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The mesh-connected computer architecture has emerged as a natural choice for 
solving a large number of computational tasks in image processing, computational 
geometry, and computer vision. However, due to its large communication diameter, 
the mesh tends to be slow when it comes to handling data transfer operations 
over long distances. In an attempt to overcome this problem, mesh-connected 
computers have recently been augmented by the addition of various types of bus 
systems. One such system known as the mesh with multiple broadcasting involves 
enhancing the mesh architecture by the addition of row and column buses. The 
mesh with multiple broadcasting has proven to be feasible to implement in VLSI, 
and is used in the DAP family of computers. In  recent years, efficient algorithms to 
solve a number of computational problems on meshes with multiple broadcasting 
have been proposed in the literature.

The problems considered in this thesis are semigroup computations, sorting, 
m ultiple search, various convexity-related problems, and some tree problems. Based 
on the size of the input data for the problem under consideration, existing results 
can be broadly classified into sparse and dense. Specifically, for a given y/n x y/n 
mesh with multiple broadcasting, we refer to problems involving m € 0(y/n)  items 
as sparse, while the case m £ 0 (n )  w ill be referred to as dense. Finally, the case 
corresponding to 2 <  m  <  n is be termed general. The motivation behind the cur
rent work is twofold. First, time-optimal solutions are proposed for the problems 
listed above. Secondly, an attempt is made to remove the artificial lim itation of 
problems studied to sparse and dense cases.

To establish the time-optimality of the algorithms presented in this work, we 
use some existing lower bound techniques along with new ones that we develop. 
We solve the semigroup computation problem for the general case and present a 
novel lower bound argument. We solve the multiple search problem in the general 
case and present some surprising applications to computational geometry. In the 
case of sorting, the general case is defined to be slightly different. For the specified 
range of the size of input, we present a time and VLSI-optim al algorithm. We 
also present tim e lower bound results and matching algorithms for a number of 
convexity related and tree problems in the sparse case.
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Chapter 1 

Introduction

1.1 Introduction
Recent advances in VLSI have made it possible to build parallel machines featuring 
tens of thousands of processors [63]. Yet, practice indicates that this increase in 
raw computational power does not, as a rule, translate into increased performance 
of the same order of magnitude. The reason seems to be twofold: first, not all 
problems are known to admit efficient parallel solutions; second, parallel compu
tation requires interprocessor communications and simultaneous memory accesses 
which often act as bottlenecks in present-day parallel machines.

The mesh-connected computer architecture has emerged as one of the most nat
ural choices for solving a large number of computational tasks in image processing, 
computational geometry, and computer vision [3, 7, 11, 38, 42, 45, 60]. Its regular 
structure and simple interconnection topology makes the mesh particularly well 
suited for VLSI implementation [63]. However, the mesh tends to be slow when it 
comes to handling data transfer operations over long distances. In many problems, 
the worst case running time of the solution is constrained by the communication 
diameter. As the running times of most algorithms on a mesh connected computer 
are constrained by data movement considerations, an attempt was made to design 
an architecture which retained the natural mesh configuration but was augmented 
with a a faster mechanism for data movement. Gentleman [29] was the first to 
talk about broadcasting in this context. In broadcasting, a processor sends a data 
item on a bus taking 0 (1) time, but the restriction is that only one processor 
can broadcast on a bus at one time. All the processors connected by the same 
bus, instantaneously receive the data item that is broadcast on the bus. Jordan 
and Sawyer [34] took this approach in designing their mesh connected computer 
with broadcasting. Broadcasting at infinite speed is physically unrealistic, but for 
practical situations, this is a reasonable working hypothesis. Though broadcasting

1
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speeds up the computation of a single subproblem it prohibits the simultaneous 
computation of subproblems in many cases. In  an attempt to overcome this prob
lem, mesh-connected computers have recently been augmented by the addition 
of different types of bus systems [2, 18, 37, 43]. For example, Aggarwal [2] and 
Bokhari [18] have considered mesh-connected machines enhanced by the addition 
of k global buses. Stout [62] has considered a mesh connected machine with only 
row buses. In  this model, the processors in the mesh retain their nearest-neighbor 
local links, and processors belonging to each row are connected to a bus.

Yet another such system that is commercially available [55] involves enhancing 
the mesh architecture by the addition of row and column buses. In  [37] an ab
straction of such a system is referred to as mesh with multiple broadcasting. The 
mesh with multiple broadcasting has proven to be feasible to implement in VLSI, 
and is used in the DAP family of computers [55]. The DAP machine is an array of 
bit-organized processing elements, or PE’s, each with its own bit-oriented memory. 
A PE has connections to each of its nearest neighbors and to a bus system which 
interconnects the PE’s by row and column. It  is these row and column busses 
which allow fast data fetching and broadcasting.

1.2 S tate  o f th e  A rt
As mentioned earlier, most algorithms on regular mesh-connected computers are 
restricted in running tim e by the communication diameter of the mesh. Specifically, 
for an n x n  mesh, many algorithms exhibit a running time of 0 (n ). In [61], Stout 
has shown that semigroup computations and selection can be done faster when the 
meshes are enhanced with a single bus connecting all processors. Specifically, for 
a 2-dimensional mesh connected computer of size y/n x y/n, the running time for 
semigroups operations of n data items is shown to be 0 (n a ). Later, problems like 
finding the OR of n given bits stored one per processor, in an y/n x y/n mesh with 
a global bus has been shown to exhibit in 0 (n 3 ) time. In  [62] it was shown that 
the problem of finding the leftmost one in each row of a mesh with row buses, with 
each processor holding a one or a zero, can be determined in 0(ne)  time for an 
y/n x y/n mesh. However, in [62], each processor required unbounded memory. In  
[30], the problem was solved using processors with a constant number of registers.

Being of theoretical interest as well as commercially available, the mesh with 
multiple broadcasting has attracted a great deal of well-deserved attention. In  
recent years, efficient algorithms to solve a number of computational problems on 
meshes with multiple broadcasting have been proposed in the literature. These 
include image processing [55, 56], computational geometry [14, 15, 37, 49], semi
group computations [2, 8, 18, 21, 37], selection [13, 21, 37], among others. In [56], 
Kumar and Raghavendra have proposed solutions to a number of problems includ-

2
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ing, semigroup computations, the median problem, convex hull of an image, and 
the nearest-one problem. Their solutions were designed for n items stored one per 
processor in a y/n x y/n mesh with m ultiple broadcasting. The algorithms for semi
group computations, convex hull of an image and the nearest-one problem for n bits 
run in O(ne) tim e, whereas their median finding algorithm takes 0(ne  (log 72) 3) 
time. The model of computation adopted throughout [37] was a square mesh with 
m ultiple broadcasting of size y/n x y/n. Later, it  has been shown that rectangu
lar meshes are better for problems such as selection, semigroup computations, to 
name a few [8, 13, 21]. In  the above cases, the size of the input data is n, and the 
number of processors in the square or the rectangular mesh also equal n. Bar-Noy 
and Peleg [8], and Chen et al. [21], have shown independently that semigroup 
computations can be faster on suitably chosen rectangular meshes, whose dimen
sions depend on the input size n. Specifically, they have shown that semigroup 
computations take 0 (n») tim e on a rectangular mesh with m ultiple broadcasting 
of size n« x n». In  addition to this Chen et al. [21], have also proposed an al
gorithm for prefix semigroup computations for data given in blocked-row-major 
order, that runs in 0 (n») tim e on a rectangular mesh with m ultiple broadcasting

5 3
of size n» x n *. Chen et al. [22] have also shown that selection can be done 
faster on a rectangular mesh. In fact, they proposed an algorithm that runs in 
0(na  log n) tim e on a mesh with m ultiple broadcasting of size n« x n » . Recently, 
Bhagavathi et al. [13] have improved on the running time and presented a selec
tion algorithm that runs in 0(n»  (log 71) 4 ) on a mesh with m ultiple broadcasting 
of size n s /(lo g n )4 x ra«(logn)4. In  [56], Kumar and Raghavendra have proposed 
solutions to some image processing problems. Specifically, they have presented 
0 ( n t )  tim e algorithms for finding connected components and component labeling. 
Olariu et al. [51] have proposed a 0 (n«(logn)3) time algorithm for finding the 
convex hull of points in the plane sorted by x-coordinate. Later, Bhagavathi et 
al. [17], have shown that in this case also, rectangular meshes are better. They

1 3
presented an algorithm that runs in 0 (n« (log n )4) on a mesh with m ultiple broad
casting of size n» /(log  n)* x n* (log n ) * . For all the problems with an exception of 
semigroup computations, no known lower bounds exist until now. A part of our 
work in this volume involves proving lower bounds to establish tim e-optim ality of 
our algorithms.

Kumar and Raghavendra [37] have also considered problems involving y/n data 
items in one column of a y/n x y/n mesh with m ultiple broadcasting. They have 
shown that y/n elements given in one row of a mesh with m ultiple broadcasting of 
size y/n x y/n can be sorted in 0(log2n) time. Quite recently, Lin et al. [40] have 
solved a number of problems including sorting, semigroup computations, convex 
hull of points in the plane, involving y/n data items in one column of a y/n x y/n 
mesh w ith m ultiple broadcasting presenting O(log n) time algorithms. They have

3
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also exhibited lower bounds for their algorithms, proving their time-optimality.
The fundamental purpose of this thesis is to propose time-optimal solutions 

to a number of problems on meshes w ith multiple broadcasting. In addition to 
using the existing techniques for proving lower bounds, we develop some novel 
techniques to establish the tim e-optim ality of our algorithms. To put existing 
results in perspective, we shall refer to problems involving m EO(y/n) data items 
as sparse, while the case m  € 0 (n ) w ill be referred to as dense. Finally, the case 
corresponding to 2 <  m  <  n w ill be termed general. In  this terminology, up 
to now, lower bounds and matching algorithms for various problems have been 
obtained only for the sparse and dense cases, but nothing is known about the 
general case. A part of the present work was motivated by an attempt to remove 
the artificial lim itation of the problem to the sparse and dense cases.

We present time-optimal algorithms for semigroup computations in general 
case, sorting in general case, multiple search where in itial data is dense and the 
queries are of general case, convexity related problems in sparse case and some 
tree problems in sparse case. The remainder of the work is organized as follows: 
Chapter 2 presents the model of computations in more detail and some important 
fundamental concepts that play a key role in the remaining chapters; Chapter 3 dis
cusses the semigroup computation problem and presents a time-optimal algorithm; 
Chapter 4 contains a discussion of the time-optimal sorting algorithm; Chapter 5 
presents the multiple search algorithm; Chapter 6 involves the time-optimal algo
rithms for convexity related problems; Chapter 7 involves the tree-problems and 
the time-optimal algorithms for the same and finally, chapter 8 gives a discussion 
of further directions of research and poses some open problems.

4
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(ii) A regular 4 x 4  mesh (ii) A 4 x 4 mesh with global bus

(iv) A 4 x 4 mesh with row and column buses(iii) A  4 x 4 mesh with row buses

Figure 1.1: A regular 4 x 4  mesh and various enhanced meshes

5
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Chapter 2 

Basics

2.1 M odel o f C om putation
Throughout this work our model of computation is a mesh with m ultiple broad
casting (M M B  for short). We shall present the details of the model and discuss 
some basic assumptions made regarding the working of the model. In  general, a 
M M B of size M  x N  consists of M N  identical processors positioned on a rectan
gular array overlaid with a bus system. In every row of the mesh the processors 
are connected to a horizontal bus; similarly, in every column the processors are 
connected to a vertical bus (refer to Figure 1.1).

The processor P { i , j )  is located in row i and column j  (1 <  i <  M ; 1 <  j  <  N )  
with P ( l , l )  in the north-west corner of the mesh. Every processor P ( i , j ) is 
connected by local links to its four neighbors, P (i  — 1, j ) ,  P{i +  1, j ) ,  P ( i , j  — 1), 
and P ( i , j  +  1), provided they exist. Throughout this work we assume that the 
M M B operates in SIM D mode: in each time unit, the same instruction is broadcast 
to all processors, which execute it and wait for the next instruction. Each processor 
is assumed to know its own coordinates within the mesh and to have a constant 
number of registers of size O(log M N ); in unit time, every processor performs some 
arithmetic or boolean operation, communicates with one of its neighbors using a 
local link, broadcasts a value on a bus or reads a value from a specified bus. These 
operations involve handling at most O(log M N )  bits of information. For practical 
reasons, only one processor is allowed to broadcast on a given bus at any one 
time. By contrast, all the processors on the bus can simultaneously read the value 
being broadcast. In  accord with other researchers [8, 18, 21, 37, 43, 55, 59], we 
assume that communications along buses take 0 (1 ) time. Although inexact, recent 
experiments with the DAP [55] and the Y U P P IE  multiprocessor array system [43], 
seem to indicate that this first approximation is a reasonable working hypothesis. 
In further chapters, for problems involving sparse data, we assume that the input

6
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consists of n data items in the first row or column of an n x n M M B . For problems 
involving data in dense and general cases, our model of computation is an y/n x y/n 
mesh w ith m ultiple broadcasting. In  the case of dense data, the mesh is completely 
filled w ith data and in the general case, the data is given in the leftmost columns.

2.2 M otivation
We consider a number of fundamental problems on the model described above 
and present time-optimal algorithms. In many cases, we also present relevant 
applications.

Semigroup computations are a fundamental algorithmic tool, with numerous 
applications to all branches of parallel processing [3, 38]. The semigroup compu
tation problem has been well studied in the literature. Aggarwal [2] and Bokhari 
[18] have studied the problem in the context of mesh-connected computers aug
mented by a global bus. Kumar and Raghavendra [37] showed that on a M M B of 
size y/n x y/n the semigroup computation problem with m =  n has a lower bound 
of fi(n e ). A t the same tim e, they exhibited an 0 (n « ) and therefore optimal al
gorithm for semigroup computation. Later, Chen et al. [21] and Bar-Noy and 
Peleg [8] have shown that semigroup computations can be performed faster on a 
rectangular M M B . Specifically, they showed that the semigroup computation of n 
items can be solved in 0 (n « ) time on a mesh of size n« x n«. Chen et al. [21] also 
showed that if  every processor can hold n» items from the input sequence, then 
the computation can be performed in 0 (n ») tim e on a mesh of size n 3 x n » .  In  
Chapter 3, we propose a unifying look at semigroup computations on MMBs.

Sorting is unquestionably one of the most extensively investigated topics in 
computer science. I t  is well known [3, 38] that n data items can be sorted in 
0(y /n )  tim e on a mesh-connected machine of size y/n x y/n. Furthermore, this 
result is easily shown to be both time-optimal and VLSI-optim al. Recently, a 
number of sorting algorithms have been proposed for enhanced meshes [56, 40]. 
An easy information transfer argument shows that for meshes of area n, even 
when enhanced w ith m ultiple broadcasting or w ith a dynamically reconfigurable 
bus system, Q,(y/n) is a tim e lower bound for sorting n items. This somewhat 
counter-intuitive result motivated us to look at the following problem. Suppose 
that we are given a mesh or enhanced mesh of size y/n x y/n and the goal is to 
sort m  (y/n <  m  <  n) items stored in the first [ ^ ]  columns of the machine. 
How fast can this task be performed? It  is easy to show that O (v ^ ) is a time 
lower bound for the regular mesh. Clearly, no algorithm can be VLSI-optim al in 
this case. One of our contributions is to show that we can do better on MMBs. 
Specifically, we show that once we fix a positive integer constant c, we can sort m 
items <  m <  n) in time. We show that this is time-optimal for this

7
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architecture. It  w ill also be shown that this achieves the VLSI lower bound in the 
word model.

The m ultiple search problem can be considered to be a fundamental algorithmic 
problem [4, 72] and finds applications to query processing in databases, computer 
graphics, image processing, and computational geometry, to name just a few. Re
cently, Akl and Meijer [4] as well as Wen [72] have studied the multiple search 
problem in the PR AM  model of computation. To the best of our knowledge, this 
important problem has found no solution in the context of MMBs. In  this thesis, 
we propose a time-optimal algorithm for the multiple search problem on enhanced 
meshes and show that a number of problems in computer graphics, image process
ing, robotics, and computational geometry reduce to the multiple search problem 
or a variant thereof.

Convexity and related computations are a recurring theme in pattern recog
nition, image processing, computer vision, operations research, robotics, compu
tational geometry, and computational morphology. In  pattern recognition, for 
instance, convexity appears in clustering, and computing similarities between sets 
[7]. In  image processing and computer vision, convexity is used as a natural shape 
descriptor and classifier for objects in the image space [2,20,22]. In  operations 
research, convexity is a fundamental tool in linear programming and convexity 
analysis [66]. In robot navigation, one of the fundamental heuristics involves ap
proximating real-world objects by convex sets [41]. In  computational geometry, 
convexity is often a valuable tool in devising efficient algorithms for a number of 
seemingly unrelated problems [57, 66]. In  computational morphology, convexity 
has played a central role in analyzing relevant features of the shape of a set of 
points [68]. Further, one of the fundamental features that contributes to a mor
phological description useful in shape analysis is the Euclidian distance function 
among vertices of the polygon [68]. In this work we present simple time-optimal 
algorithms for a number of convexity-related problems on MMBs.

Various applications, including integrated circuit design and automated the
orem proving, require efficient handling of binary and ordered trees -  encoding, 
decoding, and reconstruction of trees from their traversals being of particular inter
est. I t  is therefore not surprising that these problems have been studied extensively 
on various architectures. Our contribution is to provide time-optimal algorithms 
for these problems on the M M B.

2.3 Lower B ounds
We consider problems in the sparse, dense as well as general case. We establish the 
tim e-optim ality of each problem with the help of various lower bound arguments.

First of all, we would like to present an argument that helps us import lower

8
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bounds from other models of computation. For the same purpose, we state a 
fundamental result of Cook et al. [24] asserting that the time lower bound for 
the OR problem on the CREW -PRAM  is fi(logn) regardless of the number of 
processors used. For the sake of completeness, we define the problem and state 
the relevant result from [24].
OR: given n bits bi,b2, . . . ,  bn, compute their logical OR.

P roposition  2.3.1 The time lower bound for computing the OR of n bits on the 
CREW -PRAM  is ft(logn), independent of the number of processors and memory 
cells used. □

In  addition, we shall rely on the following recent result of Lin et al. [40].

P roposition  2.3.2 Any computation that takes 0 (t(n )) computational steps on 
an n-processor mesh with multiple broadcasting can be performed in 0 (t(n )) com
putational steps on an n-processor CREW -PRAM  with O (n) extra memory. □

It  is important to note that Proposition 2.3.2 guarantees that if  Tjvf(n) is the 
execution tim e of an algorithm for solving a given problem on an n-processor M M B, 
then there exists a CREW -PRAM  algorithm to solve the same problem in Tp(n) 
=  TM(n) time using n processors and 0 (n ) extra memory. In  other words, “too 
fast” an algorithm on the mesh with multiple broadcasting implies “too fast” an 
algorithm for the CREW -PRAM . This observation is exploited in [40] to transfer 
known computational lower bounds for the PRAM  to the M M B.

In  some cases, the enhanced mesh does not perform any better than the regular 
mesh. Since each bus can broadcast only one item at a time, whenever a large 
amount of data has to be moved around in the mesh, the algorithm tends to be slow 
due to data movement. A well-established argument known as the data transfer 
argument is as follows. Consider a submesh S  connected by 0(y /m )  buses and 
local links to the remainder of the original mesh. It  is important to note that, 
as a consequence, in one time unit at most 0(y/m )  pieces of information/data 
can “cross” the boundary between S  and the remainder of the original mesh. For 
problems where a lot of data movement is required, transfer of data items across 
the boundary between S  and the remainder of the original mesh clearly imposes a 
lower bound on the running time.

We also present a novel technique based on counting the amount of information 
that is possibly obtained by any processor at the end of a tim e unit. For instance, 
consider m  data items to start with in a y/n x y/n M M B. We view the information 
available to a processor as consisting of two distinct types: on the one hand, the 
processor may have access to information that has been broadcast on buses and, 
on the other, the processor may have access to information received from local 
communication only. Clearly, the problem at hand can not be solved without

9
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getting the information about all the data elements. Thus, this imposes a bound 
on the minimum number of tim e units that must elapse before any one processor 
in the mesh gets all the information.

2.4 D ata  M ovem ent
The purpose of this section is to review a number of fundamental results for the 
M M B that w ill be instrumental in the design of our algorithms.

The problem of list ranking is to determine the rank of every element in a given 
list, stored as an unordered array, that is, the number of elements following it in 
the list. Recently, Bhagavathi et al., [13] have proposed a time-optimal algorithm  
for list ranking on M M B ’s.

