon entropy of an insertion only stream in the random oracle model, which succeeds
with probability 3/4. The space required by the algorithm is O( 1

ε2 (log log(n) + log(1/ε)) bits.

6 Approximate Matrix Product in the Message Passing Model

In this section, we consider the approximate regression problem in the message passing model
over a topology G = (V,E). Here, instead of vector valued inputs, each player is given
as input two integral matrices Xi ∈ {0, 1, 2, . . . ,M}n×t1 , Yi ∈ {0, 1, 2, . . . ,M}n×t2 . It is
generally assumed that n >> t1, t2, so the matrices Xi, Yi are rectangular. Let X =

∑m
i=1 Xi

and Y =
∑
i Yi. The goal of the players is to approximate the matrix product X TY ∈ Rt1×t2 .

Specifically, at the end of the protocol one player must output a matrix R ∈ Rt1×t2 such that
‖R−X TY‖F ≤ ε‖X‖F ‖Y‖F , where for a matrix A, ‖A‖F = (

∑
i,j A

2
i,j)1/2 is the Frobenius

norm of A.
We now describe a classic sketching algorithm which can be used to solve the approximate

regression problem. The algorithm picks a S ∈ Rk×n of i.i.d. Gaussian variables with
variance 1/k. It then computes SX and SY, and outputs (SX )TSY. The following fact
about such sketches will demonstrate correctness.
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I Lemma 28 ([43]). Fix matrices X ∈ Rn×t1 ,Y ∈ Rn×t2 and 0 < ε0. Let S ∈ Rk×n be a
matrix of i.i.d. Gaussian random variables with variance 1/k, for k = Θ(1/(δε20)). Then we
have Pr[‖X TSTSY − X TY‖F ≤ ε0‖X‖F ‖Y‖F ] ≥ 1− δ. Moreover, with the same probability
we have ‖SX‖F = (1± ε0)‖X‖F and ‖SY‖F = (1± ε0)‖Y‖F

Now by Lemma 11, the central vertex C can recover a value ri,jC such that E[ri,jC ] = (SX )i,j
and Var[ri,jC ] ≤ ε2‖X∗,j‖2 (after setting δ sufficiently small), where X∗,j is the j-th column of
X . Thus, the central vertex can obtain a random matrix RX ∈ Rk×t1 such that E[RX ] = (SX )
and E[‖RX − SX‖2

F ] ≤ kε2
∑t1
j=1 ‖X∗,j‖2. Setting ε = poly(1/k) = poly(1/ε0) small enough,

we obtain E[‖RX − SX‖2
F ] ≤ ε20‖X‖F . Similarly, we can obtain a RY at the central vertex C,

and output the estimate R = (RX )TRY . Utilizing the error guarantees of Lemma 11 as well
as Lemma 28, we obtain the following theorem.

I Theorem 29. Given inputs X =
∑m
i=1 Xi,Y =

∑m
i=1 Yi as described above, there is a

protocol which outputs, at the central vertex C, a matrix R ∈ Rt1×t2 such that with probability
3/4 we have ‖R−X TY‖F ≤ ε‖X‖F ‖Y‖F The max communication required by the protocol
is O

(
ε−2(t1 + t2)(log logn+ log 1/ε+ log d)

)
, where d is the diameter of the communication

topology G.
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A Proof Sketch of Ω(m/ε2) Lower Bound for Fp estimation in the
One-Way Coordinator Model

We now sketch the proof of the Ω(m/ε2) lower bound that was remarked upon in the
introduction. First, consider the following problem Alice is given a vector x ∈ Rt, and
bob y ∈ Rt, such that xi ≥ 0, yi ≥ 0 for all i ∈ [t]. Alice and Bob both send a message
to Eve, who must then output a (1 ± ε) approximation to ‖x + y‖p, for p ∈ (0, 2] \ {1}.
Via a reduction from the Gap-Hamming communication problem, there is a Ω(1/ε2)-bit
communication lower bound for this problem [58]. More specifically, there is a distribution
D over inputs (x, y) ∈ Rt × Rt, such that any communication protocol that solves the above
problem on these inputs correctly with probability 3/4 must send Ω(1/ε2) bits.

