12 research outputs found

    A Comparison of Meshes With Static Buses and Unidirectional Wrap-Arounds

    Get PDF
    We investigate the relative computational powers of a mesh with static buses and a mesh with unidirectional wrap-mounds. A mesh with unidirectional wraparounds is a torus with the restriction that any wraparoundlink of the architecture can only transmit data in one of the two directions at any clock tick. We show that the problem of packet routing can be solved as efficiently on a linear array with unidirectional wrap-around link as on a linear array with a broadcast bus. We also present a routing algorithm for a twcdimensional torus with unidirectional wraparound links whose run time is close to that of the best known algorithm for routing on a mesh with broadcast buses in each dimension. In addition, we show that on a mesh with broadcast buses, sorting can be done in time that is essentially the same as the time needed for packet routing

    A fast adaptive convex hull algorithm on two-dimensional processor arrays with a reconfigurable BUS system

    Get PDF
    A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n

    Kinematics of AdeptThree Robot Arm

    Get PDF

    Mesh Connected Computers With Multiple Fixed Buses: Packet Routing, Sorting and Selection

    Get PDF
    Mesh connected computers have become attractive models of computing because of their varied special features. In this paper we consider two variations of the mesh model: 1) a mesh with fixed buses, and 2) a mesh with reconfigurable buses. Both these models have been the subject matter of extensive previous research. We solve numerous important problems related to packet routing, sorting, and selection on these models. In particular, we provide lower bounds and very nearly matching upper bounds for the following problems on both these models: 1) Routing on a linear array; and 2) k-k routing, k-k sorting, and cut through routing on a 2D mesh for any k ≥ 12. We provide an improved algorithm for 1-1 routing and a matching sorting algorithm. In addition we present greedy algorithms for 1-1 routing, k-k routing, cut through routing, and k-k sorting that are better on average and supply matching lower bounds. We also show that sorting can be performed in logarithmic time on a mesh with fixed buses. As a consequence we present an optimal randomized selection algorithm. In addition we provide a selection algorithm for the mesh with reconfigurable buses whose time bound is significantly better than the existing ones. Our algorithms have considerably better time bounds than many existing best known algorithms

    Bus interconnection networks

    Get PDF
    AbstractIn bus interconnection networks every bus provides a communication medium between a set of processors. These networks are modeled by hypergraphs where vertices represent the processors and edges represent the buses. We survey the results obtained on the construction methods that connect a large number of processors in a bus network with given maximum processor degree Δ, maximum bus size r, and network diameter D. (In hypergraph terminology this problem is known as the (Δ,D, r)-hypergraph problem.)The problem for point-to-point networks (the case r = 2) has been extensively studied in the literature. As a result, several families of networks have been proposed. Some of these point-to-point networks can be used in the construction of bus networks. One approach is to consider the dual of the network. We survey some families of bus networks obtained in this manner. Another approach is to view the point-to-point networks as a special case of the bus networks and to generalize the known constructions to bus networks. We provide a summary of the tools developed in the theory of hypergraphs and directed hypergraphs to handle this approach

    Supporting divide-and-conquer algorithms for image processing

    Full text link
    Divide-and-conquer is an important algorithm strategy, but it is not widely used in image processing. For higher-level, symbolic operations it should often be the strategy of choice for parallel computers. It is natural for a machine with a regular interconnection scheme such as a mesh, mesh with broadcasting, tree, pyramid, mesh-of-trees, PRAM, or hypercube, and can be used either on a machine with a pixel per processor or on one with many pixels per processor. However, divide-and-conquer algorithms use parallel computers in a different manner than, say, local edge detection, so machines optimized for local neighborhood algorithms may be poor for divide-and-conquer algorithms. Some characteristics of divide-and-conquer algorithms are examined, along with some of their implications for the design of machines and languages which can support the efficient programming and execution of divide-and-conquer algorithms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26821/1/0000380.pd

    Parallelization of Reconstructability Analysis Algorithms.