P roposition  2.4.1 [13] The task of ranking an n-element linked list stored in one 
row of an M M B of size n x n can be performed in O(log n) time. Furthermore, 
this is time-optimal. □

Recently, Olariu et al. [50] have proposed a constant time algorithm to merge 
two sorted sequences of total length y/n stored in one row of a mesh w ith multiple 
broadcasting of size y/n x y/n. More precisely, the following result was established 
in [50].

P roposition  2.4.2 Let Si =  (a i, a2, . . . ,  ar) and S2 =  (61, b2, . . . , bs), with r  +  s =  
y/n, be sorted sequences stored in the first row of a mesh with multiple broadcasting 
of size y/n x y/n, w ith P ( l , i )  holding a, (1 <  i <  r) and P ( l, r  +  i ) holding 6; 
(1 <  * <  s). The two sequences can be merged into a sorted sequence in 0 (1 ) 
time. □

Since merging is an important ingredient in our algorithms, we now give the 
details of the merging algorithm [50]. To begin, using vertical buses, the first row is 
replicated in all rows of the mesh. Next, in every row i (1 <  i <  r), processor P(i,  i) 
broadcasts a, horizontally on the corresponding row bus. It  is easy to see that for 
every i, a unique processor P ( i , j ) (r +  1 <  j  <  -</«), w ill find that bj-i <  a, <  bj. 
Clearly, this unique processor can now use the horizontal bus to broadcast j  back 
to P { i , i ) .  In  turn, this processor has enough information to compute the position 
of ai in the sorted sequence. In exactly the same way, the position of every bj in 
the sorted sequence can be computed in 0 (1 ) tim e. Knowing their positions in the 
sorted sequence, the data items can be moved to their final positions in 0 (1 ) time.

Next, we consider the problem of merging multiple sorted sequences with a 
common length. Let a sequence of y/n items 01, a2, . . . ,  a ^  be stored, one per 
processor, in the first row of a mesh with multiple broadcasting of size y/n x y/n. 
Suppose that the sequence consists of k sorted subsequences and each subsequence

10
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consists of ^  consecutive elements of the original sequence. The goal is to sort 
the entire sequence.

For definiteness, we assume that subsequence j  (1 <  j  <  k), contains the items 
afj-Djz a Our sorting algorithm proceeds bv merging the subsequences

k t *
two at a tim e into longer and longer subsequences. The details are as follows. We 
set aside submeshes of size x ^^2 and every pair of consecutive subsequences is 
merged in each one of these submeshes. Specifically, the first pair of subsequences 
is allocated the submesh with P ( l, 1) in i ts north-west corner; the next pair of 
subsequences is allocated the submesh with processor P (^ jp  +  1, +  1) in. its
north-west corner, and so on. Note that moving the subsequences to the corre
sponding submeshes amounts to a simple broadcast operation on vertical buses. 
Now in each submesh, the corresponding subsequences are merged using the algo
rithm  described above. By Proposition 2.4.2, this operation takes constant time. 
Repeating the merging operation flog fc] times, the entire sequence is sorted. Con
sequently, we have the following result.

Lem m a 2.4 .3  A sequence consisting of k equal-sized sorted subsequences stored 
in the first row of a M M B of size y/n x y/n can be sorted in 0(log  k) tim e. □

P roposition  2 .4 .4  [50] An n-element sequence of items from a totally ordered 
universe stored one item per processor in the first row of an M M B of size n x n 
can be sorted in 0(log n) tim e. Furthermore, this is time-optimal. □

It  is an easy observation that the above result can be extended as follows.

C o ro lla ry  2 .4 .5  For an arbitrary constant c, a sequence of cn items stored c 
per processor in one row of a M M B of size n x n can be sorted in O (logn) time. 
Furthermore, this is time optimal. □

A ll Nearest Smaller Values problem (ANSV, for short) has been introduced in 
[10], where it is argued that this is a fundamental problem of parallel processing, 
as a number of other problems reduce to it. The ANSV problem is formulated as 
follows: given a sequence of n real numbers . . .  ,a n, for each a, (1 <  i <  n),
find the nearest element to its left and the nearest element to its right. Recently, 
Bhagavathi et al., [13] has proposed a time-optimal algorithm for the ANSV prob
lem.

P roposition  2 .4 .6  [13] An arbitrary instance of size n of the ANSV problem 
can be solved in O(logn) tim e on an M M B of size n x n. Furthermore, this is 
time-optimal. □

The prefix sums problem is a key ingredient in many parallel algorithms. The
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problem is stated as follows: given a sequence a i, <*2, . . an of items, compute all 
the sums of the form <*1, a\ +  0 2 , ai +  0L2  +  03, • • <*i +  02 H h On*

P rop osition  2 .4 .7  [37, 50] The prefix sums (also maxima or minima) of a se
quence of n real numbers stored in one row of an M M B  of size n x n can be 
computed in O (logn) tim e. Furthermore, this is time-optimal. □

For later reference, we now describe the details of a simple data movement that 
allows to compact a list by eliminating some of its elements. For definiteness, sup
pose that the processors in the first row of the mesh store a sequence of n items, a i, 
a,2 , . . . ,  an w ith some of the items marked. Assume further that every marked item  
knows its rank among the marked items. We wish to obtain a sublist consisting of 
the marked elements stored in the leftmost positions of the first row of the mesh. 
This task can be performed as follows. Suppose that a,- is the k-th marked element 
in the sequence; processor P( l , * )  w ill broadcast a,- vertically to processor P (k , i )  
which in turn w ill broadcast a,- horizontally to P(k, k). Finally, P(k, k) w ill broad
cast a,- vertically to P ( l, k), as desired. Consequently, we have the following result.

Lem m a 2 .4 .8  Consider a sequence a\, 0 ,2 , . . . ,  an of items stored in the first row 
of an M M B of size n x n, one item  per processor, w ith some of the items marked. 
I f  every marked item  knows its rank among the marked items, then a sublist con
sisting of the marked elements stored in the leftmost positions of the first row of 
the mesh can be obtained in 0 (1) time. □

Finally, we look at a data movement technique on a M M B of size y/n x y/n 
involving the reorganization of data items in the first x columns of the mesh sorted 
in row-major order to column-major order (see Figure 2.1(a) to 2.1(d)). This can 
be accomplished by a series of simple data movement operations whose details 
follow. To simplify the notation we shall assume that is an integer. The first 
x columns of the mesh are moved one at a time as follows. Suppose that column 
s is being moved. In  constant time, every processor P (r ,s )  (1 <  r  <  y/n) broad
casts the item  it holds to processor P (r, k) where k =  (r  m o d ^  — l)x  +  s (Figure
2.1.(b)).

We now view the mesh as consisting of horizontal submeshes Ri,R,2 , . . . ,  Rx, 
each of size ^  x y/n. In  a submesh Rp (1 <  p <  x), each processor P ( l , j )  
(1 <  j  <  y/n and I =  f^])  broadcasts its value along the column bus j  and P ( j , j ) 
records it (Figure 2.1(c)). Again, in constant time, each processor P ( j , j ) broad
casts its value along row bus j  to processor P (p ,j) .  The above can be repeated for
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Figure 2.1: Illustrating the data movement of Lemma 2.4.9

each submesh Rp (1 <  p <  a;), thus accomplishing the required data movement 
in 0(a:) time. To summarize our findings we state the following result.

Lem m a 2.4 .9  Given a y/n x y/n mesh with multiple broadcasting, w ith input 
elements stored in the first x columns in sorted row-major order, the data can be 
moved into a sorted column-major order in the first x columns, in 0 (x) time. □ 

We now state a simple data movement that is useful in many of our algo
rithms. Consider a y/n x y/n M M B that we perceive as consisting of submeshes 
Ri, R.2 , . . . ,  Ry/z, each of size y/n x x. We are interested in replicating the contents

x

of Ri in all the other submeshes. This task can be achieved as follows.
The columns of Ri are handled one by one. In  one tim e unit, all the el

ements belonging to a column j  of Ry can be replicated in the jth  column of 
R 2, Rz-, . .  •, R^n as follows. Every processor P ( i , j )  in this column broadcasts the

X
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value it stores horizontally along the row bus i and every processor P (i,  (k— l ) x + j )  
(1 <  k <  ^ ) ,  records the value on the bus. Repeating the above for every col
umn of R i,  its contents are replicated as desired. Thus we have the following result.

Lem m a 2 .4 .10 . The elements stored in the first x columns of a M M B of size 
y/n x y /n  can be replicated throughout the mesh in 0 (x) time. □

C o ro lla ry  2.4 .11 Given a y/n x y/n M M B , with input elements stored in the first 
x columns, the data can be moved to the first x rows of the mesh in O(x) time. □

14
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Chapter 3 

Semigroup Com putations

3.1 In troduction
Semigroup computations are a fundamental algorithmic tool, w ith numerous ap
plications to all branches of parallel processing [3, 38]. Formally, the semigroup 
computation problem [3, 38] is defined as follows: given a sequence o i, a2 , . . . ,  am 
of items from a semigroup S w ith an associative operation © , compute ai © a2 © 
. . .  © am. The purpose of this chapter is to propose a unifying look at semigroup 
computations on MMBs.

The semigroup computation problem has been well studied in the literature. 
However, up to now, lower bounds and matching algorithms for semigroup com
putations have been obtained only for the sparse and dense cases, but nothing is 
known about the general case. The present work was motivated by an attempt to 
remove the artificial lim itation of the problem to the sparse and dense cases. We 
present a time-optimal algorithm for the semigroup computation in the general 
case. This algorithm unifies the previous special case results. In  this context, we 
first derive a lower bound for semigroup computations in the general case. More 
precisely, we show that every algorithm that solves the semigroup computation

involving m (2 <  m <  n) items must take fl(m ax{m in{log m,log ^ 1, ^ y } )  time

on a M M B of size y/n x y/n. As expected, our result matches the known lower
bounds for the sparse and dense cases.

We also show that the lower bound is tight by providing an algorithm for the
2 1

same that runs in 0(m ax{m in{log m, log -^ j} , , } ) time. Our algorithm contains
the algorithms in [21, 37, 40] as special cases. Further, we establish that the 
semigroup algorithms in [8, 21] remain optimal even if “slightly” more processors 
are available.
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The remainder of the chapter is organized as follows: section 3.2 gives the lower 
bound arguments for the general case; section 3.3 discusses the details of a time- 
optimal algorithm for semigroup computation, finally, section 3.4 summarizes the 
results and poses a number of open problems.

3.2 T h e Lower B ound
The purpose of this section is to establish a non-trivial lower bound on semigroup 
computations on MMBs. For this purpose, consider a M M B  7Z of size y/n x y/n 
storing m (2 <  m <  n) items o i, a2, . . . ,  am from a semigroup S w ith an associative 
operation © . The items are stored in column-major order, one per processor, in 
the first columns of the mesh. We shall distinguish several ranges for m.

First, in case 2 <  m  <  y/n, the lower bound of fl(log m ) of [40] applies. For 
further reference we state the following result.

Lem m a 3.2 .1  (Lin et al. [40]) Any algorithm that solves the semigroup compu
tation problem involving m (1 <  m <  y/n) items stored consecutively, one per 
processor, in the first column of a M M B of size y/n x y/n must take fl(log m ) time. 
□

Therefore, from now on we shall assume that m >  y/n, which implies

4 <  vft. (3-1)

For the remainder of the lower bound argument, we assume for simplicity that ^  
is an integer.

Lem m a 3 .2 .2  Any algorithm that solves the semigroup computation problem 
involving m  (y/n < m < n )  items stored one per processor in the first columns

a
of a mesh with multiple broadcasting of size y /n  x  y /n  must take at least Q(log JLr )

m3
tim e.

P ro o f. We construct a sequence of m items as follows. The first group consists 
Iof -S-j- items that we place consecutively in the first column of the mesh. Note

m*
that by virtue of (3.1) this is always possible. The remaining items are chosen 
to be the null element w ith respect to © (note that even if the semigroup has no 
null element, we can augment the structure, for lower bound purposes, by adding 
such an element). Now the result of the semigroup computation is known as soon
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I
as the partial result involving the \  items in the first column is available, and

m*
2

conversely. The lower bound of [40] applies, guaranteeing that fl(log -^-r) time is 
needed to complete the computation. □

We shall complement the result of Lemma 3.2.2 by presenting a different lower 
bound argument that is based on counting. Our argument can be seen as a gen
eralization of lower bound arguments in [2, 8, 18]. The semigroup computation 
terminates at the end of t computational steps, when some processor in 7t has 
enough information to compute ai © © . . .  © am.

We view the information available to a processor as consisting of two distinct 
types: on the one hand, the processor may have access to information that has 
been broadcast on buses and, on the other, the processor may have access to infor
mation received from local communication only. To make this statement precise, 
let B(i)  be the set of input items that have contributed to any information which 
has been broadcast on some bus at the end of time unit i, and write b(i) =  |Z?(i)|. 
Further, for each processor P  of the mesh, let C(i, P )  be the set of all input el
ements in itially stored in processors whose Manhattan distance from P  is at the 
most i. I t  follows that £ (0 , P) =  {item  stored in itially by P }. The following result 
follows directly from the definition of Manhattan distance.

Lem m a 3.2 .3  W ith l(i) standing for maxpen \C(i,P)\ we have 

/  <  1 +  2 i(i +  1) for i >  1
i m = i

Lem m a 3.2 .4  Let t be the least integer for which b(t) +  l(t) >  m. Then t is a 
lower bound on the number of computational steps needed by any algorithm to 
correctly solve the semigroup problem.
P roo f. Suppose not; let j  <  t be the number of computational steps after which 
some processor P  of the mesh I t  has enough information to know the result of the 
semigroup computation.

Note, however, that the number of input items that have contributed to the 
information known by P  is bounded by b(j) -f l ( j ) .  By our choice of t, it must be
that b(j) +  l ( j )  <  m, implying that P  can complete the semigroup computation
without having all input items contribute. But now we have reached a contradic
tion since one may change the items that have not contributed, invalidating the 
algorithm. □

Lem m a 3.2 .5  For all i  ( i >  0),

f b(i) <  b(i — 1) +  2y/n * l(i — 1) for i >  1
\  6(0) =  0
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P roo f. First, the fact that 6(0) =  0 follows from the definition of # (0 ). Further, 
observe that by definition, the set of input items that have contributed to the 
information that has been broadcast on any bus of the mesh can only be enriched 
by having some processor broadcast, in the i-th  tim e unit, information that it has 
received locally by the end of the first i — 1 computational steps. Since there are 
2y/n buses available for broadcasting, the conclusion follows. □

We are now in a position to state the following result that provides yet another 
component of the overall lower bound.

Lem m a 3 .2 .6  Any algorithm that solves the semigroup computation problem 
involving m (y/n <  m <  n) items stored one item  per processor in the first ^

columns of a M M B of size y/n x y/n must take at least f l( 2y )  time.
P roo f. Let t denote the least number of steps needed for any semigroup algorithm  
to terminate. The recurrence of Lemma 3.2.5 along with Lemma 3.2.3 yields:

E L i HO <  E U  H* -  1) +  2 ^ E L i ( 1  +  H i  -  1))

which telescopes to

b(t) <  2ty/n +  4v^ ~ 1| 2* +  1) -
6 2

Now after appropriately upperbounding the right hand size of this inequality 
we obtain

HO <  iV n t(t + 1)(2< +  1) <  4y/nP.
6

Now Lemma 3.2.3 and Lemma 3.2.4 combined with the above inequality guar
antee that

to <  HO +  Z(0 — 4 \/n t3 +  1 +  2t(t +  1).

By suitably upperbounding the right hand side, we get 

m  <  4y/nt3 +  2t3 <  8y/nt3 

and so,

which completes the proof of Lemma 3.2.6. □
To unify the results in Lemma 3.2.1, Lemma 3.2.2, and Lemma 3.2.6 we make 

the following observation, the justification for which is routine.
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O bservation 3 .2 .7  Let m be an arbitrary integer in the range 2 <  m <  n. 
Then
•  for 2 <  m  <  y /n , <  logm <  log -2x ;

n t  m 3*2.
•  for < m < n ,  lo g -V  <  log m.

171Thus, by Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.6, and Observation 3.2.7 
combined we have the following lower bound result for semigroup computations 
on MMBs.

Theorem  3 .2 .7  Any algorithm that solves the semigroup problem involving m 
(2 < m < n )  items in column-major order in the first \ / / / \  columns of a M M B of

size y/n x y/n must take at least fl(m ax{m in{logm , log }, , } )  time. □

3.3 T h e A lgorithm
The purpose of this section is to exhibit an algorithm for semigroup computation 
whose running tim e matches the lower bound derived in the previous section.

Consider a mesh 7Z with multiple broadcasting of size y/n x y/n. The m 
(2 <  m <  n) data items are stored in the first columns of 7Z, in column- 
major order. A t various steps of the algorithm, the mesh 7Z may be dynamically 
partitioned into submeshes to suit computational needs. We w ill describe these 
partitions as they become necessary. Our algorithm consists of the following se
quence of computational steps. In case m <  y/n, Step 0 below is executed and 
the algorithm terminates. Otherwise, Steps 1 through 3 are executed. The details 
of these steps follow.
Step 0. In  case the number of input items, m, is less than y/n, we proceed recur
sively. Consider the submesh M. determined by the first m rows and m columns 
of 71 (refer to Figure 3.1).

We partition the submesh M. into submeshes of size | x |  each, and recursively 
solve the semigroup computation problem. Specifically, the semigroup computa
tion involving the first half of the input is solved in the north-west submesh of M ,  
while the semigroup computation involving the second half of the input is solved 
in the south-east submesh of M .  Clearly, this is possible and no broadcasting 
conflict w ill arise. Furthermore, it is easy to confirm that the running tim e of this 
step is bounded by O(logm ).
Step 1. We shall refer to the submesh consisting of the first ^  columns1 as 7Z'.

1For simplicity we assume that is an integer
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Figure 3.1: Step 0 of semigroup computations.

To make the presentation easier to follow, we let
i

m  3 
x =  — . 

ne

In  this notation, we view the mesh TV as consisting of submeshes R ij  (1 <  i <  
■^,1 <  j  <  ^ j )  of size x x x ,  with each R ij  involving processors P(r,s )  with 
1 +  (* — 1)® <  r  <  ix, 1 +  (j  — 1)» <  s <  jx .  The leftmost processor in the top 
row of every such submesh is termed the leader of the submesh.

For the sake of simplicity, we assume that and ^  are integers. In  each of 
the submeshes R ij ,  perform the semigroup computation in 0 (x ) time, using local 
communication only [38], and store the partial result in the leader of the submesh, 
that is, processor P(1 +  (i — 1)®, 1 +  ( j  — l)x ) (refer to Figure 3.2).

To summarize, at the end of Step 1 the leader of every submesh R ij  contains 
the partial result a ,tj of the semigroup computation involving the items in R,tj. 
Furthermore, Step 1 takes 0(a;) time.
Step 2. We now view the mesh R! as a collection of submeshes Ri (1 <  i <  ^ ) ,  
w ith R{ containing the submeshes R,ti, . . . ,  R i,-^ -  The objective of this step 
is to perform the semigroup computation on the partial results in each of the 
submeshes R+. The new partial result w ill be stored by processor P(1 -f (i — l )x ,  1), 
the leader of the submesh Ri.

The idea is to compact the otij’s in Ri into the first - £ ^  columns of Ri and 
to perform the semigroup computation after compaction. Note that by virtue of 
(3.2), =  x confirming that the data movement is feasible. The details are
presented next.

20
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Figure 3.2: Step 1 of semigroup computations.

Partition the R i j ’s into x groups such that the r th group involves submeshes 
Ri,i+(r—i)xi • • •»Ri,rx (refer to Figure 3.3).

Next, compact all the a . j ’s in the rth group into column r  of Ri. To avoid 
broadcasting conflicts, every processor P{ 1 +  (i — l)x , 1 +  (j  — l)x ) (1 <  i <  

1 <  i  <  sends the value a.-j it contains vertically to processor P(1 +
(i — l)x , 1 -f ( j  — l)x  +  jm odx), using local links only. This can be done in O (x) 
tim e. Finally, in each Ri, groups of x o^j’s are moved horizontally to their final 
destination. Note that by virtue of (3.2) the data movement described above is 
completed in 0 (x ) time.

As a result of the previous data movement the partial results of Step 1 are con
tained in the first x columns of the mesh. Now in every Riti perform the semigroup 
computation using local communications only. Clearly, (3.2) guarantees that this 
can be done in 0 (x ) time. Once computed, the new partial results are stored in 
the leader of every submesh Ri (1 <  i <  ^ ) .
S tep 3. We now have one partial result per submesh Ri. To complete the algo
rithm , we need to perform the semigroup computation on these ^  partial results.

