1,808 research outputs found

    Logic of Non-Monotonic Interactive Proofs (Formal Theory of Temporary Knowledge Transfer)

    Full text link
    We propose a monotonic logic of internalised non-monotonic or instant interactive proofs (LiiP) and reconstruct an existing monotonic logic of internalised monotonic or persistent interactive proofs (LiP) as a minimal conservative extension of LiiP. Instant interactive proofs effect a fragile epistemic impact in their intended communities of peer reviewers that consists in the impermanent induction of the knowledge of their proof goal by means of the knowledge of the proof with the interpreting reviewer: If my peer reviewer knew my proof then she would at least then (in that instant) know that its proof goal is true. Their impact is fragile and their induction of knowledge impermanent in the sense of being the case possibly only at the instant of learning the proof. This accounts for the important possibility of internalising proofs of statements whose truth value can vary, which, as opposed to invariant statements, cannot have persistent proofs. So instant interactive proofs effect a temporary transfer of certain propositional knowledge (knowable ephemeral facts) via the transmission of certain individual knowledge (knowable non-monotonic proofs) in distributed systems of multiple interacting agents.Comment: continuation of arXiv:1201.3667 ; published extended abstract: DOI:10.1007/978-3-642-36039-8_16 ; related to arXiv:1208.591

    State space c-reductions for concurrent systems in rewriting logic

    Get PDF
    We present c-reductions, a state space reduction technique. The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization of the reduction infrastructure via Maude's meta-programming features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools

    Towards a Maude tool for model checking temporal graph properties

    Get PDF
    We present our prototypical tool for the verification of graph transformation systems. The major novelty of our tool is that it provides a model checker for temporal graph properties based on counterpart semantics for quantified m-calculi. Our tool can be considered as an instantiation of our approach to counterpart semantics which allows for a neat handling of creation, deletion and merging in systems with dynamic structure. Our implementation is based on the object-based machinery of Maude, which provides the basics to deal with attributed graphs. Graph transformation systems are specified with term rewrite rules. The model checker evaluates logical formulae of second-order modal m-calculus in the automatically generated CounterpartModel (a sort of unfolded graph transition system) of the graph transformation system under study. The result of evaluating a formula is a set of assignments for each state, associating node variables to actual nodes

    Logic of Negation-Complete Interactive Proofs (Formal Theory of Epistemic Deciders)

    Get PDF
    We produce a decidable classical normal modal logic of internalised negation-complete and thus disjunctive non-monotonic interactive proofs (LDiiP) from an existing logical counterpart of non-monotonic or instant interactive proofs (LiiP). LDiiP internalises agent-centric proof theories that are negation-complete (maximal) and consistent (and hence strictly weaker than, for example, Peano Arithmetic) and enjoy the disjunction property (like Intuitionistic Logic). In other words, internalised proof theories are ultrafilters and all internalised proof goals are definite in the sense of being either provable or disprovable to an agent by means of disjunctive internalised proofs (thus also called epistemic deciders). Still, LDiiP itself is classical (monotonic, non-constructive), negation-incomplete, and does not have the disjunction property. The price to pay for the negation completeness of our interactive proofs is their non-monotonicity and non-communality (for singleton agent communities only). As a normal modal logic, LDiiP enjoys a standard Kripke-semantics, which we justify by invoking the Axiom of Choice on LiiP's and then construct in terms of a concrete oracle-computable function. LDiiP's agent-centric internalised notion of proof can also be viewed as a negation-complete disjunctive explicit refinement of standard KD45-belief, and yields a disjunctive but negation-incomplete explicit refinement of S4-provability.Comment: Expanded Introduction. Added Footnote 4. Corrected Corollary 3 and 4. Continuation of arXiv:1208.184

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    MetTeL: A Generic Tableau Prover.

    Get PDF
    corecore