Now consider the one-way coordinator model, where there are m players connected via an
edge to a central coordinator. They are given inputs x1, . . . , xm, and must each send a single
message to the coordinator, who them must estimate ‖x‖p = ‖x1 +x2 + · · ·+xm‖p. Consider
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two distribution, P1, P2 over the inputs (x1, . . . , xm). In the first, two players i, j are chosen
uniformly at random, and given as inputs (x, y) ∼ D, and the rest of the players are given
the 0 vector. In P2, we draw (x, y) ∼ D, and every player is given either x or y at random.
The players are then either given input from P1 or P2, with probability 1/2 for each. In the
first case, if the two players with the input do not send Ω(1/ε2) bits, then they will not be
able to solve the estimation problem via the 2-party lower bound. However, given only their
input, the distributions P1 and P2 are indistinguishable to a given player. So the players
cannot tell if the input is from P1 or P2, so any player that gets an non-zero input must
assume they are in case P1 if they want to solve the communication problem with sufficiently
high constant probability, and send Ω(1/ε2) bits of communication. This results in Ω(m/ε2)
total communication when the input is from P2, which is the desired lower bound.

B Ω(1/ε2) Lower Bound for additive approximation of Entropy in
Insertion-Only Streams

We now prove the Ω(1/ε2)-bits of space lower bound for any streaming algorithm that
produces an approximation H̃ such that |H̃ −H| < ε with probability 3/4. Here H is the
empirical entropy of the stream vector X , namely H = H(X ) = −

∑n
i=1

|Xi|
F1

log |Xi|
F1

. To
prove the lower bound, we must first introduce the GAP-HAMDIST problem. Here, there
are two players, Alice and Bob. Alice is given x ∈ {0, 1}t and Bob receives y ∈ {0, 1}t. Let
∆(x, y) = |{i | xi 6= yi}| be the Hamming distance between two binary strings x, y. Bob is
promised that either ∆(x, y) ≤ t/2−

√
t (NO instance) or ∆(x, y) ≥ t/2 +

√
t (YES instance),

and must decide which holds. Alice must send a single mesage to Bob, from which he must
decide which case the inputs are in. It is known that any protocol which solves this problem
with constant probability must send Ω(t)-bits in the worst case (i.e. the maximum number
of bits sent, taken over all inputs and random bits used by the protocol).

I Proposition 30 ([58, 39]). Any protocol which solves the GAP-HAMDIST problem with
probability at least 2/3 must send Ω(t)-bits of communication in the worst case.

We remark that while a Ω(1/ε2) lower bound is known for multiplicative-approximation
of the entropy, to the best of our knowledge there is no similar lower bound written in the
literature for additive approximation.

I Theorem 31. Any algorithm for ε-additive approximation of the entropy H of a stream, in
the insertion-only model, which succeeds with probability at least 2/3, requires space Ω(ε−2)

Proof. Given a x, y ∈ {0, 1}t instance of GAP-HAMDIST, for t = Θ(1/ε2), Alice constructs
a stream on 2t items. Let x′ be the result of flipping all the bits of x, and let x′′ = x◦0t+0t◦x′ ∈
{0, 1}2t where ◦ denotes concatenation. Define y′, y′′ similarly. Alice then inserts updates so
that the stream vector X = x′′, and then sends the state of the streaming algorithm to Bob,
who inserts his vector, so that now X = x′′ + y′′. We demonstrate that the entropy of H
differs by an additive term of at least ε between the two cases. In all cases case, we have

H = t−∆
t

log(t) + ∆
2t log(2t)

= log(t) + ∆
(

2 log(t)− log 2t
2t

)
(1)
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We can assume t ≥ 4, and then 2 log(t) − log(2t) = C > 0, where C is some fixed value
known to both players that is bounded away from 0. So as ∆ increases, the entropy increases.
Thus in a YES instance, the entropy is at least

H ≥ log(t) + (t/2 +
√
t)C2t

= log(t) + (1/4 + 1/2
√
t)C

= log(t) + C/4 + Θ(ε) (2)

In addition, in the NO instance, the entropy is maximized when ∆ = t/2−
√
T . so we have

H ≤ log(t) + (t/2−
√
t)C2t

= log(t) + C/4−Θ(ε) (3)

Therefore, the entropy differs between YES and NO instances by at least an additive Θ(ε)
term. After sufficient rescaling of ε by a constant, we obtain our Ω(t) = Ω(1/ε2) lower
bound for additive entropy estimation via the linear lower bound for GAP-HAMDIST from
Proposition 30. J

APPROX/RANDOM 2019


	Introduction
	Multi-Party Communication
	Our Contributions
	Other Related Work

	Preliminaries
	Message Passing F_p Estimation, p > 1
	Randomized Rounding of Sketches
	Heavy Hitters and Point Estimation

	F_p Estimation for p<1
	The Streaming Algorithm for F_p Estimation, p<1

	Entropy Estimation
	Approximate Matrix Product in the Message Passing Model
	Proof Sketch of Omega(m/epsilon^2) Lower Bound for F_p estimation in the One-Way Coordinator Model
	Omega(1/epsilon^2) Lower Bound for additive approximation of Entropy in Insertion-Only Streams