We begin by compacting the partial results in the first ^  positions in the first 
column of R .  This is done as follows: every processor P(1 +  (i — l)x , 1) that holds 
a partial result fli at the end of Step 2, broadcasts #  horizontally to processor 
P(1 +  (i — l)x , i) ,  which in turns broadcasts /?,• vertically to P ( i , i ) ,  and finally to 
P(i,  1) (refer to Figure 3.4).

Clearly, the above data movement takes 0 (1 ) time. Finally, using the optimal 
algorithm of Lin et al. [40], we perform the semigroup computation on the /?j’s in 
O (lo g ^ ) time, and store the final result in processor P ( l,l) .
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Figure 3.3: Step 2 in the first submesh for semigroup computations.

To analyze the running tim e of our algorithm, note that in case m  <  y / n  only 
Step 0 is executed and the running tim e is bounded by O(logm ). In  case m >  y/n, 
Steps 1 through Step 3 are executed. By (3.2), Step 1 and Step 2 are performed

in 0 ( 22y )  time, while Step 3 takes 0(log ■aj )  time.
Finally, the analysis of the running times of Steps 0 through 3, combined with 

Observation 3.2.7, allow us to state the following result.
Theorem  3 .3 .8 . The semigroup computation involving m (2 <  m <  n) items 
stored in column-major order in the first columns of a M M B of size y/n x y/n

2 j.
takes O ^ a x lm in llo g m jlo g -2̂ } , time being, therefore, time-optimal. □

3.4 C onclusions
In  this chapter we have addressed the semigroup computation problem involving 
m (2 <  m <  n) items on a M M B of size y/n x y/n. Our contribution is to 
have presented the first lower bound and the first time-optimal algorithm which 
apply to the entire range of m (2 <  m <  n). We provided a unifying look at 
semigroup computations on MMBs by solving the problem for the general case 
rather than treating only the sparse and dense cases. First, we provided a lower 
bound by showing that any algorithm which solves the semigroup computation
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Figure 3.4: Final data movements in Step 3 of semigroup computations.

2 1
problem must take at least fi (m ax{m in{logm ,log-^-r}, ^ V }) time. Second, we

m  3 no
have shown that our lower bound is tight by designing an algorithm whose running 
time matches the lower bound. These results generalize all semigroup algorithms 
known to date.

In  [8, 21] it was argued that rectangular meshes lead to faster algorithms for 
semigroup computations than square meshes. It  is interesting to note that our 
lower bound implies that the semigroup algorithms in [8, 21] are optimal even 
if a larger number of processors are available. Specifically, our result shows that 
semigroup computations involving n  items stored one item  per processor in a mesh 
of size res x 72 8 takes as long as the same computation on a rectangular mesh of 
size 72 8 x 72 8 . Therefore, in this case, the additional processors cannot speed up 
the computation.

A number of important problems remain open. Similar unifying results are de
sirable for other important algorithmic problems on meshes with multiple broad
casting. Candidate problems include, prefix computation, selection, sorting, and 
list ranking among many others.
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Chapter 4 

Sorting

4.1 In trod uction
This chapter is concerned w ith sorting on a mesh with multiple broadcasting. Sort
ing is unquestionably one of the most extensively investigated topics in computer 
science. It  is well known [3, 38] that n data items can be sorted in 0 (> /n ) time 
on a mesh-connected machine of size y/n x y/n. Furthermore, this result is easily 
shown to be both time-optimal and VLSI-optim al. Recently, a number of sorting 
algorithms have been proposed for enhanced meshes [40, 56]. An easy informa
tion transfer argument shows that for meshes of area n, even when enhanced with 
m ultiple broadcasting or with a dynamically reconfigurable bus system, 0,(y/n) is 
a tim e lower bound for sorting n items.

This somewhat counter-intuitive result motivated us to look at the following 
problem. Suppose that we are given a mesh or enhanced mesh of size y/n x y/n 
and the goal is to sort m (y/n <  m <  n) items stored in the first \ / / / \  columns 
of the machine. How fast can this task be performed? It  is easy to snow that the 
f l(y/n) is a tim e lower bound for the unenhanced mesh. Clearly, no algorithm can 
be VLSI-optim al in this case.

The contribution of this work is to show that we can do better on meshes with 
m ultiple broadcasting. Specifically, we show that once we fix a positive integer 
constant c, we can sort m  items (raa+a£ <  m <  n) in O ( ^ )  time. We show that 
this is time-optimal for this architecture. It  is also easy to see that this achieves 
the V LS I lower bound in the word model.

The remainder of this chapter is organized as follows: section 4.2 presents our 
lower bound arguments; section 4.3 presents the details of our optimal sorting 
algorithm. Finally, section 4.4 summarizes the results and poses a number of open 
problems.
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4.2 T he Lower B ound
The purpose of this section is to show that every algorithm that sorts m (m <  n) 
items given in the first columns of a mesh with multiple broadcasting must 
take O (^ )  time.

Our argument is of information transfer type [38, 70]. Consider the submesh 
M  consisting of processors P(r, s) with 1 <  r  <  and 1 <  s <  The input 
w ill be constructed in such a way that every element initially input into M  w ill 
find its final position in the sorted order outside of M .  To see that this is possible, 
note that m < n  guarantees that the number of elements in M. satisfies:

Since at most O (^ )  items can leave or enter M. in 0 (1 ) time, it  follows that any 
algorithm that correctly sorts the input data must take at least time. Thus,
we have the following result.

Tn _________ _________________________

Figure 4.1: Lower bound argument for sorting

Theorem  4.2 .1  Every algorithm that sorts m (m <  n) items in the first 
columns of a mesh with m ultiple broadcasting of size y/n x y/n must take f l ( ^ )  
time.

In addition to time-lower bounds for algorithms solving a given problem, one 
is often interested in designing algorithms that feature a good V LS I performance
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[64]. One of the most used metrics is the product A T 2, where A  is the area of the 
chip and T  is the tim e taken for the problem. A tim e lower bound based on this 
metric is strong because it is not based on memory requirements or input/output 
rate, but on the requirements for information flow within the chip. It  is well-known 
[38, 64, 70] that in the word model the lower bound for sorting m elements on a 
VLSI chip is m2. In  our case, the size of the set of input elements m varies, while 
the area of the mesh n is constant. Hence, for any algorithm to be VLSI-optim al, 
we have nT2 =  m2, where T  is the running time. Thus, in this case, the time 
lower bound of also translates to VLSI-optimality.

The purpose of this chapter is show that the bounds derived above are tight 
by providing an algorithm with a matching running time.

4.3 T he A lgorithm
We are now in a position to present our time- and VLSI-optim al sorting algorithm  
for meshes with multiple broadcasting. Essentially, our algorithm implements the 
well-known bucket sort strategy. Throughout, we assume a mesh with multiple 
broadcasting “f t  of size y / n  x y /n .  We also assume that the processors in the first 
column of the mesh also serve as I/O  ports.

Fix an arbitrary positive integer constant c. The input is assumed to be a set 
S of m  items

n 2+ 2£ <  m < n  (4.1)

from a totally ordered universe1 stored in the first -t-j columns of 7Z. To avoid 
tedious but incpnsequential details, we assume that ^  is an integer. The goal is 
to sort these items in column major order, so that they can be output from the 
mesh in 0 (^ = ) time. We propose to show that w ith the above assumptions the 
entire task of sorting can be performed in O (^ )  tim e. Thus, from our discussion 
in section 4.2, we can conclude that our algorithm is both time- and VLSI-optimal.

To make the presentation more transparent and easier to follow we refer to the 
submesh consisting of the first columns of %  as M  (In  other words, M  is the 
submesh that in itially contains the input). Further, a slice of size k of the input 
consists of the items stored in k consecutive rows of M..

We w ill first present an outline of our algorithm and then proceed to the details. 
Starting with slices of size ^  sorted in row major order, we use bucket sort to

1We assume 0(1) time comparisons among the items in the universe
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merge consecutive ^  of these into slices of size (^ jj)2 sorted in row major order. 
Using the same strategy, these slices are again merged into larger slices sorted in 
row major order. We proceed with the merging process until we have one slice 
of size y/n, sorted in row major order. Finally, employing the data movement 
discussed in Lemma 2.4.9, the data is converted into column major order.

We proceed to show that the merging of ^  consecutive sorted slices of size
(^7=)* into sorted slices of size requires O ( ^ )  time. It  is convenient to

view the original mesh TZ as consisting of submeshes Rjtk of size ( ^ ) ‘+1 x (^ » )’+1
with Rjtk involving processors P (r ,s ) such that ( j  — 1 ) ( ^ ) ,+1 <  r  <  and

( * - < * < * ( $ ) * ” •

R

leaders

Figure 4.2: Diagonal submeshes and leaders in stage i of sorting

We refer to submeshes Rktk as diagonal. The diagonal submeshes can be viewed 
as independent meshes, since the same task can be performed, in parallel, in all
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of them without broadcasting conflict. The algorithm begins by moving the data 
items in every 1 to the diagonal submesh Rk,k- This can be accomplished column 
by column in O ( ^ )  tim e. We now present the details of the processing that takes 
place in parallel in every diagonal submesh Rk,k-

The rightmost item  in every row of Rk,k w ill be referred to as the leader of that 
row (see Figure 4.2). To begin, the sequence of leaders qi,q2, . . .  ,q( m v.+i in Rk,k' 'y/n'
is sorted in increasing order. Note that by virtue of our grouping, the sequence of 
leaders consists of sorted subsequences, and so, by Lemma 2.4.3, the sequence 
of leaders can be sorted in 0(log time. Let this sorted sequence be a j, 0 2 , . . . ,  
CLt m \i+l • For convenience, we assign ao =  —00.' y/n'

Next, in preparation for bucket sort, we define a set of ( ^ ) *  buckets B \, B2, 

. . . ,  B ^ y ,  such that for every j  (1 <  j  <  ( ^ ) ‘ ),

<  x <  ajm} (4.2)

By definition, the leaders a p-ijm through ajm belong to bucket Bj. This obser

vation motivates us to call a row in Rk,k regular w ith respect to bucket Bj if  its 
leader belongs to Bj. Similarly, a row of Rk,k is said to be special w ith respect to 
bucket Bj if  its leader belongs to a bucket Bt w ith t >  j ,  while the leader of the 
previous row belongs to a bucket Ba with s <  j .  To handle the boundary case, we 
also say that a row is special with respect to Bj,  if  it is the first row in a slice and 
its leader belongs to B t w ith t >  j .  Note that, all items in Bj must be in either 
regular rows or special rows.

Let us make a crucial observation.

O bservation 4 .3 .1  W ith  respect to every bucket Bj, there exist ^  regular 
rows and at most ^  special rows in Rk,k-
P ro o f. The number of regular rows follows directly from the definition of bucket 
Bj in (4.2). The claim concerning the number of special rows follows from the 
assumed sortedness of the ^  slices of size (^ jj)’ in Rk,k- □

In  order to process each of the (^ - ) ‘ buckets individually, we view the mesh Rk,k

as consisting of submeshes 7 \, T2, . . . ,  T(rn_y of size ( ^ ) ,+1 x Each submesh
T\ is dedicated to bucket Bi, in order to accumulate and process the elements 
belonging to that bucket.

In  0 (^ » ) time, we replicate the contents of T\ in Tj (2 <  j  <  (^ = )’)- Using 
simple data movements, in each of the submeshes 7), the values of a(/_i)^_ and 
aijn, are broadcast to all the elements in it in O ( ^ )  tim e so that all the elements 
that belong to Bi mark themselves. A ll the unmarked elements change their values 
to 00.
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Now the mesh Rk,k is viewed as consisting of submeshes Q ij  (1 <  / <  ( ^ - ) \  

1 < j  <  (■$;)'), of size (^ ) x (^). The processor P (r, s) is in Q i j  if  ( / -  1)^  <  
i" ^  and (/ — l)^ -j <  s <  l-Zfc. The objective of this step is to move all the 
elements belonging to bucket Bj  in submesh Tj into submesh Q jj .  Let qk be the 
leader of a regular row. The rank r  of this row is given by r  =  v mod where 
qk =  av. Hence, in the order of their ranks, each of the regular rows is moved to 
the rth  row of Q jj  (j  =  where r  is its rank. Thus, all the regular rows
with respect to Bj  can be moved into the submesh Qjtj  in O (^ )  tim e.

A special row u in Tj with respect to bucket B j is assigned a rank s, s— [ +

1. Note that no two special rows can have the same rank. In  the order of their 
ranks, special rows are moved to the rows corresponding to their rank in Qj j .  As 
the number of special rows is at most the time taken to broadcast all the 
special rows to Q jj  is 0 (^ - ) .

Now each processor in Q jj  holds at most one element from a regular row and
one from a special row. We would now like to sort the elements in each of the
submeshes Q j j ,  in an overlaid row major order. In  case the number of elements
in Q jj  is less than or equal to after sorting, the elements can be placed one

2 2
per processor. If  the number of elements exceeds the first of them are 
said to belong to generation-1 and the remaining elements are said to belong to 
generation-2. We would like to place the elements belonging to generation-1 one 
per processor in row major order and overlay this with those from generation-2, 
also in the same order. This is done as follows.

Using optimal sorting algorithm for meshes [44, 65], sort the elements from 
regular rows in Q j j  in O (^ )  tim e and repeat the same for the elements from 
special rows. Merging the two sorted sequences thus obtained can be accomplished 
in another O ( ^ )  time.

Now in each Q j j ,  all the elements know their ranks in bucket B j. Our next 
goal is to compute the final rank of each of the elements in R k , k -  Before we give the 
details of this operation, we let 5 i, S2 , . . . ,  Sj*, be the sorted slices of size 
in R k , k -  Let rrij be the largest element in bucket Bj. In  parallel, using simple data 
movement, each rrij is broadcast to all the processors in Tj in time. Next,
we determine the rank of rrij in each of the Si's as follows: in every Si we identify 
the smallest item  (if any) strictly larger than rrij. Clearly, this can be done in at 
most O ( ^ )  tim e, since every processor only has to compare rrij with the item  it 
holds ana w ith the item held by its predecessor. Now the rank of rrij among the 
items in Rk,k is obtained by simply adding up the ranks of rrij in all the Si's. Once 
these ranks are known, in at most O ( ^ )  tim e they are broadcast to the first row 
of Q j j ,  where their sum is computed in 0 (lo g ^ -) tim e. Observe that once rrij 
knows its rank in R k , k ,  every item in bucket B j finds its rank in R k , k  by using
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its rank in the bucket, the size of the bucket and the rank of rrij in 0 (1 ) time. 
Consequently we have proved the following result.

Lem m a 4.3 .2  The rank in R k , k  of every element in every bucket can be determined 
in 0 (^ “ ) time. □

Finally, we need to move all the elements into the first ^  columns of Rk,k in 
row major order. In  0 (1 ) time, each element determines its final position from its 
rank r  as follows. The row number x is given by [tth-t] and the column number y

by ( ( r —1) m o d ^ )+ l. In every submesh Tj, each element belonging to generation- 
1 is moved to the row x it belongs to (after sorting) by broadcasting the ^  rows 
of Qj tj , one at a time. This takes 0(^S») time. Now that every row of R k , k  contains 
at most ^  elements. Knowing the columns they belong to, in another time 
all the elements can be broadcasted to their positions along the row buses. This is 
repeated for the generation-2 elements. In  parallel, every diagonal submesh R k , k  

moves back its data into the first ^  columns of submesh R k , i -  Thus, in an overall 
time of 0 (^ « ), all the elements are moved to the first ^  columns of TZ. Now TZ

contains slices of size ( ^ ) ‘+1, each sorted in row major order.
To summarize our findings we state the following result.

Lem m a 4.3 .3  Merging ^  consecutive sorted slices of size ( ^ ) *  into sorted slices 

of size (:^"),+1 can be done in O ( ^ )  time. □
Let T ( i  +  1) be the worst-case running time of the basic step described above. 

It  is easy to confirm that the recurrence describing the behavior of T ( i  +  1) is

T ( i  +  1) =  T (i)  +  O (^ )  for « >  1

m  =  #

The algorithm terminates at the end of t iterations, when 
. m *+i

=  VS . (4.3)

This implies that

log y/n
 ̂+  1 =  ■;--------- s r- (4.4)

loS$T
By virtue of (4.1), (4.4) yields

t =  c. (4.5)

Thus the total running time of our algorithm is given by

T (t  +  1) =  0 { A )  (4.6)
y/n
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which is obtained by solving the above recurrence. Since c is a constant, we have 
proved the following result.

Theorem  4 .3 .4  For every choice of a positive integer constant c, m items (n£+£  <  
m <  n) stored in the first columns of a mesh with multiple broadcasting of 
size y/n x y/n can be sorted in 0 (-^ -) time. Furthermore, this is both time- and 
VLSI-optim al. □

4.4  C onclusions
In this chapter we have presented a time- and VLSI-optim al sorting algorithm for 
meshes with multiple broadcasting. Specifically, we have shown that once we fix 
a positive integer constant c, we can sort m items in the range <  m <  n in

° ( 5 r ) tim e-
A  number of problems remain open. First, it would be of interest to see whether 

the bucketing technique used in this chapter can be applied to the problem of 
selection. To this day, no time-optimal selection algorithms for this architecture 
are known. Also, it is not known whether the technique used in this chapter can be 
extended to meshes enhanced by the addition of k global buses [2, 18]. Further, we 
would like to completely resolve these issues concerning optimal sorting over the 
entire range y/n < m  <  n. Note that the results of Lin and others [40] show that 
for m  near y/n, fl(log n) is the time lower bound for sorting in this architecture. 
Their results imply that a sorting algorithm cannot be VLSI-optim al for m near 
y/n.
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Chapter 5 

M ultiple Search

5.1 In trod u ction
The purpose of this chapter is to propose a time-optimal algorithm for the mul
tiple search problem on meshes w ith m ultiple broadcasting and to show that a 
number of problems in computer graphics, image processing, robotics, and com
putational geometry reduce to the multiple search problem or a variant thereof. 
The multiple search problem [4, 72] is defined as follows: given a sorted sequence 
A  =  a i ,a2, . . . ,  an of items from a totally ordered universe along w ith an arbitrary 
sequence Q =  qi, q2, . . . ,  qm (1 < m  < n )  of queries from the same universe, deter
mine for every qj (1 <  j  <  m) the unique a,- for which a,_! <  qj <  a,-. To handle 
boundary conditions, we augment the sequence A by the addition of two “dummy” 
elements, namely a0= —°o and an+i =  oo. The m ultiple search problem is con
sidered to be a fundamental algorithmic problem [4, 72] and finds applications to 
query processing in databases, computer graphics, image processing, and compu
tational geometry, to name just a few. Recently, Akl and Meijer [4] as well as Wen 
[72] have studied the multiple search problem in the PR A M  model of computation. 
To the best of our knowledge, this important problem has found no solution in the 
context of meshes w ith m ultiple broadcasting.

Our algorithm runs in 0(y /in )  tim e on a y/n x y/n mesh w ith multiple broad
casting. We also show that in this model Cl(y/rn) is a lower bound for the multiple 
search problem. An interesting feature of our algorithm is that for any given n 
and m (1 <  m <  n), the running time is independent of n, thus the algorithm  
is adaptive. The remainder of the chapter is organized as follows: section 5.2 
presents preliminaries for the proposed multiple search algorithm along with the 
preprocessing stage; section 5.3 discusses the details of the remaining stages of 
the algorithm; section 5.4 gives a number of surprising applications to problems
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in computer graphics, image processing, robotics and computational geometry; fi
nally, section 5.5 summarizes the results, defines the generalized multiple search 
problem which can be solved by our algorithm, and poses a number of open prob
lems.

5.2 T h e A lgorithm  - Prelim inaries
Consider a y/n x y/n mesh TZ w ith multiple broadcasting. The elements of the 
sequence A  are stored in TZ, one item per processor, in row-major order. The 
queries qj (1 <  j  <  m) are stored in itia lly in the first ^  columns1 of TZ one 
query per processor. The elements of sequence A  w ill be referred to as items', the 
elements of sequence Q w ill be called queries.

For further reference, we note that since A  is stored in row-major order, row i 
(1 <  i <  y/n) of the mesh contains the items

® ( i — ®( » — l ) y / n + 2 i  • • • » ® t \ / n

The solution of qj is defined to be the item  a,- such that a,_i <  qj <  a,- (1 <  z <  n) 
or if  no such a,- exists the solution is taken to be +oo. For each query qj smaller 
than an we define its row rank to be the row in the mesh TZ that contains the 
solution of qj, otherwise the row rank is y/n +  1.