    Get PDF
    Bush Jones published a series of papers providing sequential algorithms that are key to reconstructability analysis. These algorithms include the determination of unbiased reconstructions and a greedy algorithm for a generalization of the reconstruction problem. The implementation of these sequential algorithms provide scientists and mathematicians with the means of utilizing reconstructability analysis in systems modeling. The algorithms, however, are so computationally intensive that the system is limited to a very small set of variables. Many papers have been written applying reconstructability analysis and maximum entropy methods to various disciplines. Reconstructability analysis has the potential of dramatically impacting the scientific community, but the sequential algorithms leave the utilization of reconstructability analysis infeasible. The author has parallelized the reconstructability analysis algorithms developed by Jones, thereby, bridging the gap between theoretical application and feasible implementation. Since the goal of parallelization of these reconstructability analysis algorithms is to make them feasible to as many researchers as possible, a specific architecture is not assumed. It is assumed that the architecture employed is a multiple data architecture. That is, the architectural design needed for the implementation of these algorithms must have memory local to each processing element (PE). The parallel algorithms developed and presented here do not address the problems of communications between processors of particular architectures. These algorithms assume a reconfigurable bus system which is a bus system whose configuration can be dynamically altered thus allowing broadcasting and long-distance communications to be completed in constant time. It is noted that processor arrays with such reconfigurable bus systems have been designed. Frequently, parallel algorithms do not address the situation in which the number of values on which to operate is larger than the number of processors. However, since the purpose of the parallelization of these reconstructability analysis algorithms is to make them feasible for large structure systems, the parallelization given does address the situation in which the number of values on which to operate is larger than the number of processors available. Therefore, implementation of the algorithms involves simply incorporating the communication protocols between processors for the particular architecture employed

    Design and Analysis of Optical Interconnection Networks for Parallel Computation.

    Get PDF
    In this doctoral research, we propose several novel protocols and topologies for the interconnection of massively parallel processors. These new technologies achieve considerable improvements in system performance and structure simplicity. Currently, synchronous protocols are used in optical TDM buses. The major disadvantage of a synchronous protocol is the waste of packet slots. To offset this inherent drawback of synchronous TDM, a pipelined asynchronous TDM optical bus is proposed. The simulation results show that the performance of the proposed bus is significantly better than that of known pipelined synchronous TDM optical buses. Practically, the computation power of the plain TDM protocol is limited. Various extensions must be added to the system. In this research, a new pipelined optical TDM bus for implementing a linear array parallel computer architecture is proposed. The switches on the receiving segment of the bus can be dynamically controlled, which make the system highly reconfigurable. To build large and scalable systems, we need new network architectures that are suitable for optical interconnections. A new kind of reconfigurable bus called segmented bus is introduced to achieve reduced structure simplicity and increased concurrency. We show that parallel architectures based on segmented buses are versatile by showing that it can simulate parallel communication patterns supported by a wide variety of networks with small slowdown factors. New kinds of interconnection networks, the hypernetworks, have been proposed recently. Compared with point-to-point networks, they allow for increased resource-sharing and communication bandwidth utilization, and they are especially suitable for optical interconnects. One way to derive a hypernetwork is by finding the dual of a point-to-point network. Hypercube Q\sb{n}, where n is the dimension, is a very popular point-to-point network. It is interesting to construct hypernetworks from the dual Q\sbsp{n}{*} of hypercube of Q\sb{n}. In this research, the properties of Q\sbsp{n}{*} are investigated and a set of fundamental data communication algorithms for Q\sbsp{n}{*} are presented. The results indicate that the Q\sbsp{n}{*} hypernetwork is a useful and promising interconnection structure for high-performance parallel and distributed computing systems

    Time-Optimal Algorithms on Meshes With Multiple Broadcasting

    Get PDF
    The mesh-connected computer architecture has emerged as a natural choice for solving a large number of computational tasks in image processing, computational geometry, and computer vision. However, due to its large communication diameter, the mesh tends to be slow when it comes to handling data transfer operations over long distances. In an attempt to overcome this problem, mesh-connected computers have recently been augmented by the addition of various types of bus systems. One such system known as the mesh with multiple broadcasting involves enhancing the mesh architecture by the addition of row and column buses. The mesh with multiple broadcasting has proven to be feasible to implement in VLSI, and is used in the DAP family of computers. In recent years, efficient algorithms to solve a number of computational problems on meshes with multiple broadcasting have been proposed in the literature. The problems considered in this thesis are semigroup computations, sorting, multiple search, various convexity-related problems, and some tree problems. Based on the size of the input data for the problem under consideration, existing results can be broadly classified into sparse and dense. Specifically, for a given √n x √n mesh with multiple broadcasting, we refer to problems involving m∈O(nm \in O(\sqrt{n}) items as sparse, while the case £ O(n) will be referred to as dense. Finally, the case corresponding to 2 ≤ m ≤ n is be termed general. The motivation behind the current work is twofold. First, time-optimal solutions are proposed for the problems listed above. Secondly, an attempt is made to remove the artificial limitation of problems studied to sparse and dense cases. To establish the time-optimality of the algorithms presented in this work, we use some existing lower bound techniques along with new ones that we develop. We solve the semigroup computation problem for the general case and present a novel lower bound argument. We solve the multiple search problem in the general case and present some surprising applications to computational geometry. In the case of sorting, the general case is defined to be slightly different. For the specified range of the size of input, we present a time and VLSI-optimal algorithm. We also present time lower bound results and matching algorithms for a number of convexity related and tree problems in the sparse case

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2
    corecore