Let q be a query in Q whose row rank is r  (1 <  r  <  y/n). We describe a 
simple data movement that allows us to solve the query in 0 (1 ) time. Begin by 
broadcasting q to all the processors in row r: this is accomplished by moving q 
vertically to row r, then horizontally to all processors in that row. Upon receiving q, 
every processor P ( r , j )  (1 <  j  <  y/n) in row r  compares q w ith the item  a(r- l j^ + j  
it stores and marks itself 0 or 1 depending on whether or not «(r- i ) N/s:+i is strictly 
larger than q. Let P(r, k) be the leftmost processor in row r  that is marked 0. Note 
that P(r, k) always exists and can be identified in 0 (1 ) tim e by mandating every 
processor to check the mark of its left neighbor. Our marking scheme guarantees 
that a(r_ ! )^ +fc is the solution of q. Finally, this solution can be moved in 0 (1 ) 
tim e to the original location of the query. This simple data movement w ill be used 
repeatedly in the remainder of the chapter without further explanation.

The algorithm proceeds in four stages: in Stage 0 the queries are moved into a 
square submesh of size y/m x y/m; in Stage 1 we determine the row rank of every 
query in Q\ Stage 2 has two goals: after sorting the queries by row rank we solve 
a subset of the queries and extract further information that w ill be used in Stage

lrTo avoid tedious but inconsequential details we assume that ^  is an integer.
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3; finally, the goal of Stage 3 is to use the information computed in Stages 1 and 
2 to solve all the remaining queries.

We perceive Stage 0 as a preprocessing stage and we proceed to show how the 
goal of this stage can be achieved. The details of subsequent stages w ill be given 
in the section 5.3 this chapter.
Stage 0

The purpose of this stage is to move the sequence Q of queries into the y/mXy/m  
submesh consisting of the intersection of the first y/m rows and columns of TZ. Let 
B  denote the submesh of TZ consisting of processors P ( i , j )  w ith y/m-\-1 <  i <  y/n 
and 1 <  j  <  similarly, let C  be the submesh of TZ consisting of processors 
P ( i ' , j ' )  w ith 1 <  i' <  y/rn and +  1 <  j 1 <  y/m (see Figure 5.1).

Figure 5.1: Stage 0 of multiple search

To achieve the goal of this stage we need only move the queries stored by 
processors in the submesh B  to the processors in the submesh C, one query per 
processor. For this purpose, we handle the columns of B  one by one, from left to 
right. To make our exposition more transparent and easier to follow, we assume 
that y/rn >  y/n — y/m] the case y/m <  y/n — y/m is handled analogously. We 
further assume that for some positive integer c, y/m — c(y/n — y/m).

Our plan is to move the queries in every column j  (1 < j  <  of B  to

processors P ( [ ( j  — 1) mod c](y/n — y / m )  + 1 , ^  +  ("■£]) through P ( [ ( j  — 1) mod c+
1 ]{y/n — y/m), ^  +  [ i ] )  in column ^  +  [£"| of the submesh C.

We now give the details of this data movement. To begin, every processor 
P ( y / m  + i , j )  (1 <  i < y / n  — y / rn)  broadcasts the query it holds horizontally to
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processor P { y / m  +  i, ^  +  i). In  turn, processor P ( y / m  + i, ^  +  i) broadcasts the 
query received vertically to processor P ( [ ( j  — 1) mod c ] ( y / n  — y / m )  + i, ^  +  i). 
Finally, every processor P ( [ ( j  — 1) mod c ] ( y /n  -  y / m )  +  i, /jfc +  i) broadcasts the 

query horizontally to processor P ([(j — 1) mod c ] ( y / n  — y / m )  +  i,
To argue about the feasibility of this data movement, we only need observe 

that our in itia l assumption that 1 <  m <  n implies that

—  < y M .  (5.2)

It  follows that all the subscripts used in the data movement are within the limits 
specified for TZ.

Finally, (5.2) also guarantees that the data movement just described can be 
carried out in 0 ( y / f n )  time. We have proved the following result.

Lem m a 5.2.1 The sequence Q of queries initially stored in the first ^  columns 
of TZ can be moved into a y/m x y/rn submesh in 0(y/m )  time. □

R em ark: For further reference we note that if  the output is assumed to take place 
along the first column of the mesh only, then after all the queries have been solved, 
we sort them by their in itial position in the submesh TZ'. Finally, we reverse the 
data movement described above and have the queries and their solutions moved 
to the first ^  columns of the mesh. From there, they can be output in 0 (y/rn) 
time.

5.3 T he A lgorithm  - D eta ils
It  is important to remember that at the end of the preprocessing stage all the 
queries have been moved into the y/rn x y/m submesh TZ' consisting of the inter
section of the first y/rn rows and columns of TZ. In  the remainder of this chapter, 
the columns of TZ' w ill be referred to as query-columns.
Stage 1.

The purpose of this stage is to determine the row rank of every query in Q. 
To accomplish the task specific to this stage, we let every processor P { i , y/n) 
(1 <  * <  y/n) broadcast the item  horizontally to processor P ( i , i ) .

Next, P(i,  i) broadcasts the item vertically to the whole column i of the 
mesh. Note that (5.1) guarantees that as a result of this data movement, every 
processor in column i (1 <  i <  y/n) becomes aware of the last item  in row i.

To determine the row rank of every query in Q, the query-columns of TZ' are 
handled sequentially. More precisely, for every j  (1 <  j  <  y/m), each query in
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column j  of T V  is broadcast horizontally along its row bus. For every i  (1 < i  <  

y / r n ) ,  every processor P ( i ,  k )  in row i  of TZ compares the query it  receives with 
a k s / n  (i-e-, the last item  in row k ) ,  and marks itself 0 or 1 depending on whether 
or not is strictly larger than the query.

In  case processor P ( i ,  y / n )  is marked 1, the row rank of the corresponding query 
is y / n  + 1 and P ( i ,  y / n )  w ill broadcast this information to P ( i , j )  (i.e. the processor 
that has broadcast the query). Otherwise, let P ( i ,  k )  be the leftmost processor in 
row i  that is marked 0. Now it is easy to confirm that k  must be the row rank of 
the query and P ( i ,  k )  sends the appropriate information to processor P ( i , j ) .

Note that computing the row ranks of queries in every query-column takes 0 (1 ) 
tim e using broadcasting on buses. Since there are y/rn query-columns altogether, 
we have the following result.

Lem m a 5.3 .1  The row ranks of all queries in Q  can be determined in 0 (y/m) 
time. □

Stage 2
Stage 2 involves performing two basic tasks: the first one involves solving a 

part of the queries in Q ;  the second involves further processing the query-submesh 
7Z' to extract information that w ill be needed to solve the remaining queries in the 
next stage.

To begin, using an optimal sorting algorithm for meshes [44, 65], the sequence 
Q  of queries is sorted in column-major order by row rank.

A sorted query-column of TZ' is called pure if  all the queries in the column have 
the same row rank. Otherwise, the query-column is termed impure. We begin 
by identifying every query-column as pure or impure. For this purpose, every 
processor P ( y / r n , j )  (1 < j  <  y / r n )  broadcasts the row rank of the query it  holds 
vertically to P ( l , j ) .  Now P ( l , j )  has enough information to determine whether 
column j  is pure or impure.

First, we note that the solution is +oo for all queries whose row rank is y / n  + 1. 
Next, we process pure query-columns with row ranks at most y/n, one by one. 
Specifically, let query-column j  be pure and assume that the row rank of every 
query in j  is r. Using column buses, row r  is replicated through the entire mesh 
TZ. Further, each query in column j  is broadcast horizontally using its row bus. 
Note that in every row i  (1 < i  <  y / r n )  of TZ there exists precisely one processor 
that determines and returns the solution of the corresponding query.

Impure query-columns of TV are handled differently. In preparation for this, 
the second task of Stage 2 is to determine which rows of the mesh TZ are dense 
and which ones are sparse as we are about to define.

A row r  of TZ is said to be sparse if  the number of queries in impure columns
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of TV whose row rank is r  is not greater than y/m. Otherwise, row r is termed 
dense. To complete Stage 2, we identify sparse and dense rows of TZ] in addition, 
we build a linked list consisting of the dense rows.

Let j  be an arbitrary impure query-column of TV and let r i, r 2, . . rt (t >  2) be 
the row ranks of the queries in column j .  Since the sequence of queries was sorted 
in column-major order, the queries having the same row rank occur consecutively 
in j .  For further reference, such a set of queries is termed a run. It  is important 
to note that for any r  (1 <  r  <  y/n), at most two impure query-columns contain 
queries whose row rank is r. Note further that if  t >  3 then all rows r2, . . . ,  r t- \  
must be sparse, since queries having such row ranks cannot occur in a different 
query-column.

Consequently, any potential dense row r  must straddle two impure columns. 
By the above observation, a dense row can only correspond to the bottomost run 
in some impure column and the topmost run in the closest impure column to its 
right. It  is an easy m atter to compute the number of queries in every such run, and 
using column buses to send to processor P ( l , j )  in every impure column j  ordered 
pairs consisting of the row number and the number of queries in the topmost and 
bottomost runs in column j .

Finally, traversing the first row of TV sequentially, dense rows can be identified 
and a linked list containing all the dense rows in increasing order can be built: in 
fact, we only need inform every dense row of the identity of the next dense row in 
TZ.

To argue about the complexity of Stage 2, we note that solving queries whose 
row rank is y/n +  1 takes 0 (1 ) time; the task of identifying pure and impure 
columns takes 0 (1 ) time. Similarly, solving the queries in a pure column involves 
only broadcasting and is done in 0 (1 ) time. Since there are at most 0 (y/m) pure 
columns solving the queries in these columns takes at most 0 (y/m) tim e. Similarly, 
it is easy to see that the second task of Stage 2 can be done in 0 (y/m) time.

Consequently, we have proved the following result.

Lem m a 5.3 .2  The task of solving all the queries w ith row ranks y/n +  1 and 
those in pure columns of TV, as well as that of identifying sparse and dense rows 
of TZ can be performed in ©(-y/m) time. □

Stage 3. The goal of this stage is to solve the remaining queries in Q. In  the 
first step, every query in an impure column is moved to the row of the mesh that 
equals its row rank. Let j  be an impure query-column. To make our exposition 
more transparent, we now describe the data movement involving a query q stored 
by processor P ( i , j ) .  Assume, without loss of generality that the row rank of q 
is r. To begin, processor P ( i , j )  broadcasts the query q along with its row rank
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r  to processor P ( i , i )  using the bus in row i . Next, using the bus in column i ,  

processor P ( i , i )  sends q to processor P ( r , i ) .  Note that as a consequence of this 
data movement, every query in column j  of TZ' is sent to the row of the mesh 
that equals its row rank. We note that each processor P ( r ,  i ) receives at most two 
queries. Once the queries are solved, as we are about to explain, by reversing the 
previous data movement, the solution of q is returned to processor P ( i , j )  in TZ1.

Our algorithm proceeds by first solving all queries in sparse rows, and then in 
all the dense rows. The details are spelled out as follows. In  each sparse row, the 
solution for each query is determined one by one, by broadcasting its value across 
the row, and having a unique processor identify and return the corresponding 
solution.

Let r  be a dense row of TZ. Begin by replicating row r  throughout the mesh TZ 

by using vertical buses. Note that every processor in row r  w ill broadcast the item  
and any possible queries it holds. Consider the diagonal processors P ( i ,  i )  of the 
mesh. By a previous observation, each of them contains at most two queries. For 
all values of i  (1 < i  <  y / n )  if  processor P ( i , i )  contains queries it w ill use row i  to 
solve them in 0 (1 ) time as described in section 2, and w ill return the solutions to 
row r .

Since there are at most y/ r n  queries in each sparse row and there are at most 
y/ rn  dense rows in the linked list of dense rows previously constructed, it is easy to 
see that the computation in Stage 3 can be carried out in 0 ( y / r n )  time. We have 
proved the following result.

Lem m a 5.3.3 The task of solving all the queries in impure columns of TZ' can be 
performed in 0 ( y / m )  time. □

We now establish the complexity and time-optimality of our algorithm for the 
multiple search problem.

Theorem  5.3.4 Given a sorted sequences A  = cq, a.2, ..., a n of items from a totally 
ordered universe and a sequence Q  =  91,92, —,9m (1 <  m <  n) of queries, the 
corresponding multiple search problem can be solved in 0 ( y / r n )  time on a mesh 
with multiple broadcasting of size y / n  x y / n .  Furthermore, this is time-optimal. 
P roo f. The correctness of the algorithm is easily seen; by Lemmas 5.2.1, 5.3.1, 
5.3.2, and 5.3.3 combined, the running time is bounded by 0 { y / rn ) .

To argue for the time optimality, we show that every algorithm that solves the 
multiple search problem must take 0 ( y / m )  time in the worst case. For this purpose 
we assume that the sorted sequence A  consists of distinct items and is stored in 
row-major order in a y /n  x y / n  mesh TZ with multiple broadcasting.

Let S  be a ^  x submesh of TZ consisting of the processors P ( i , j )  with 1 <
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i <  ^  and y / n - ^ -  + 1  <  j  <  y/n, containing a subsequence A' — a'x,a'2, . . .  ,a  
of A  (see Figure 5.2).

9b Vn

Vm/2

Vn w/Vn

Figure 5.2: Lower bound argument for multiple search

The queries are assumed to be in the first ^  columns of TZ. We construct 
the sequence Q =  qi,q2,...,qm (1 <  m <  n) of queries satisfying the following 
conditions:

•  for a subsequence Q' =  q^,qi2, . . . ,  qim of Q, the solution of q  ̂ (1 <  j  <  
is a/,

•  every query in Q but not in Q' is larger than an;

•  all the queries in Q' are stored by processors outside S.

I t  is easy to see that such a sequence Q of queries can be constructed; to clarify 
the feasibility of the last constraint, note that since the processors in S  contain at 
most ^  queries, at least 2̂* Qf the queries are stored by processors outside S.

Our proof of the lower bound relies on a very simple information transfer ar
gument. Note that the submesh S  is connected by 0 (y/rn) buses and local links 
to the remainder of TZ. It  is important to note that, as a consequence, in one time 
unit at most 0 ( i/m ) pieces of information (queries and/or items in A') can “cross” 
the boundary between S  and the remainder of TZ. In  addition, our construction 
of the sequence Q guarantees that to solve the queries qi with 1 <  i <  0  (m)
pieces of information must cross the boundary of S. Consequently, f l(y/m) time 
is needed to solve all the queries, completing the proof of the theorem. □
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5.4 A pplications
The purpose of this section is to show that the m ultiple search problem finds a 
number of surprising applications to problems in computer graphics, image pro
cessing, robotics, and computational geometry.

Throughout the remainder of this chapter we assume an underlying convex 
polygon P  =  pi, p2, . . . ,  pn in standard form (see [3, 57] for details), stored in 
row-major order in a y/n x y/n mesh TZ w ith multiple broadcasting.

Let Q=qi,  <72» • • • j 9m (1 <  ro <  n ) be a sequence of points in the plane. The 
multiple point inclusion problem asks for determining for every subscript j  (1 <  j  <  
m) whether the query point qj is inside P. Just as the point inclusion problem, the 
m ultiple point inclusion problem finds application to distributed database design, 
computer graphics, and image processing [11, 38, 57].

As it turns out, the problem at hand can be solved by reducing it to the multiple 
search problem. To begin, choose an arbitrary point uj inside P  and convert the 
vertices of P  as well as the query points in Q to polar coordinates w ith pole oj and 
polar axis ujpi.

It  is well-known that the vertices of P  occur in sorted angular order about u> 
[57]. Now solving the corresponding instance of the m ultiple search problem, we 
determine for every query point qj the wedge p,_icjp,- w ithin which qj lies. Finally, 
in one more comparison, it can be decided whether pj and u> lie on the same side 
of the segment Consequently, we have the following result.

Theorem  5.4.1 Given a convex polygon P  =  pi, p2 , . . . ,  pn and a sequence 
Q—qii <?2, • • •, <Zm (1 <  m <  ra) of points in the plane, the m ultiple point inclu
sion problem can be solved in 0 (-v/m ) tim e on a y/n x y/n mesh with multiple 
broadcasting. □

Note that Theorem 5.4.1 holds for star-shaped polygons, provided that a point 
ui in the kernel is known.

A related problem arising in computer graphics and image processing is known 
as the convex polygon containment problem. Here, we are given convex polygons 
P  =  p i , P2 , . . . ,  pn and Q =  qi,q2 , • • • ,9m (1 <  m <  n) and we are interested in 
finding out whether Q is contained in P. Note that this problem can be easily 
solved by reducing it to the m ultiple point inclusion problem. We have the follow
ing simple corollary of Theorem 5.4.1.

C o ro lla ry  5.4.2. The convex polygon containment problem for P  =  pi, p2, . . . ,  
pn and Q =  qi, q2, . . . ,  qm (1 <  m <  n) can be solved in 0(\/irre) tim e on a y/n x y/n 
enhanced mesh. □

Next, we address a problem that arises frequently in computer graphics, image
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processing, and path planning. We are given a convex polygon P  =  pi, p2, . . pn 
and a sequence Q=qi,q2, . . .  ,qm (1 <  m <  n) of points in the plane. For a point 
qj exterior to P  the two supporting rays for P  emanating from qj are referred 
to as right and left depending on whether the interior of P  lies to the left or to 
the right of the ray. Our task is to compute for every point qj exterior to P  the 
corresponding left and right rays. For definiteness, we refer to this as the multiple 
ray problem. Surprisingly, the solution to the multiple ray problem reduces to a 
variant of the multiple search problem.

Recall that, by assumption, the polygon P  is stored in row-major order in a 
y/n x y/n mesh I t  w ith m ultiple broadcasting. We assume that the points in Q are 
stored in the y/m x y/rn submesh I t '  consisting of the first y/m rows and columns 
of I t .

We begin by using the solution to the multiple point inclusion problem to de
termine which points of Q are exterior to P. We assume, without loss of generality, 
that all vertices of Q are exterior to P. We now show how to reduce the prob
lem of computing the left supporting ray for every point in Q to a variant of the 
m ultiple search problem. (Handling right supporting rays is done by a symmetric 
argument.)

For this purpose, consider the convex polygon P'  =  p ^ ,  p2v/n> • • Pn consisting 
of the vertices of P  whose subscripts are multiples of y/n (see Figure 5.3). Note 
that P' partitions the boundary of P  into chains Ci, C2, . . . ,  such that (7,- =
P(,- 1 ) ^ + 1 , J»(,--i)>/n + 2> • • • ( ! < * ’ <  y /n ).

It  is easy to see that the vertices of P'  are stored by the processors in the last 
column of I t ,  and that every chain C, (1 <  i <  y/n) defined above involves points 
stored by processors in row i of the mesh.

Our algorithm proceeds in two stages. In Stage 1, we solve the multiple ray 
problem for Q and P '; in Stage 2, we extend the solution to P. We note that the 
instance of the multiple ray problem involving P'  and Q can be solved in 0 ( v/m ) 
tim e. As in the multiple search problem, we let every processor P (i,  y/n) holding 

broadcast the point horizontally to processor P(i,  i) which, in turn, broadcasts 
Piy/n the entire column i of the mesh. Next, the columns of I t '  are processed 
sequentially as follows.

To process query-column j  (1 <  j  <  y / r n ) ,  each point in that column is broad
cast horizontally to all the processors in its own row. To make the exposition easier 
to follow, consider a generic point q in Q stored in some processor P ( i , j )  of 1t'. 
Note that exactly two processors in row i determine that the ray emanating from 
q and passing through the points of P'  they contain, are supporting rays for P '. 
However, only one of them detects that the corresponding ray is a left ray. The 
processor in row i that detects this condition broadcasts its identity to processor
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Figure 5.3: Stage 1 of the multiple ray problem

Observe that if the left supporting ray for P' determined by some point q in Q 
and some point pt^  is a supporting ray for P, then no further action is needed. 
Otherwise, it  is easy to confirm that the ray qpty/z  intersects precisely one of the 
chains Ct- 1 or Ct. Furthermore, the chain intersected by the ray qpty/z  can be 
determined in 0 (1 ) time by checking the edges of P  incident to pt^  (see Figure 
5.4).

Consider points q i n Q  for which the left supporting ray for P' is not a support
ing ray for P. For every such point q, we define its chain rank to be the subscript 
of the chain which the left supporting ray to P' from q intersects.

Further, we sort the points in Q in column-major order by their chain ranks. 
Assume without loss of generality that the chain rank of q is t. It  is now easy 
to confirm that in order to find a left supporting ray for P  emanating from q 
we only need find a left supporting ray for the convex polygon determined by 
P(t-i)V^5P(t-i)v4T+i) • • • s Pty/nm This can be done in 0(^/5™) time by a slight modifi
cation of the Stages 2 and 3. Consequently, we have the following result.

Theorem  5.4 .3 . Given a convex polygon P  =  pi, p2> . . . ,  pn and a sequence 
Q=qi, <72, - ,qm (1 <  m <  n) of points in the plane, the corresponding multiple
ray problem can be solved in O (y'm ) time on a y/n x y/n mesh with multiple 
broadcasting. □
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Figure 5.4: Stage 2 of the multiple ray problem

As a further application, consider the following problem that arises frequently 
in computer graphics, robotics, and image processing. A convex polygon P  =  pi, 
p2, . . . ,  pn is given along with a sequence L = l i, /2, . • . ,  /m (1 <  rn <  n) of lines in 
the plane. The multiple stabbing problem involves answering queries of the type 
“does line lj intersect P?”.

As we are about to explain, the multiple stabbing problem reduces to the 
m ultiple ray problem. To begin, for every j  (1 <  j  <  m) choose a point qj on the 
line lj. W hat results is a sequence Q =qi, ?2, • • •, 9m (1 <  wi <  n) of points in the 
plane. In 0 (y /m ) tim e we solve the multiple point inclusion problem.

Clearly, if  some point qj is inside P  then the line lj intersects the polygon. For 
the points in Q that are outside P  we solve the multiple ray problem. Finally, we 
determine whether lj is within the wedge bounded by the left and right supporting 
rays at qj. We have proved the following result.

Theorem  5.4 .4 . Given a convex polygon P  =  p i, p2, . . . ,  pn and a sequence 
Zf=/i, I2 , • ■ ■, lm (1 <  m <  n) of lines in the plane, the corresponding multiple 
stabbing problem can be solved in 0 (y/rn) time on a y/n x y/n mesh w ith multiple 
broadcasting. □

Finally, consider again two convex polygons P  =  p i, p2, . . . ,  pn and Q =
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<Zi> 92? • • •) 9m (1 <  m <  re) both in standard form. An important problem in 
computational geometry is to determine whether P  and Q are linearly separable 
and, if so, to construct a line that separates them.

As it turns out, the solution to the multiple ray problem affords us an efficient 
solution to the problem at hand. Specifically, assume that a solution to the m ultiple 
ray problem is available. For definiteness, we assume that the polygon Q is stored 
in column-major in the submesh TV consisting of the first y/m  rows and columns 
of 71. Note that the polygons are separable if  and only if  some common supporting 
line for the two polygons is separating.

We proceed as follows: every processor in TV determines whether any of its 
supporting rays for P  is also a supporting ray for Q. This, of course can be done 
in 0 (1) tim e by verifying whether or not the left and right neighbors of a vertex 
in Q are to the same side of the supporting ray. Note that either the polygons are 
found not to be separable or else rays that are common supporting lines for P  and 
Q w ill be identified in the process described above. I t  is now an easy m atter to 
identify those supporting rays that are separating. Therefore, we have the follow
ing result.

Theorem  5.4.5. Given convex polygons P  =  pi, p2, . . . ,  pn and Q =  qi, q2, . . . ,  qm 
(1 <  m <  re) in the plane, the task of determining whether P  and Q are linearly 
separable can be performed in 0 ( \ /m )  time on a y/n x y/n enhanced mesh. Fur
thermore, in case the polygons are separable a separating line can be identified in 
the same tim e bounds. □

Note also that with a trivial modification, the algorithm for computing a sepa
rating line for two convex polygons can determine common tangents in case neither 
polygon contains the other. The following result summarizes this finding. 
Corollary 5.4.6 Given convex polygons P  =  p i, p2, Pn and Q = q \,q i,..-,q m  
(1 <  m <  re) in the plane, the common tangents to P  and Q, if  any, can be com
puted in 0(y /m )  tim e on a mesh w ith multiple broadcasting of size y/n x y/n. □

5.5 C onclusions
Given a sorted sequence A =  a i, <12, . . . ,  an of items from a totally ordered universe, 
along with an arbitrary sequence Q =  qi,q2, . . .  ,qm (1 <  Tn <  re) of queries, 
the multiple search problem involves computing for every qj (1 <  j  <  m) the 
unique a,- for which a,_i <  qj <  a,-. In  this chapter we have proposed a time-
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optimal algorithm to solve the multiple search problem on meshes with multiple 
broadcasting. More specifically, our algorithm runs in 0(y /m ) tim e on a y/n x y/n 
mesh with multiple broadcasting. We also showed that this achieves the theoretical 
lower bound for the problem. Note that the running tim e of our algorithm is 
independent of n, and thus the algorithm is adaptive.

We have also shown that the multiple search problem finds surprising applica
tions to computer graphics, image processing, robotics, and computational geom
etry. A t this tim e it is not known whether these solutions are time-optimal.

As it turns out, our algorithm for the multiple search problem works for a more 
general problem that we are about to define. For this purpose, consider a sequence 
A  =  a i ,a 2, . . . , a n of items and a sequence Q =  9i , 92) - - - j 9m (1 <  m  <  «) of 
queries such that every ordered pair (qj, a,-) (1 <  * <  n; 1 <  j  <  m) forms a 
decision problem.

We assume that this collection of decision problems satisfies at least one of the 
following:

•  For each (1 <  i <  n; 1 <  j  <  m ), if  the answer is “yes” , then the 
answer is “yes” for all (qj, an) (i <  k <  n);

•  For each qj (1 <  j  <  m ), there exists at most one value of i (1 <  i <  n) such 
that the answer to (qj ,a,) is “yes”.

For each qj (1 <  j  <  m), the corresponding solution is either the item  a,- 
w ith minimal i for which the answer to (qj, a,) is “yes” or if  no such i exists the 
solution is +oo. Now the generalized multiple search problem asks for the solution 
of every query in Q. The algorithm which we have proposed to solve the multiple 
search problem on a y/n x y/n enhanced mesh can be easily modified to solve 
the generalized multiple search problem in 0(y/fn ) tim e, provided every decision 
problem (qj, a,) (1 <  i <  n; 1 <  j  <  m) can be answered by a single processor in 
0 ( 1) time using only local information.

In  this chapter we have solved some instances of the generalized m ultiple search 
problem. It  would be interesting to see what other problems can be solved by the 
same paradigm. This promises to be a challenging area for future research.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Convexity Problems

6.1 Introduction
Convexity and related computations are a recurring theme in pattern recognition, 
image processing, computer vision, operations research, robotics, computational 
geometry, and computational morphology. In pattern recognition, for instance, 
convexity appears in clustering, and computing similarities between sets [7]. In  
image processing and computer vision convexity is used as a natural shape descrip
tor and classifier for objects in the image space [2,20,22]. In operations research 
convexity is a fundamental tool in linear programming and convex analysis [66]. In 
robot navigation, one of the fundamental heuristics involves approximating real- 
world objects by convex sets [41]. In  computational geometry, convexity is often a 
valuable tool in devising efficient algorithms for a number of seemingly unrelated 
problems [57, 66]. In computational morphology, convexity has played a central 
role in analyzing relevant features of the shape of a set of points [68]. Further, one 
of the fundamental features that contributes to a morphological description useful 
in shape analysis is the Euclidian distance function among vertices of the polygon 
[68].

The purpose of this chapter is to study a number of convexity-related problems 
on meshes w ith multiple broadcasting. First, given an n-vertex convex polygon P , 
we address the problems of:
•  computing the area of P,
•  computing the diameter of P ,
•  computing the width of P ,
•  computing the modality of P ,
•  computing a smallest-area rectangle enclosing P , and
• computing the largest-area inscribed triangle sharing an edge with P.
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Next, given two n-vertex convex polygons P  and Q we address the problems of:
•  detecting whether P  lies in the interior of Q ,
•  computing the largest distance between P  and Q,
•  computing the smallest distance between P  and Q, assuming that the 

two polygons are separable.
These tasks are motivated by, and find applications to, problems in pattern 

recognition, computer graphics, computational morphology, image processing, com
puter vision, and VLSI design. Some examples follow. The diameter of a convex 
polygon is of import in clustering [9, 27, 58], computer graphics [53], path planning 
[41, 66], and in a number of facility location problems [57]. The smallest area en
closing rectangle arise in image processing [58] as well as in the compaction process 
in VLSI [54]. The problem of computing the largest vertex distance between two 
convex polygons arises in clustering [9, 27, 58], computer graphics [53], and image 
understanding [9, 71]. The problems of computing the width of a convex polygon 
and smallest distance between two convex polygons are central to path planning 
[41], morphology [68], and in a number of facility location problems [57].

One of the contributions of this thesis is to show that fi(logn) is a lower bound 
for any instance of size n of the problems mentioned above (with the exception of 
the smallest distance between two convex polygons) both in the CREW -PRAM  
and in the mesh with multiple broadcasting, regardless of the number of processors 
and memory cells used. We prove that these lower bounds are tight by provid
ing O (logn) tim e algorithms to solve these problems on a mesh with multiple 
broadcasting of size n x n. We also show that the task of computing the smallest 
distance between two convex polygons can be computed in 0 (1 ) time. This result 
is likely to bring some aspects of robot path-planning within the realm of real-time 
computations.

The remainder of the chapter is organized as follows: section 6.2 presents a 
number of basic results that w ill be useful in the design of our algorithms; section 
6.3 discusses our lower bound results; section 6.4 presents algorithms for problems 
involving one convex polygon; section 6.5 proposes algorithms for computational 
problems involving two polygons; finally, section 6.6 summarizes our findings and 
proposes a number of open questions.

6.2 Prelim inaries
The purpose of this section is to review a number of fundamental geometric defi
nitions and concepts along with data movement techniques for implementing basic

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



algorithms on meshes w ith multiple broadcasting.
Specifying an n-vertex polygon P  in the plane amounts to enumerating its 

vertices in clockwise order as p i,p 2 , ,pn {n >  3), in such a way that PiPi+i 
(1 <  i <  n — 1) and pnpi define the edges of P. This representation is also known 
as vertex representation of P. We note that the vertex representation of a polygon 
can be easily converted into an edge representation: namely, P  is represented by a 
sequence ei, e2, . . . ,  e„ of edges, specified in clockwise order, w ith et- (1 <  i <  n — 1) 
having pi and p,+i as its endpoints, and en having pn and p\ as its endpoints. To 
avoid tedious but inconsequential details, in our algorithms we assume that all our 
polygons have distinct vertices with no three vertices collinear.

A polygon P  is termed simple if  no two of its non-consecutive edges intersect. 
Recall that Jordan’s Curve Theorem [57] guarantees that a simple polygon parti
tions the plane into two disjoint regions, the interior (bounded) and the exterior 
(unbounded) that are separated by the boundary of the polygon. A simple polygon 
is convex if  its interior is a convex set [57]. The diameter of a convex polygon [57] 
is the largest Euclidian distance between any pair of its vertices. The width of a 

• convex polygon [32] is the least distance between pairs of antipodal vertices. A 
vertex p,- of a polygon P  is termed unimodal with respect to the Euclidian dis
tance to the remaining vertices, if there exists a subscript j  (1 <  j  <  n ) such 
that d(p,',pk) is non-decreasing for k =  i +  l , i  +  2, . . .  , j  and non-increasing for 
k =  j  + 1, j  +  2 , . . . ,  i — l 1. More generally, the modality of a vertex it of a polygon 
P  (w ith respect to the Euclidian distance) [6, 67] is defined to be the number of 
maxima of the Euclidian distance function d(u, v) when v traverses the boundary 
of P. The modality of a polygon is defined as the sum of the modalities of its 
vertices.

Recently, Toussaint [67] pointed out that the notions of convexity and uni
modality are quite different: convex polygons need not be unimodal, and uni
modal polygons need not be convex. Furthermore, Toussaint [67, 68] argues that 
unimodality is one of the key factors in obtaining very efficient algorithms for a 
large number of problems in computational morphology and pattern recognition. 
It  is not surprising, therefore, that unimodality and m ultimodality have received 
considerable attention in the literature [6, 46, 47, 67, 68]. In  particular, Aggar- 
wal and Melville [6] have obtained a linear tim e sequential algorithm to determine 
whether a convex polygon is unimodal.

One of the fundamental heuristics in pattern recognition, image processing, 
and robot navigation, involves approximating real-world objects by convex sets. 
For obvious reasons, one is typically interested in the smallest convex region that 
contains some object in the space of interest. The convex hull of a set of points

throughout this chapter, subscript arithmetic is modulo n.
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in the plane is defined as the smallest convex set that contains the original set 
[57, 66]. Our arguments rely, in part, on the following recent result proved in [49].

Proposition 6 .2 .1  [49] The convex hull of planar set of n points stored in the 
first row of a mesh with m ultiple broadcasting of size n x n can be computed in 
O (logn) time. Furthermore, this is time-optimal □

A fundamental geometric problem [57] is referred to as point inclusion. The 
problem can be stated as follows: given a convex polygon P = p i, P2, • ■ Pn and 
a point q in the plane, does q lie inside P I  For definiteness, we assume that P  
is stored one vertex per processor in row i of a mesh w ith multiple broadcasting 
of size n x n, and that q is stored by P (i, 1). We propose to show that the point 
inclusion problem for q can be solved in 0 (1) time, using the processors in row i 
only.

Let a; be a point inside P , obtained by computing the centroid of three vertices 
of P. In  0 (1 ) tim e partition the plane into n wedges each of the form p,cup,+1 by 
broadcasting the coordinates of u  to all the processors in row i. Clearly, q belongs 
to exactly one of these wedges. In  addition, this particular wedge, say pf-wpk+i, can 
be determined in 0 (1) tim e by simply broadcasting the coordinates of q to all the 
processors in row i. Finally, by checking q against the edge pkPk+i we determine 
whether or not q lies in the interior of P. To summarize our discussion we state 
the following result.

Lem m a 6.2.2 Let P = p i, P2, • • • ,  Pn be a convex polygon stored in one row of 
a mesh w ith m ultiple broadcasting of size n x n, one vertex per processor, and let 
q be an arbitrary point in the plane. The point inclusion problem for q can be 
solved in 0 ( 1) tim e using the processors in this row only. □

For further reference we now state and solve the following problem which is of 
independent interest. Consider a circle C in the plane and n equally spaced points 
on the boundary of C, numbered for convenience as 1 ,2 , . . .  ,n  in clockwise order, 
and refer to Figure 6.1.

Let C  =  {Ci =  [a,■,&,•] | 1 < i < n} be a fam ily of circular arcs in C such that:
•  the endpoints of every circular arc are integers in the range { 1, 2, . . . ,  n};
•  the endpoints of every arc are specified in clockwise order;
•  no arc is self-overlapping, that is, the angle subtended by every arc is less than 
2ir.
The fam ily C  is stored one arc per processor in the first row of a mesh with multiple 
broadcasting of size n x n .  The point overlap problem asks to determine for every 
integer i (1 <  i <  n) the number of intervals in which it appears.
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5

Figure 6.1: An instance of the point overlap problem

First, we convert the fam ily C of circular arcs to a family of half-closed intervals 
in the following natural way. Every circular arc [a,•,&,•] for which 1 <  a,- <  <  n w ill
be regarded as the interval + 1 ) (in case =  n we take + 1  =  n + 1 ) .  Every 
circular arc which contains the arc [n, 1] w ill be replaced by the intervals
[a,-,n + 1) and [1,6, -f-l). Note that the number of intervals thus obtained is at most 
2 n.

I t  is easy to see that for every i (1 <  i  <  n), the number of circular arcs in 
which it appears is exactly the number of intervals that begin before or at i minus 
the number of intervals that end before or at i. This observation suggests the 
following simple algorithm.
S tep  1. Determine for every i (1 <  * <  n) the number d, of intervals that begin 
at i.
S tep 2. Compute the prefix sums of the sequence di, d2, . . . ,  d„, and let the result 
be e ,̂ e2, • • •, en.
Step 3. Determine for every i (1 <  i <  n) the number c,- of intervals that end at
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i, that is the number of intervals of the form [j, i).
Step 4. Compute the prefix sums of the sequence C2, . . . ,  c„, and let the result 
be / i ,  f<i-> • • •, fn •
Step 5. For every i (1 <  * <  n) compute e,- — /,-.

We now show how the above steps can be implemented in O (logn) time on 
a mesh with multiple broadcasting. As noted before, the collection of circular 
arcs has been converted into a family of at most 2n intervals. These intervals 
are stored, at most two per processor, in the first row of a mesh with multiple 
broadcasting of size n x n. First, we sort all the left-endpoints in increasing order. 
By Corollary 3.4, this operation takes O(log n) time. Once this is done, we process 
the left-endpoints in two similar stages. In  the first stage we process the first n 
left-endpoints in sorted order and in the second stage the remaining (at most n) 
left-endpoints. Assume that the first n left-endpoints are stored in left-to-right 
order by the processors in the first row of the mesh.

Using vertical buses, replicate the contents of the first row to all the rows of the 
mesh. In every row i (1 <  i  <  n) the processors that store a left-endpoint whose 
value is i occur consecutively. By checking the values stored by their immediate 
neighbors, the first and last processor in row i storing the value i are identified in 
0(1) time. In  two more broadcasts, these processors send their column numbers 
to processor P (i, i). In  turn, P (i, i) computes the number d,- of intervals that begin 
at i. This information is then broadcast to processor P (l,£ ) .

Using the prefix sums algorithm of Proposition 3.0, the prefix sums of d j, d2, . . . ,  dn 
is computed in O(log n) time. The computation of the number c,- of intervals end
ing at i (1 <  i <  n), as well as the computation of the prefix sums / i ,  / 2, . . . ,  f n 
is carried out in a perfectly similar way. To summarize our findings we state the 
following result.

Lem m a 6.2.3 The point overlap problem of n arcs stored one per processor in 
the first row of a mesh w ith multiple broadcasting of size n x n can be solved in 
O(logn) time. □

6.3 Lower B ounds
The purpose of this section is to derive lower bounds for the following problems. 
AREA: given an n-vertex convex polygon P , compute its area.
D IA M ETER : given an n-vertex convex polygon P , compute its diameter. 
W ID TH : given an n-vertex convex polygon P , compute its width.
M O D A LITY: given an n-vertex convex polygon P , compute its modality.
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ENCLOSING RECTANGLE: given an n-vertex convex polygon P , determine an 
enclosing rectangle of minimum area.
INSCRIBED TR IA NG LE: given an n-vertex convex polygon P , determine an in
scribed triangle of maximum area sharing an edge with P.
M A X  DISTANCE: given two n-vertex convex polygons P  and Q, compute the 
largest Euclidian distance between a point on P  and a point on Q. 
C O N TAINM ENT: given two n-vertex convex polygons P  and Q, is every vertex 
of P  contained in the interior of Q1

Our optimality arguments w ill be stated first in the Parallel Random Access 
Machine model (PRA M , for short). This is based on Propositions 2.3.1 and 2.3.2 
of Chapter 2. We first show that the tim e lower bound for AREA, D IA M ETER , 
W ID T H , M O D A LITY , ENCLOSING RECTANGLE, and INSCRIBED TR IA N 
GLE is fi(logn) on the CREW -PRAM , by reducing the OR problem to each of 
these problems. In  all the derivations in this section we use polar coordinates for 
convenience2. Before proving tim e lower bounds, we show a way of associating 
w ith an arbitrary n-bit sequence a unique n-vertex convex polygon. We shall re
fer to this as the standard construction, as all our subsequent constructions are 
variations thereof.

For this purpose let • • • ? bn, be an arbitrary bit sequence. Consider the 
unit circle C  centered at u  and let Ui,u2, . . .  be equally spaced points on the 
boundary of C. Further, let 8 be a number satisfying

2 t t  1

005 V  =  T + T  (<u)
and draw the circle C' centered at u  and radius 1 +  e, w ith 0 <  e <  8. For every 
* (1 <  * <  n) let Vi be the intersection between the boundary of C' w ith the 
extension of the line segment uu,-.

To complete the construction, let P  be the polygon with vertices pi,p2, . . .  ,p„, 
such that pi =  Ui or pi =  u,- depending on whether or not &,■ is a 0. The reader will 
have no difficulty confirming that the resulting polygon P  is always convex.

Lem m a 6.3 .1  AREA has a tim e lower bound of fl(log n) on the CREW -PRAM , 
independent of the number of processors and memory cells used.
P roo f. We shall reduce OR to AREA. For this purpose, we assume that the input 
to OR consists of n bits, bi, 62, • - •, bn. Let 8 satisfy (1) and let t  be a positive 
real less than 8. We use the standard construction described above to associate 
a convex polygon P  w ith the input sequence. Note that the area of this polygon 
is exactly | s i n ^  if and only if the OR of the input sequence is 0. Since the

2As pointed out in [57] this is not really necessary.
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construction of P  takes 0 (1 ) time, the conclusion follows from Proposition 2.3.1 □

Lem m a 6.3.2 D IA M E T E R  has a tim e lower bound of fi(lo gn ) on the CREW - 
PR A M , independent of the number of processors and memory cells used.
P ro o f. We shall reduce OR to D IA M E TE R . For this purpose, we assume that 
the input to OR is n bits, b2, . . . ,  bn. Let 8 satisfy

7T 1
cos ~  =  T T 7  n l + o

and let e be a positive number less than 8. The input is mapped to a convex 
polygon w ith 2n vertices p \,p2, . . .  ,P2n> w ith every bit 6; associated to points p,- 
and pn+i defined as follows: p,- =  (1 +  eft,-, and pn+,- =  (1 +  efe,-, hi±ihL).

It  is easy to see that the construction is such that all points corresponding to 
0-bits lie on the unit circle, while all the others lie on the circle of radius 1 +  e. 
Note that t  has been chosen in such a way that the polygon P  determined by the 
points p i , . . .  ,P2n is always convex. Further, note that the diameter of P  is exactly 
2 if and only if the OR of the input bits is 0. Since the construction of P  takes 
0 (1 ) tim e using n processors on the CREW -PRAM , the conclusion follows from 
Proposition 4.1. □

Lem m a 6 .3 .3  W ID T H  has a time lower bound of fI(log n) on the CREW -PRAM , 
independent of the number of processors and memory cells used.
P ro o f. We shall reduce OR to W ID T H . For this purpose, assume the input to 
OR to consist of n bits bi, b2, . . .  bn. Further, let 8 satisfy the condition

and chose a positive t  less than 8. Consider the unit circle C  centered at lo and 
let u \,u 2, . . . , U\n be equally spaced points on C  such that for a l i i  (1 <  i <  4 n), 
Ui =  ( 1 ,^ ) .  Let C' be the circle centered at u; and w ith radius 1 +  e. For every i 
(1 <  * <  4n) let Vi be the intersection of C' with the extension of the line segment
UJUi.

The input is mapped to a convex polygon P  w ith 4n vertices p i,P 2, . . .  ,P4n, 
with every bit 6,- associated to points p2,_ i , p2,-, P2n+2i - i  and p2n+2« defined as 
follows:
® P2i-1 =  (1  +  £ — bit, ^ p 1 ) ,
•  P2i =  (1  +  e -  bit, | ^ ) ,

•  P2n+2i-l =  (1 +  £ — bit, 2̂”*2n an<̂
•  P2n+2i =  ( l + t - b i t , & ± ^ ) .  '

It  is easy to confirm that in this construction all points corresponding to 1-bits 
lie on C, while all the other points lie on the circle C1. In  addition, t  has been
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chosen in such a way that the polygon P  determined by the points px, . . . ,  Pin 
is always convex. Further, note that the width of P  is 2 cos ^  if  and only if 
the OR of the input bits is 1. Since the construction of P  takes 0 (1 ) tim e using 
n processors on the CREW -PRAM , the conclusion follows from Proposition 2.3.1 □

Lem m a 6 .3 .4  M O D A LITY  has a tim e lower bound of fl(log n) on the CREW - 
PR A M , independent of the number of processors and memory cells used.
P ro o f. We shall reduce OR to M O D A LITY . Let b i,b i,...b n be an arbitrary input 
to the OR problem. First, if  6X=1 or 6n= l,  then the answer to the OR problem 
is 1. We shall, therefore, assume that W =  bn =  0. We convert the sequence 
bi, b2, • • •, bn to a new bit-sequence dx, d2, . . . ,  d„, in two stages. In  the first stage 
the sequence 6X, 62, • • •»K  is converted to a sequence ci, C2, . . . ,  c„ defined by setting 
C{ =  0 if  bi =  0 or if  &,_x =  £>,- =  &,+1 =  1, and by setting c,- =  1 otherwise. In the 
second stage, we negate every bit in the sequence cx, c2,...,C n , that is, for every i 
(1 <  i <  n) set di =  c,-.

For further reference we take note of the following property of the sequence 
di, d2,. • • dn.
O bservation 6 .3 .5  If  bt =  1 for some subscript t (2 <  t <  n — 1), then there exist 
subscripts i, j , k w ith 1 < i < j < k < n  such that d; =  d* =  1 and dj =  0. 
P ro o f. Let p (p >  2) be the first subscript for which bp =  1, and let q be the last 
subscript for which bp =  6p+1 =  . . .  =  bq =  1. Since, by assumption 6X =  bn =  0 we 
have 2 < p < q < n  — 1.

Note that in the sequence cx, C2, . . .  c„ we have Cp_x =  0, Cp =  1, Cp+X =  . . .  =  
cq_i =  0, Cg =  1, and c9+x =  0. Consequently, our construction guarantees that 
dp- !  =  1, dp =  0, dp+i  =  . . .  =  dq- i  =  1, dq =  0, and d9+x =  1. Now setting 
i =  p — 1, j  =  p, k =  q +  1, the conclusion follows. □

Having constructed the sequence dx, d2, . . . ,  dn, we proceed to construct a con
vex polygon P  with n +  1 vertices as follows. Consider the unit circle C  centered 
at uj and let ux, u2, . . . ,  un be equally spaced points on the first quadrant of C  such 
that for a l l*  (1 <  i <  n ), ut- =  (1, Let S be a number satisfying (3), and e be 
a positive number less than S. Let C' be the circle centered at u  and with radius 
1 +  e. For every i (1 <  i <  n) let v,- be the intersection between the first quadrant 
of C' w ith the extension of the line segment urn,-. Now P  is a polygon with vertices 
p0,p i , . . .  ,pn such that p0 =  w, and for every i (1 <  i <  n) p,- =  u,- or pi =  u,- 
depending on whether or not d,- is a 0. It  is an easy m atter to confirm that the 
polygon P  is always convex.

We claim that the modality of P  is exactly n +  1 if  and only if the input se
quence contains no bt =  1 with 2 <  t <  n. To show that this is the case, note 
that if  no such t exists, then every vertex of P  is unimodal, and so the modality of
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P  equals n +  1. Conversely, if  such a t exists, then Observation 6.3.5 guarantees 
that jp0 is not unimodal since d(p0,p ,) =  d (p 0,Pfc) =  1 +  e, while d(p0,p j) =  1. It  
follows that the overall modality of P  is larger than n +1. The conclusion follows. □

Lem m a 6.3 .6  Enclosing rectangle has a tim e lower bound of ft(logn) on the 
CREW -PRAM , independent of the number of processors and memory cells used. 
P roo f. We shall reduce OR to ENCLOSING RECTANGLE. For this purpose, 
assume the input to OR to consist of n bits bi, &25 • • • bn. Let 8 be a number 
satisfying

™ T n  -  r b *  (6-4>
and chose a positive e less than 8. The input is mapped to a convex polygon P  
with 8 n  vertices p i,p 25 • • • ,Pnn, with every bit 6,- associated to points p,-, p ,+i, P2n+», 
P2n+»+i ? P 4n+t ? P 4n+t+i> P6n+i ? and P6n+«+i defined as follows:
•  f t  =  ( l  +  e(l -(>,■), S ) ,
. pi+1 = (1 + £(1 -
• P 2 „ + i =  ( l  +  e ( l - f c ) ,

• ? 2 » + i+ i  =  ( l  +  £ ( l - 6 i ) ,S = ± a a l£ ) ,

• P 4 „ + i =  ( l  +  £ ( l - 6 i ) , ^ ) ,
. p 4, + ,+ i  =  ( l  +  e ( l - 6 , ) , G = ± £ ! k ) ,

• P 6 „ + i =  ( l  +  £ ( l - 6 ( ) , e ^ ) ,

• = (x + E(1 -  6.),
It  is easy to confirm that in this construction all points corresponding to 1-bits 

lie on the unit circle, while all the other points lie on the circle of radius 1 +  e. 
In addition, e has been chosen in such a way that the polygon P  determined by 
the points p i , . . .  ,psn is always convex. Further, note that the smallest enclosing 
rectangle has area (1 +  e)24cos2^  if and only if  the OR of the input bits is 0. Since 
the construction of P  takes 0 (1 ) time using n processors on the CREW -PRAM , 
the conclusion follows from Proposition 2.3.1 □

Lem m a 6.3 .7  INSCRIBED TR IA N G LE has a time lower bound of O(logn) on 
the CREW -PRAM , independent of the number of processors and memory cells 
used.
P roo f. We shall reduce OR to INSCRIBED TR IA N G LE. For this purpose, as
sume the input to OR is n bits 6i , 5 bn- Let 8 be a real number satisfying
(6.3) and chose a positive number e less than 8. The input is mapped to a convex 
polygon P  w ith 4n vertices p i,p 2, • • • ,Pim with every bit 6,- associated to points 
P2t - 1, P2i, P2n+2«-i and p2n+2.- defined as follows:

P 2i-i =  (1  +  6,e,
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•  Pjm * - .  =  (1 +  V ,  < » * « - » ), and
• p2„«, = (l + 6ie,i2=î ).

Observe that our construction guarantees that all points corresponding to 0- 
bits lie on the unit circle, all the others lie on the circle of radius 1 +  e, and that 
the resulting polygon is always convex. Further, note that the largest inscribed 
triangle has area s in ^  if and only if  the OR of the input bits is 0. Since the 
construction of P  takes 0 (1 ) tim e using re processors on the CREW -PRAM , the 
conclusion follows from Proposition 2.3.1 □

Combining Proposition 2.3.2 with Lemmas 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.3.6, and 
6.3.7, we have the following result.

Theorem  6.3 .8  AREA, D IA M E TE R , W ID T H , M O D A LITY , ENCLOSING RECT
ANGLE, and INSCRIBED TR IA N G LE have a tim e lower bound of fl(logn) on 
meshes w ith multiple broadcasting of size re x n. □

Next, we show that M A X  DISTANCE, and C O N TA IN M EN T have a tim e lower 
bound of fi(log re) on the CREW -PRAM , by reducing the OR problem to each of 
these problems.

Lem m a 6 .3 .9  M A X  DISTANCE has a time lower bound of ft(logre) on the 
CREW -PRAM , independent of the number of processors and memory cells used. 
P roo f. We shall reduce OR to M A X  DISTANCE. For this purpose, assume that 
the input to OR consists of re bits 6i,& 2> • • • , bn. Let 6 satisfy (3) and let e be a 
positive number less than S. The polygon P  is constructed by associating with 
every bit 6, (1 <  i <  re), the point pi =  (1 +  eft,-, ^ ) .  The polygon Q is con
structed by taking to be the point on the same circle as p,- and diametrically 
opposite to pi. It  is easy to see that both P  and Q are convex. Furthermore, 
the maximum distance between P  and Q is exactly 2 if  and only if  the OR of 
the input sequence is 0. Since the construction of P  and Q takes 0 (1 ) tim e using 
re processors on the CREW -PRAM , the conclusion follows from Proposition 2.3.1 □

Lem m a 6 .3 .10  CO N TA IN M EN T has a time lower bound of fl(logre) on the 
CREW -PRAM , independent of the number of processors and memory cells used. 
P roo f. We shall reduce OR to C O NTAINM ENT. For this purpose, assume the 
input to OR is re bits bi, b2, . . . ,  bn. We use the standard construction to obtain a 
polygon P. Polygon Q is obtained again by the standard construction from the 
sequence by, b2, . . . ,  bn.

It  is easy to see that P  is contained in the interior of Q if  and only if the OR of 
the input sequence is 0. Since the construction of P  and Q takes 0 (1 ) tim e using
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n processors on the CREW -PRAM , the conclusion follows from Proposition 2.3.1 □

To derive tim e lower bounds for M A X  DISTANCE and C O N TA IN M EN T on 
meshes w ith m ultiple broadcasting, we combine Proposition 2.3.2 with Lemmas 
6.3.9 and 6.3.10 To summarize our findings we state the following result.

T heorem  6.3 .11 M A X  VE R TE X DISTANCE and C O N TA IN M EN T have a time 
lower bound of fl(log n) on meshes with m ultiple broadcasting of size n x n. □

6.4 A lgorithm s Involving one C onvex P olygon
The purpose of this section is to show that the tim e lower bounds derived in The
orems 6.3.8 are tight. We propose algorithms for AREA, D IA M E TE R , W ID T H , 
M O D A L IT Y , ENCLOSING RECTANG LE, and INSCRIBED TR IA N G LE  run
ning in O(log n) tim e on meshes with m ultiple broadcasting of size n x n.

Throughout this section we assume a mesh M . w ith multiple broadcasting of 
size n x n .  The input to all our algorithms is a convex polygon P  =  p i,p 2, ■ ■ • ,Pn, 
with pj (1 <  j  <  n ) stored by processor P ( l , j )  of M ..

To solve the AREA problem, we fix an arbitrary vertex, say p i, of P. Now 
broadcasting the coordinates of pi to all the vertices of P, every processor in the 
first row of the mesh can determine the area of the triangle determined by pi, p,-, 
and p.+i. Once this is done, it is a simple m atter to compute the sum of all the 
partial results. By Proposition 2.4.4 this takes O(log n) tim e which is the best 
possible. Thus we have the following result.

Theorem  6 .4 .1  The area of an n-vertex convex polygon stored in the first row 
of a mesh with m ultiple broadcasting of size n x n  can be computed in 0(log n) 
time. Furthermore, this is time-optimal. □

Our solution to the D IA M E TE R  problem relies on the the notion of antipodal 
pairs citePRE. Vertices p,- and pj of a convex polygon P  are an antipodal pair if 
P  admits parallel supporting lines through p,- and pj (see Figure 6.2). It  is well 
known [57] that the diameter of a convex polygon is the largest distance between 
antipodal pairs. It  is also well-known that the number of antipodal pairs in a 
convex polygon w ith n sides is bounded by 3n/2 [57].

Our D IA M E T E R  algorithm begins by replicating the information in the first 
row throughout the mesh. This is done by mandating every processor P ( l , j )  
(1 <  j  <  n), to broadcast the coordinates of the point it stores on the vertical bus
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Figure 6.2: Illustrating antipodal pairs

in its own column.
Next, every processor (1 <  i <  n), broadcasts a packet consisting of

(p,_i,p,-,p,+i )  horizontally on the bus in row i. Every processor P ( i , j ) w ith i <  j  
can now detect whether the points pt- and pj are antipodal. I f  they are, P ( i , j ) 
marks itself. It  is easy to confirm ([57] page 180) that in every row of the mesh, 
the marked processors occur consecutively. Therefore, for every i (1 <  i <  n), 
detecting the leftmost and the rightmost marked processor, along with the number 
of marked processors in row i, called row rank, can be done in 0 (1 ) time. In  one 
broadcast operation this information is sent to P (i, 1). Once this information has 
been gathered in the first column of the mesh, Proposition 2.4.4 guarantees that it 
takes 0(log n) tim e to compute the prefix sums of these items. The corresponding 
value of the prefix sum is then broadcast throughout every row. As a consequence, 
every marked processor knows its rank among the marked processors in the mesh 
M .

It  is an easy observation that in every column of the mesh the marked processors 
occur consecutively. The rank of each processor in every column of the mesh, 
termed the column rank, is easily computed in 0 (1 ) time. It  is an easy observation
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that either the row rank or column rank of a marked processor must be smaller 
than or equal to three. Now the marked processors can be divided into two groups. 
The first group consists of the marked processors with column rank at most three. 
The second group consists of the marked processors, with column rank larger than 
three, but w ith row rank at most three. Our previous observation guarantees that 
all marked processors are thus accounted for.

We only show how the marked processors with column rank at most three are 
handled, for handling the marked processors with row rank at most three is simi
lar. We shall refer to the top-most marked processor in every column as belonging 
to the first generation, the second marked processor in every column is said to be 
of the second generation, and finally, the third marked processor (if any) belongs 
to the third generation. We bring the marked processors to the first two rows of 
the mesh: note that since the total number of antipodal pairs does not exceed 
this is possible. The details of this data movement follow. In  a first step a generic 
processor P ( i , j ) of the first generation holding an item  of rank c, sends the item  
vertically to the diagonal processors P ( j , j ) .  In  turn, P ( j , j ) broadcasts the item  
to P( j ,c)  which broadcasts the item to P ( l ,c ) .  The same data movement is then 
repeated two more time to move the items stored by second and third generation 
processors to the first two rows. In one time unit, every processor in the second 
row sends the item  it holds northbound to the corresponding processor in the first 
row, using the local connection. Finally, the largest Euclidian distance between 
the antipodal pairs is computed in O(logn) time. To summarize our findings, we 
state the following result.

Theorem  6.4.2 The D IA M ETER  problem can be solved in O (logn) time on a 
mesh w ith multiple broadcasting of size nxn .  Furthermore, this is time-optimal. □

Given a set S of n points in the plane, the problem of identifying a pair of 
vertices in S that are farthest apart is central to a number of applications in image 
processing, robotics, and pattern recognition. It  is well-known [57] that such a 
pair of points is obtained by computing the diameter of the convex hull of S. By 
Proposition 6.2.1, the convex hull of a set of n points in the plane can be computed 
in O(logra) time on a mesh with multiple broadcasting of size n x n .  Therefore, 
we have the following result.

C o ro lla ry  6 .4 .3 . The diameter of a set of n points in the plane can be computed 
in O(log n) time on a mesh with multiple broadcasting of size n x n .  Furthermore, 
this is time-optimal. □

We note that the width of a convex polygon [32] is the least distance between

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pairs of antipodal pairs. This observation suggests the following simple algorithm 
to compute the width of a convex polygon. As in the proof of Theorem 6.4.2, all 
the pairs of antipodal pairs are determined, ranked and brought to the first row of 
the mesh. Once there, we only need compute the minimum of the corresponding 
distances between antipodal pairs. By Proposition 2.4.4, this task can be per
formed in O(logn) time. Consequently, we have the following result.

Theorem  6 .4 .4 . The W ID T H  problem can be solved in O (logn) tim e on a 
mesh with multiple broadcasting of size n x n .  Furthermore, this is time-optimal. 
□

The result of Theorem 6.4.4 can be extended to handle the width of a set S of 
n points in the plane [32]. This is defined as the width of the convex hull of S. 
By Proposition 6.2.1, the convex hull of S can be computed in O (logn) time. By 
virtue of Theorem 6.2.4, the width of the convex hull can also be determined in 
O(logn) time. Thus, we have proved the following result.

C o ro lla ry  6.4.5 The width of a set of n points in the plane can be computed 
in O(logn) time on a mesh with multiple broadcasting of size n x n .  Furthermore, 
this is time-optimal. □

We are now interested in devising a time-optimal algorithm to compute the 
modality of a convex polygon. Our algorithm is a parallelization of the sequential 
algorithm in [6]. To make the presentation easier to follow, we need to introduce a 
number of new terms. Let P  =  ei , e2, . . . ,  e„ be an n-vertex convex polygon in edge 
representation. For every i (1 <  i <  n), we let pb(e,) denote the perpendicular 
bisector of edge e,-. We also let op(e;) stand for the unique edge of P  intersected 
by pb(et). Recall that the endpoints of e,-, specified in clockwise order, are p,- and 
Pi+1. We now briefly sketch the modality-finding algorithm in [6].

For every pair of consecutive edges e*, ek+i, let to* be the intersection point 
of pb(efc) and pb(ejt+i). Let e3 =  op(ejt) and let et =  op(efc+i) . We distinguish 
between the following cases.
Case 1. The point to* lies inside P.
Increment the modality counter of all the vertices lying between p3 and pt, but not 
including the last vertex if it  is the intersection of bp(et+1) and et.
Case 2. The point Wk lies outside P  and pb(ei) intersects the edge et+i closer to 
Pk+i than to pk+2.
In this case, increment the modality counter of all the vertices between e*+i and 
op(e*+i) that are not adjacent to Pk+i- The vertex pt is not counted if et =  e*,. 
Case 3. The point Wk lies outside P  and pb(efc) intersects the edge efc+1 closer to
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Pk+ 2  than” to Pk+i •
Increment the modality counter of all the vertices strictly between es and e* that 
are not adjacent to Pk+i- The first vertex in e, is not counted if it is the intersection 
point of es and bp(e*;).
Case 4. The point Wk lies outside P  and neither pb(e*) nor pb(ej;+i) intersect the 
edges ek+1 and ejt, respectively.
In  this case, increment the modality counter of all the vertices between pt+i and 
Ps-

We now show that the above algorithm can be implemented in O(logra) time 
on a mesh with m ultiple broadcasting of size n x n .  The input is an n-vertex 
convex polygon P  =  e 1, e2, . . . ,  en, stored in the first row of the mesh, one edge per 
processor. Using the vertical buses, the first row is replicated throughout the mesh. 
The intention is to process the pair of edges e*, e^+i (1 <  <  n — 1) in the k-th
row of the mesh, and to process the pair en, ex in the n-th row. We now describe 
the processing that takes place in a generic row k of the mesh. O f course, the same 
processing is carried out, in parallel, in all other rows. Processor P ( k , k) computes 
the intersection point Wk of the perpendicular bisectors pb(e*) and pb(e*;+i) . Next, 
using the data movement described in Lemma 6.2.2, we determine in 0 (1 ) time 
whether or not Wk is interior to P.  Further, having broadcast the equations of 
pb(efc) and pb(e*+i) ,  we determine op(ejt) and op(efc+i). Clearly, this operation 
takes 0 (1 ) time since exactly one processor3 determines that the edge it holds is 
intersected by pb(ejt) and another one w ill detect that the edge it holds is cut by 
pb(e*+i).

Consequently, in 0(1 ) tim e the processors in row k of the mesh detect which 
of the four cases above applies. Once this is known, every processor whose vertex 
has its modality incremented is marked. It  is important to note that in every row, 
the marked processors occur consecutively. Further, in every row the first and last 
marked processor send the identity of the edges (resp. vertices) to P(k,  k). By the 
previous observation, the marked vertices form a consecutive chain Ck in P.

We now convert the modality finding problem to the point overlap problem 
in the following natural way. W ith  every edge e* we associate the circular arc 
corresponding to chain Ck- By virtue of Lemma 6.2.2, the corresponding instance 
of the point overlap can be solved in 0(log n) time. W ith  vertex p,- of the polygon 
the modality of p,- is the number of arcs that overlap point i. Consequently, we 
have the following result.

Theorem  6.4.6. The M O D A LITY  problem can be solved in O (logn) tim e on a 
mesh with multiple broadcasting of size n x n .  Furthermore, this is time-optimal. □

3The handling of degenerate cases is similar
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As before, consider a convex polygon P  =  p i ,p2, . . .  ,pn, stored in the first row 
of a mesh M  w ith multiple broadcasting of size n x n ,  with pj stored by processor 

(1 <  J <  n). Our solution to the ENCLOSING RECTANG LE problem 
relies on the following technical result proved in [28].

P roposition  6 .4 .7 . The minimum area rectangle enclosing a convex polygon 
has one side collinear with one of the edges of the polygon. □

Motivated by Proposition 6.4.7, we begin by having every processor P ( l , j )  
(1 <  j  <  n) broadcast the coordinates of the point it stores on the corresponding 
vertical bus. Next, every processor P( i , i ) ,  (1 <  i <  n), broadcasts the equation 
of the edge determined by p, and p,+\ to all the processors in row i. In  each 
row, at most two adjacent processors detect that the point they hold are farthest 
away from the edge PiPi+i ■ We retain the leftmost such processor in each row. 
Along similar lines, precisely two processors detect that P  admits a line of support 
perpendicular to PiPi+i through the point they store. It  is easy to confirm that in 
0 (1 ) tim e processor P(i ,  i) can compute the area of the enclosing rectangle having 
one edge collinear with PiPi+i.

Finally, what remains to be done is to compute the minimum of all the areas 
stored by processors P( i , i )  (1 <  i <  n). This can be done as follows. First, every 
processor P ( i , i ) (1 <  i <  n) broadcasts the value of the area it stores vertically to 
processor P ( l ,z ) .  Once this information is available in the first row of the mesh, 
by Proposition 2.4.1, computing the minimum of these values can be performed in 
O(logre) time. To summarize our findings we state the following result.

Theorem  6.4.8. The ENCLOSING RECTANGLE problem can be solved in 
O(logra) tim e on a mesh with multiple broadcasting of size n x n .  Furthermore, 
this is time-optimal. □

Now Proposition 6.2.1 and Theorem 6.4.8 combined imply the following result.

C o ro lla ry  6 .4 .9 . Given a set S of n points in the plane, the smallest-area rectan
gle that contains all the points in S can be computed in O (logn) time on a mesh 
with multiple broadcasting of size n x n .  Furthermore, this is time-optimal. □

Again, consider a convex polygon P =  p\ ,p2, . . .  ,pn, stored in the first row of 
a mesh M  with multiple broadcasting of size n x n ,  with pj stored by processor 
P ( l , j )  (1 <  J <  n)- Our solution to the INSCRIBED TR IA N G LE problem relies 
on the following technical result.
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Proposition  6.4 .10 . ([26]) If  p,pjt is a chord of a convex polygon the function, 
a,Tea>(piPjPk) is unimodal as pj assumes values on the perimeter of the polygon 
between p,- and pk- □

We begin by having every processor P ( l , j )  (1 <  j  <  n) broadcast the co
ordinates of the point it stores on the corresponding vertical bus. Next, every 
processor P ( i , i ), (1 <  z <  n), broadcasts the equation of the edge PiPi+i to all 
the processors in row i. A t most two adjacent processors detect that the point 
they hold are farthest away from the edge p,p,+i • We retain the leftmost such 
processor in each row and mandate it to send the coordinates of the point it holds 
to P( i , i )  along the bus in row i. It  is easy to see that in 0(1) time processor 
P(i ,  i) can compute the area of the inscribed triangle sharing the edge PiPi+i with 
the original polygon. Finally, every processor P ( i , i ) (1 <  i <  n) broadcasts the 
value of the area it stores vertically to processor P ( l ,  i). Once this information is 
available in the first row of the mesh, computing the maximum of these values can 
be performed in O(logn) time. Furthermore, the correctness of our algorithm is 
guaranteed by Proposition 5.10. Hence we have the following result.

Theorem  6.4 .11 . The INSCRIBED TR IA N G LE problem can be solved in 0(log n) 
time on a mesh with multiple broadcasting of size n x n .  Furthermore, this is time- 
optimal. □

6.5 C om putations on Two C onvex Polygons
The purpose of this section is to show that the time lower bounds derived in Theo
rem 6.3.11 are tight. We propose algorithms for M A X  DISTANCE and CO NTAIN
M EN T problems running in O(logn) time on meshes with multiple broadcasting 
of size n x n .  We also exhibit an 0(1) time algorithm for the M IN  DISTANCE  
problem.

Throughout this section we assume a mesh M  with multiple broadcasting 
of size n x n .  The input to all the algorithms we present are convex polygons 
P  = P1 1 P2 , • • •,Pn and Q =  qi,q2, , qn, with pj and qj stored by processor P { l , j )  
(1 <  j  <  n).

To solve the M A X DISTANCE in optimal time, we parallelize the algorithm of 
Bhattacharya and Toussaint [19]. Specifically, they preprocess P  and Q as follows. 
We shall present the preprocessing on P  only. Find pxmax, Pxmin, Pymax and pymin
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the points of maximum and minimum x and y coordinates in P  (for simplicity we 
assume that they are unique). Let R  be the rectangle with sides parallel to the x 
and y axes through the extreme points of P  determined above. The rectangle R  is 
partitioned into nine subrectangles R i, R-i, . . . ,  Rg each of length x*ma*~*min an(j 
width

In  a perfectly similar way, Q is partitioned into nine rectangles R[, R!2, . . . ,  R!q. 
Further, let Si (1 <  i  <  9) be the set of vertices of P  belonging to Ri, and let S' 
(1 <  i <  9) be the set of vertices of Q belonging to R .̂ A key result in [19] states 
that

P roposition  6 .5 .1 . [19] The maximum vertex distance between P  and Q is 
achieved by maxi<,j<9{diam(5',- U S1')} . □

Our M A X  DISTANCE algorithm begins by computing the convex hulls of the 
two polygons. By Proposition 6.2.2 this can be done in O(logra) time. Further, it 
is not hard to see that each of the pairs Si U Sj (1 <  i , j  <  9) can be generated. 
Now Theorem 6.3.1 and Proposition 6.4.2 guarantee that the diameter of Si U Sj 
can be computed in O(logn) time. Since there are a constant number of such pairs 
we have the following result.

Theorem  6.5.2. The M A X  DISTANCE between two n-vertex convex polygons 
can be computed in O(logn) time on a mesh with multiple broadcasting of size 
n x n .  Furthermore, this is time-optimal. □

It is important to note that the algorithm of Bhattacharya and Toussaint [19] 
solves the problem of computing the maximum distance between two arbitrary 
planar sets of points. The only additional step involved is the compute the con
vex hulls of the original sets of points. By Proposition 6.2.1 this can be done in 
O(logn) tim e on a mesh with multiple broadcasting of size n x n .  Therefore, we 
have the following result.

C o ro lla ry  6.5.3. The maximum distance between two arbitrary n-point sets 
in the plane can be computed in O(log n) time on a mesh with multiple broadcast
ing of size n x n .  Furthermore, this is time-optimal. □

As before, consider convex polygons P  =  pi,P2 , • • • ,Pn and Q =  qi, 92, • • •, qn, 
with pj and qj, stored in the first row of a mesh M  with multiple broadcasting 
of size n x n , with pj and qj stored by processor P ( l , j )  (1 <  j  <  n ). To check 
whether P  is contained in Q we only need check whether every vertex of P  belongs 
to the interior of Q. By Lemma 6.2.2, to solve this task, every vertex of P  needs
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a row of the mesh and 0 (1 ) time. Finally, a simple maximum prefix establishes 
whether the containment holds for all vertices. To summarize our findings we state 
the following result.

Theorem  6.5.4. The C O N TA IN M EN T problem for two n-vertex convex poly
gons can be solved in O (logn) tim e on a mesh with multiple broadcasting of size 
n x n .  Furthermore, this is time-optimal. □

Consider separable convex polygons P  =  pi,p2, • • • ,pn and Q =  qx, q2, . . . ,  ?n, 
w ith P  and Q stored in the first column and the first row, respectively, of a mesh 
M.  w ith m ultiple broadcasting of size n x n .  For definiteness, we assume that for 
all i (<  i <  n), P ( l ,  i) stores qi and P(i ,  1) stores p,-. We propose to show that in 
this setup, the task of computing the smallest distance between P  and Q can be 
solved in 0 (1 ) time.

To make the exposition easier to follow, we assume without loss of generality 
that the two polygons are separable in the x direction, with P  to the left of Q. 
Let Tu and 7} be the upper and lower common tangent of P  and Q. Let Tu touch 
P  and Q at pr and qa and let Ti touch P  and Q at pt and qw. Let Cp and Cq  be 
the m utually visible chains in P  and Q respectively. In other words, Cq  involves 
vertices q3, qa+ i , . . . ,  qw, while the chain Cp involves the vertices pt,pt+i , . . .  ,pr . 
Simple geometric considerations confirm that to compute the minimum distance 
between P  and Q we only need examine the distance from vertices in Cp to C q. 
Now a result in [23] guarantees that the distance function of vertices in these chains 
is unimodal. Specifically, for every vertex u in Cp,  the distance to any point v (not 
necessarily a vertex) of Cq  first decreases and then increases, as v moves from qs 
to qw, w ith the minimum achieved by either a vertex of Q or by the perpendicular 
projection of u  on the boundary of Q.  A mirror property holds for points in Cq  and 
their distance function to Cp.  Once the minimum distance is computed for every 
point in the chains Cp and C q , the minimum distance between the two polygons 
can be determined in 0(1) tim e by exploiting the convexity of the two polygons.

We now present the details of our algorithm. To begin, we show how the upper 
tangent Tu is computed. First, using vertical buses, the contents of the first row 
is replicated throughout the mesh. In every row * (1 <  i <  n) processor P(i ,  1) 
broadcasts pi horizontally to the whole row. In row i (1 <  i <  n), a unique proces
sor P ( i , j ) w ill find that the line determined by p,- and qj is the upper supporting 
line to Q from p,-. In the next time unit, this processor broadcasts qj back to 
P(i ,  1). In  turn, by checking whether both p,_i and p,+1 are below the line p ,^ , 
processor P(i ,  1) detects whether piqj is the upper tangent of P  and Q. Clearly, 
exactly one processor in the first column of M. detects this condition. The lower 
common tangent is determined similarly. Note that the whole computation runs
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in constant time. Therefore, we have the following result.

Lem m a 6.5.5 The common tangents of two n-vertex convex polygons stored in 
one row/column of a mesh with multiple broadcasting of size n x n can be com
puted in 0 (1) time. □

Once Tu and 7} have been computed, identifying the chains Cp  and Cq  is 
achieved by a simple broadcasting and marking operation. We now show how 
the minimum distance from a vertex p,- in Cp  to Cq  is computed in one row of 
M . .  Of course, the same computation is performed, in parallel, in all rows in 
which P ( i ,  1) stores a vertex in Cp. Processor P ( i ,  1) broadcasts p,- horizontally to 
the whole row i. Every processor in row i  (1 <  * <  n), storing a vertex qj in Cq 
computes the distance d(p,-, qj). Notice that a unique processor P ( i ,  k ) detects that 
d(p», <?fc) <  d(p,-, qk- i )  and that d(pi,qk) <  d(p,-, <7fc+i). In addition, this processor 
computes the intersection points of each of the edges qk-iqk and qkqk+i with the 
perpendiculars from p,- to these two edges. If  one of these points is interior to one 
of the edges qk-iqk or qkqk+i, then P ( i , k )  reports the corresponding perpendicular 
distance back to P ( i ,  1). Otherwise, P ( i , k )  reports d(p,-, qk).

Now every processor in the first column of the mesh that contains a vertex in 
Cp  compares the minimum distance achieved by its own vertex with the minimum 
distances achieved by the vertices stored by its two neighbors. Convexity guaran
tees that exactly one of them will detect the minimum distance. The previous steps 
are then repeated for every vertex in C q, thus obtaining the minimum distance 
between a vertex in Cq  and a point (not necessarily vertex) in Cp.  Once this 
information is available, a simple comparison establishes the minimum distance 
between P  and Q.  To summarize our findings we state the following result.

Theorem  6 .5.6 . The M IN  DISTANCE problem involving two separable n-vertex 
polygons stored in one row/column of a mesh with multiple broadcasting of size 
n x n  can be solved in 0 (1 ) time. □

6.6 C onclusions
For two n-vertex convex polygons P  and Q,  we have established fl(log n) time 
lower bounds for the following problems:
• computing the area of P ;
• computing the diameter of P;
• computing the width of P;
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• computing the modality of P;
•  computing the smallest area rectangle enclosing P;
•  computing a maximum-area inscribed triangle sharing an edge with P;
•  computing the maximum distance between P and Q;
•  detecting whether or not P is contained in the interior of Q.

We then have showed that the bounds are tight by providing O(logn) algo
rithms to accomplish these tasks on meshes with multiple broadcasting of size 
n x n .  We have also shown that the problem of computing the minimum distance 
between two separable n-vertex polygons stored in one row/column of a mesh with 
multiple broadcasting of size n x n  can be solved in 0(1) time.

Other problems seem to be harder. First, we don’t know how to determine 
the largest inscribed triangle in a given convex polygon. In [26] an elegant 0 (n) 
time sequential algorithm is presented but it does not seem to be parallelizable to 
run in 0 (log n) time. Further, it would be nice to solve the symmetric problems 
of computing the smallest-area enclosing triangle as well as the largest enscribed 
circle and rectangle.
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Chapter 7 

Tree Problems

7.1 Introduction
Encoding the shape of an ordered tree is a basic step in a number of algorithms in 
integrated circuit design, automated theorem proving, and game playing [25, 73]. 
The common characteristic of these applications is that the information stored at 
the nodes is irrelevant, as one is only interested in detecting whether two ordered 
trees have the same “shape”. As it turns out, if we ignore the contents of the 
nodes of an n-node tree T , then the remaining shape information can be uniquely 
captured by a string of 2n bits, referred to as the encoding of T  [50, 73]. Conversely, 
given a string of 2n bits, a number of practical applications ask to recover the 
unique n-node ordered tree (if any) corresponding to this encoding.

One of the contributions of this thesis is to provide time-optimal tree algorithms 
on the M M B architecture. Specifically, we show that the following tasks can be 
solved in O(logn) time on an M M B of size n x n:
• Encode an n-node binary tree into a 2n-bitstring;
• Encode an n-node ordered tree into a 2n-bitstring;
• Recover an n-node binary tree from its 2n-bit encoding;
• Recover an n-node ordered tree from its 2n-bit encoding.

We also show that the following tasks can be performed in 0 (1) time:
• Reconstruct an n-node binary tree from its preorder and inorder traversals;
• Reconstruct an n-node ordered tree (forest) from its preorder and postorder 
traversals.

Our algorithms rely on novel time-optimal algorithms involving sequences of 
parentheses, that we also develop. Specifically, we show that each of the tasks can 
be solved in O(logn) time:
• determining whether a sequence of n parentheses is well-formed;
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•  finding all the matching pairs in a well-formed sequence of parentheses;
•  determining the closest enclosing pair for every matching pair in a well-formed 
sequence.

The remainder of the chapter is organized as follows. Section 7.2 presents our 
lower bound arguments. Section 7.3 discusses the details of our parentheses algo
rithms. Section 7.4 presents time-optimal algorithms for encoding and decoding 
binary and ordered trees. Section 7.5 addresses the problems or reconstructing 
binary and ordered trees from their traversals. Finally, Section 7.6 concludes with 
some final remarks and open problems.

7.2 Lower B ounds
L E F T M O S T  O N E: Given a sequence r  of n  bits, determine the position of the 
leftmost 1 in r.
It  is a trivial observation that OR reduces to LEFTMOST ONE in 0(1) time. 
Therefore, Proposition 2.3.1 implies the following result.

C orollary 7.2.1 LEFTMOST ONE has a time lower bound of fl(logn) on the 
CREW -PRAM, regardless of the number of processors and memory cells used. □

We are now in a position to present our lower bound arguments. A sequence 
a =  X\X2 . . .  xn of parentheses is said to be well-formed, if it contains the same 
number of left and right parentheses and in every prefix of <r the number of right
parentheses does not exceed the number of left parentheses. The WFS decision
problem is stated as follows.
W FS : Given a sequence a =  X1 X2 . . .  xn of parentheses, is a  well-formed?

Lem m a 7.2.2 WFS has a time lower bound of fi(logn) on the CREW -PRAM, 
regardless of the number of processors and memory cells used.
Proof. We reduce OR to WFS. Assume that the input to OR is a sequence 
&i,&2, . . . , 6n. We construct a sequence cic2 . . .c2n of parentheses by setting for 
every j  (1  <  j  <  n ):
• c2j-_i =  ‘( ’ and c2j- =  ‘) ’, whenever bj =  0 ;
•  C2 j ~i =  ‘) ’ and c2j- =  ‘( ’, whenever bj =  1 .
Our construction guarantees that the solution to OR is 0 if and only if the sequence 
cic2 . . .  c2n is well-formed. Thus, the conclusion follows by Proposition 2.3.1. □

Next we define the classic parentheses matching problem.
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M A T C H IN G : Given a well-formed sequence a =  x\x-i. . .  xn of parentheses, for 
each parenthesis in <r, find its match.

Lem m a 7.2.3 MATCHING has a time lower bound of fl(logn) on the CREW- 
PRAM, regardless of the number of processors and memory cells used.
Proof. We reduce OR to MATCHING. For this purpose, let the input to OR con
sist of n bits 61, &2) • • • 1 bn- We convert this input to a sequence C0C1C2 . . .  C2n+i of
parentheses by writing Co =  ‘( ’ and C2„+i =  ‘) \  and by setting for all j  (1  <  j  <  n ):
•  C2j_ i =  ‘(’ and C2j =  ‘) \  whenever bj =  0 ;
• C2j_ i =  ‘) ’ and C2 j  =  ‘( ’, whenever bj =  1 .

An easy inductive argument on the number of l ’s in 61, 62, . . . ,  bn shows that 
the sequence C0C1C2 . . .  C2n+i is always well-formed. Furthermore, the matching pair 
of Co is C2„+i if and only if the answer to the OR problem is 0. The conclusion 
follows by Proposition 2.3.1. □

Given a well-formed sequence of parentheses in which every parenthesis knows 
its matching pair, it is often of interest to determine the solution to the following 
problem.
E N C L O S IN G  P A IR : Given a well-formed sequence a — x\x<i. . .  xn of parenthe
ses, for every matching pair of parentheses in <r, find the closest pair of parentheses 
that encloses it.

Lem m a 7.2.4 ENCLOSING PAIR has a time lower bound of fi(logn) on the 
CREW -PRAM, regardless of the number of processors and memory cells used. 
Proof. We reduce LEFTMOST ONE to ENCLOSING PAIR. Assume that the 
input to LEFTMOST ONE is 61, bz, . . . ,  bn. Construct a sequence C1C2 . . .  C4„+ 2 of 
parentheses as follows:
• C2n+1 =  C2n+2 =  ‘Vi
furthermore, for all j  (1  <  j  <  n) set
•  c2„ -2j+ i =  ‘0; c2n-2j+2 =  *)’; c2„+2j+ i =  c2n+2j+2 =  ‘) \  whenever bj = 0 ;
•  c2„_2j+ i =  c2„—2j +2 =  T ; C2n+2j+ i =  T i c2n+2j +2 =  ‘) \  whenever bj = 1 .
Our construction guarantees that the sequence is well-formed and that every paren
thesis knows its match; in particular, c2n+i and C2n+2  are a matching pair. Further
more, the closest enclosing parentheses for the pair (c2n+i, c2„+2) is (c2n_2jt+2 5 C2n+2*+i)> 
if and only if k is the position of the leftmost 1 in 61, 62? • • ■ > bn. Now the conclusion 
follows by Corollary 7.2.1 □

A binary tree T  is either empty or consists of a root and two disjoint binary 
trees, called the left subtree, Tl and the right subtree, T r . In many contexts, 
it is desirable to encode the shape of T  as succinctly as possible. Many encoding
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schemes are known [50, 73]. In this chapter, we are interested in one such encoding 
scheme recursively defined as follows:

C 11 JL IS dliptJTj

a  1ct(7l)0<t(T'jr )  otherwise.
if T  is empty;

(7.1)

It  is not hard to see that under (7.1) an arbitrary n-node binary tree is encoded 
into 2n bits. Refer to Figure 7.1 for an example.

1100 110010

111000110010

10 10 10
Figure 7.1: A binary tree and its encoding

B IN A R Y  T R E E  E N C O D IN G : Given an n-node binary tree, encode it into 2n 
bits.

Lem m a 7.2.5 BINARY TREE ENCODING has a time lower bound of fi(log n) 
on the CREW-PRAM, regardless of the number of processors and memory cells 
used.
Proof. We reduce OR to BINARY TREE ENCODING. Assume that &i, 62, . . . ,  6n 
is an arbitrary input to OR. Convert this bit sequence to an n-node binary tree T  
with nodes 1 , 2 ,3 , . . .  ,n . Specifically, we associate with every bit bj (1  <  j  <  n) 
the node j  of T , such that:
•  1 is the root of T;
•  for every i (1 <  i <  n — 1), node i +  1 is the unique child of i. Moreover, i +  1 
is the left child of i if bj =  1 and the right child otherwise.

Clearly the construction of T  takes 0(1) time. Let cr(T) =  C1C2 . . .  C2„ be the 
2n-bit encoding of T. We rely on the following simple observation.

Observation 7.2.6 c2„_i =  1 if and only if the answer to OR is 0.
Proof. Observe that if all the bits in the string 61, b2 , . . . , b n are 0 then, by our 
construction and (7.1) combined, C2„_i =  1. Conversely, let j  be the position of 
the leftmost 1 in b\, i>25 • • • > bn. Clearly, (7.1) guarantees that the encoding of the 
subtree rooted at j  is l<r(J)+i ) 0  and, since by construction node j  has no right 
child, this is a suffix of the encoding of T. Since cr(Tj+1) must end in a 0, it follows 
that C 2n - i  =  0  and the conclusion follows. □

By virtue of Observation 7.2.6, once the encoding is available, one can determine
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in 0 (1 ) time the answer to the OR problem. Therefore, by Proposition 2.3.1, the 
encoding algorithm must take fi(log n) time. □

The converse operation involving the recovery of a binary tree from its encod
ing is of interest in a number of practical applications. We assume that every node 
in a binary tree maintains pointers to its left and right children. We state the 
problem as follows.
B IN A R Y  T R E E  D E C O D IN G : Recover an n-node binary tree from its 2n-bit 
encoding.

Lem m a 7.2.7 BINARY TREE DECODING has a time lower bound of Q(log n) 
on the CREW -PRAM, regardless of the number of processors and memory cells 
used.
Proof. We reduce OR to BINARY TREE DECODING. Let &i, b2, . . . ,  bn be an 
arbitrary input to OR. First, if 61 =  1, then the answer to OR is 1 . We may, 
therefore, assume that 61 =  0. Construct a well-formed sequence of parentheses, 
Coci. . .  C2„+i as described below:
• co =  ‘(’ ; c2n+i =
•  C2.-1 =  c2i =  ‘) ’, whenever &,• =  0 ;
•  c2,--i =  ‘) ’ and c2i =  *(’, whenever &,• =  1 and 6,_i =  0 ;
•  c2,_i =  ‘(’ and C2,- =  ') ’, whenever &,• =  1 and 6,_i =  1 .

It  is easy to verify that the resulting sequence is well-formed and so, interpret
ing every ‘( ’ as a 1 and every ') ’ as a 0 , coCi. . .  C2„+i is the encoding of a binary 
tree T  with n -f 1 nodes. Notice that root(T) has two children if and only if the OR 
of the input sequence is 1. Therefore, once the decoding is available, one can solve 
the OR problem in 0(1 ) time. Now Proposition 2.3.1 implies that any algorithm 
that performs the decoding must take fl(log n) time. □

An ordered tree T  is either empty or it contains a root and disjoint ordered 
subtrees, T i, T2, . . . ,  2*. The encoding <t(T) of T , is defined as follows:

„ ( T \  -  f  e i { T i s  ‘ “ H P ty  ( 7 0 )
 ̂ \  l a ( T i ) a ( T 2) . . .  <j(Tjt)0 otherwise. ' ' '

An easy inductive argument shows that the encoding of an n-node ordered tree is 
a sequence of 2n bits. Refer to Figure 7.2 for an example.

O R D E R E D  T R E E  E N C O D IN G : Given an n-node ordered tree, encode it into 
2 n bits.
Lem m a 7.2.8 ORDERED TREE ENCODING has a time lower bound of Q(log n) 
on the CREW-PRAM, regardless of the number of processors and memory cells 
used.
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11010100,

11101010011000

1100

10 10 10 10
Figure 7.2: An ordered tree and its encoding

Proof. We reduce OR to ORDERED TREE ENCODING. Let bu b2, . . . , b n be an 
arbitrary input to OR. We add two bits b0 =  1 and bn+i =  0. The new sequence 
bo, bi ,b2, . . . ,  bn + 1 is converted to an ordered tree T  as follows:
• bo is the root;
•  for a lii (1  <  i <  n +  1 ), the parent of 6,- is bo if £>,• =  0  and 6n+1 otherwise.
Let C1C2 . . .  C2n+4  be the 2(n+2)-b it encoding of T .  We rely on the following result.

Observation 7.2.9 c2n+2 =  1 if and only if the OR of the input sequence is
0 .
Proof. If  all bits in bi, b2, . . . , b n are 0 then, by (7.2) and our construction, 
C2n+2 =  1- Conversely, if there exist l ’s in the sequence 61, b2, . . . ,  6n, then the 
node of T  corresponding to 6n+i is not a leaf. Therefore, (7.2) guarantees that 
£-2n+2 =  c2n+3 =  C2n+4 =  0  and the conclusion follows. □
By Observation 7.2.9, once the encoding is available, the answer to OR can be 
obtained in 0 (1 ) time. Therefore, by Proposition 2.3.1, the encoding algorithm 
must take fl(logn) time. □

The converse operation requires recovering an ordered tree from its encoding. 
Specifically, the tree is assumed specified in parent pointer representation. We 
state the problem as follows.
O R D E R E D  T R E E  D E C O D IN G : Recover an n-node ordered tree from its 2n- 
bit encoding.

Lem m a 7.2.10 ORDERED TREE DECODING has a time lower bound of fI(log n) 
on the CREW-PRAM, regardless of the number of processors and memory cells 
used.
Proof. We reduce ENCLOSING PAIR to ORDERED TREE DECODING. Let 
the input to ENCLOSING PAIR be S1S2 .. . S2n- Augment this sequence with so 
=  ‘(’ and S2n+i =  ‘) ’- Thus, interpreting every '( ’ as a 1 and every ‘)’ as a 0 we 
obtain the valid encoding of some ordered tree T  under (7.2). Now, consider any 
algorithm that correctly recovers T  from the encoding above. It  is easy to see that
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the setting of parent pointers gives exactly the solution to the ENCLOSING PAIR  
problem for the augmented sequence. The conclusion follows from Lemma 7.2.4. 
□

Recall that Proposition 2.3.2 guarantees that if Tm (n) is the execution time of 
an algorithm for solving a given problem on an n-processor M M B, then there ex
ists a CREW -PRAM  algorithm to solve the same problem in Tp(n) =  Tm (ti) time 
using n processors and 0 (n ) extra memory. Now Proposition 2.3.2 together with 
Lemmas 7.2.2, 7.2.3, 7.2.4, 7.2.5, 7.2.7, 7.2.8, and 7.2.10 imply the following result.

T heorem  7.2.11 W FS, M ATCHING , ENCLOSING PAIR, B INARY TR EE EN
CODING, B INARY TR EE DECODING, ORDERED TR EE ENCO DING , and 
ORDERED TREE DECODING have a time lower bound of fi(log n) on an M M B  
of size n x n. □

7.3 T im e-O ptim al P arentheses A lgorithm s
The purpose of this section is to present three time-optimal algorithms involving 
sequences of parentheses on an M M B of size n x n .  In addition to being interest
ing in their own right, these algorithms are instrumental in our subsequent tree 
algorithms.

Consider a sequence a — x \x 2 . . .  xn of parentheses stored one item per pro
cessor in the first row of an M M B of size n x n, with (1 <  k <  n) stored by 
P ( l ,k ) .

Our first algorithm decides whether a  is well-formed. Begin by assigning a 1 to 
every left parenthesis and a —1 to every right parenthesis, and compute the prefix 
sums of the resulting sequence. Note that a  is well-formed if and only if the total 
sum is zero and all prefix sums are non-negative. Every processor for which the 
prefix sum is negative marks itself. Using the prefix sums algorithm of Proposi
tion 2.4.7 we rank all the marks. Trivially, we can move all the marks to the left 
most positions of the first row of the mesh in 0 (1 ) time. To check whether a  is 
well-formed we only need verify that P ( l ,  1) does not contain a mark. Note that 
the entire computation is performed in O(logn) time on an M M B of size n x n .  
Theorem 7.2.11 guarantees that this is the best possible. We have the following 
result.

Theorem  7.3.1 Checking whether a sequence cr of n parentheses is well-formed 
takes O(logra) time on an M M B of size n x n. Furthermore, this is time-optimal.
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□

Next, assuming that the sequence a  =  x\x 2 • • • #n is well-formed, we present an 
algorithm to find all the matching pairs. The idea is as follows. First, we compute 
a sequence w2, . . . ,  wn obtained from cr by setting u;i=0 and by defining Wk
(2 <  k <  n) as follows:

(1 if both Xk- 1 and Xk are left parentheses;
—1 if both Xk- 1 and Xk are right parentheses;

0 otherwise.

We now compute the prefix sums of uq, w2, . . . ,  wn and let the result be ei, e2, . . . ,  
en. By Proposition 2.4.7, this operation is performed in O(logn) time. It  is easy
to see that left and right parentheses a:,- and xj are a matching pair if and only if
Xj is the first right parenthesis to the right of a:,- for which e,- =  ej.

Further, with each parenthesis Xk ( 1  <  k <  re), we associate the tuple (e ,̂ k). 
On the set of these tuples we define a binary relation X by setting

(e,-, i) X  (ej, j )  whenever (e,- <  ej) or [(e,- =  ej) and ( i <  j)] .

It  is an easy exercise to show that X is a linear order. Now, sort the sequence 
(ei, 1), . . . ,  (e„,re) in increasing order of X. By Proposition 2.4.4, sorting the or
dered pairs can be done in O(logn) time. The key observation is that, as a result 
of sorting, the matching pairs occur next to one another. Consequently, we have 
the following result.

Theorem  7.3.2 Given a well-formed sequence of re parentheses as input, all match
ing pairs can be found in 0  (log re) time on an M M B of size re x re. Furthermore, 
this is time-optimal. □

Finally, we are interested in finding a time-optimal solution to the ENCLOS
ING  PAIR problem stated in section 7.2. For this purpose, consider a well-formed 
sequence a  =  X\X2 . . .  xn of parentheses, stored one item per processor in the first 
row of the mesh. We assume that every parenthesis in a knows its match. The 
details of the algorithm follow.
Step 1 . Find the match of every parenthesis in a; every processor P ( l , i )  stores 
in a local variable the position j  of the match Xj of X{.
Step 2 . Solve the corresponding instance of the ANSV problem.
It  is not hard to see that at the end of Step 2 every processor knows the identity 
of the closest enclosing pair. By Proposition 2.4.6 and Theorem 7.3.2, the run
ning time of this simple algorithm is bounded by 0(log n). By Theorem 7.2.13, this 
is the best possible on this architecture. Thus, we have proved the following result.
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Theorem  7.3.3 Given a well-formed sequence a  =  X1X2 • • - xn parentheses stored 
one item per processor in the first row of an M M B of size n x n, the ENCLOSING  
PAIR problem can be solved in O(logn) time. Furthermore, this is time-optimal. □

7.4 E ncoding and D ecod ing  Trees
The purpose of this section is to show that the task of encoding n-node binary and 
ordered trees into a 2n-bitstring can be carried out in O(log n) time on an M M B  
of size n x n .  By virtue of Theorem 7.2.11, this is time-optimal.

Consider an n-node binary tree T  with left and right subtrees Tl  and Tr , 
respectively. We assume that the nodes of T  are stored, one item per processor, 
in the first row of an M M B of size n x n .  We further assume that every node in T  
maintains pointers to its left and right children. First, we show how to associate 
with T  the unique encoding <r(T) defined in (7.1).

Our encoding algorithm can be seen as a variant of the classic Euler-tour tech
nique [69]. We proceed as follows. Replace every node u of T  by 3 copies, u1, u2, 
and it3. If  u has no left child, then set link(u1)<—it2, else if v is the left child of 
it, set link(itx)<—u1 and link(u3)<—u2. Similarly, if it has no right child, then set 
link(u2)<— it3 else if w is the right child of u then set link(u2)<— w1 and link(u;3)<—it3. 
It  is worth noting that the processor associated with node u can perform the pointer 
assignments in 0 (1 ) time. What results is a linked list starting at root(T ) 1 and 
ending at root(T) , with every edge of T  traversed exactly once in each direction. 
It  is easy to confirm that the total length of the linked list is 0 (n ). Finally, assign 
to every u1 a 1, to every u2 a 0 and delete all elements of the form u3. It is now 
an easy matter to show that what remains represents the encoding of T  specified 
in (7.1).

The correctness of this simple algorithm being easy to see, we turn to the 
complexity. Computing the Euler tour amounts to setting pointers. Since all the 
information is available locally, this step takes 0 (1 ) time. The task of eliminating 
every node of the form it3 can be reduced to list ranking, prefix computation, and 
then compacting in the obvious way. By virtue of Propositions 2.4.1, and 2.4.7 
these tasks can be performed in O(logn) time. By Theorem 7.2.13, this is the best 
possible. Consequently, we have the following result.

Theorem  7.4.1 The task of encoding an n-node binary tree into a 2n-bitstring 
can be performed in O(logn) time on an M M B of size n x n .  Furthermore, this is 
time-optimal. □
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I t  is worth noting here that the encoding algorithm described above is quite 
general and can be used for other purposes as well. For example, the preorder- 
inorder traversal of T  is obtained by replacing for every node u of T , u1 and u2  

by the label of u (see [52] for details). We will further discuss properties of the 
preorder-inorder traversal in the context of reconstructing binary trees from their 
preorder and inorder traversals in section 7.5.

Our encoding algorithm for ordered trees is very similar to the one described 
for binary trees. Consider an n-node ordered tree T. It  is well-known [50] that for 
the purpose of getting the encoding (7.2) of T  we only need to convert T  into a 
binary tree B T  as in [35] and then to encode B T  using (7.1). It  is easy to confirm 
that the resulting encoding is exactly the one defined in (7.2). The conversion of 
T  into B T  can be performed in 0 (1 ) time since it amounts to resetting pointers 
only. By Theorem 7.4.1, the encoding of B T  takes O(logn) time. By Theorem 
7.2.11 this is the best possible. Consequently, we have the following result.

Theorem  7.4.2 The task of encoding an n-node ordered tree into a 2n-bitstring 
can be performed in O(logn) time on an M M B of size n x n .  Furthermore, this is 
time-optimal. □

Before addressing the task of recovering binary and ordered trees from their 
encodings, we introduce some notation and review a few technical results. Let T  
be a binary tree and let v be a node of T. We let T v stand for the subtree of T  
rooted at v. A bitstring r  is termed feasible if it contains the same number of 0’s 
and l ’s and in every prefix the number of 0’s does not exceed the number of l ’s. 
Recently, Olariu et al. [50] have shown that every feasible bitstring is the encoding 
of some binary tree. For later reference, we state the following technical result [50].

Proposition 7.4.3 A nonempty bitstring t  is feasible if and only if for every 
1 in r  there is a unique matching 0 such that r  can be written as t i 1t 20t 3, with 
both r2 and TiT3 feasible. □

Proposition 7.4.3 motivates us to associate with every 1 and its matching 0, 
a node v in T. The following simple observation [50] will justify our decoding 
procedure.

Observation 7.4.4. The corresponding decomposition of t  as T ilr20r3 has the 
property that ^ (T if)  =  r2, and (t{Tr ) is a prefix of r3. □

Observation 7.4.4 motivates our algorithm for recovering a binary tree from its
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encoding. Let r  be a feasible bitstring. For every 1 in r  we find the unique matching 
0 guaranteed by Proposition 7.4.3. The corresponding (1,0) pair is associated with 
a node v in the binary tree T  corresponding to r .  We then compute the left and 
right children of v. The details of the algorithm are spelled out as follows. Begin 
by ranking the l ’s of r  and use the ranks as indices in T. For every 1, find its 
unique matching 0. Let u,- be the node of T  corresponding to the 1 of rank i and 
to its matching 0; let pt- and g,- denote the positions in r  of the 1 of rank i and 
that of its matching 0, respectively. The processor in charge of u,- sets pointers as 
follows:
•  left(uf) <— n il in case q, =  p ,+ l,  and left(u,) <— v,+i otherwise;
•  right (u,) <— Vj if pj =  q, +  1, and n il otherwise.

The correctness follows immediately from Proposition 7.4.3 and Observation 
7.4.4. Therefore, we turn to the complexity. Note that to rank all the l ’s we need 
to compute their prefix sum. By Proposition 2.4.7, this task can be performed 
in O(logra) time. By Theorem 7.3.2, the matching takes O(logrz) time. Finally, 
the setting of pointers can be done in 0(1 ) time. Thus, we have the following result.

Theorem  7.4.5 The task of recovering an n-node binary tree from its 2n-bit 
encoding can be performed in O(logn) time on an M M B  of size n x n. Further
more, this is time-optimal. □

The task of recovering an n-node ordered tree T  from its 2n-bit encoding is 
similar. We begin by perceiving the encoding of T  as the encoding of a binary 
tree B T . Once, this tree has been recoved as we just described, we proceed to 
convert B T  to T  using the classic ordered-to-binary conversion [35]. As it turns 
out, this latter task can be carried out in O(logn) time using the sorting algorithm 
of Proposition 2.4.4. To summarize our findings, we state the following result.

Theorem  7.4 .6  The task of recovering an n-node ordered tree from its 2n-bit 
encoding can be performed in O(logn) time on an M M B of size n x n. Further
more, this is time-optimal. □

7.5 R econ stru ction  o f Trees from  Traversals
The purpose of this section is to present 0 (1 ) time algorithms for reconstructing 
binary and ordered trees from their traversals.

It  is well-known that a binary tree can be reconstructed from its inorder traver
sal along with either its preorder or its postorder traversal [35]. Our first goal is 
to show that this task can be performed in 0 (1 ) time on the M M B. The main
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idea of our algorithm is borrowed from Olariu et al. [52], where the reconstruction 
process was reduced to that of merging two sorted sequences.

Let T  be an n-node binary tree. For simplicity, we assume that the nodes of T  
are { 1 , 2 , . . . ,  n}. Let ci, C2, . . . ,  Cn and c?i, d2, . . . ,  dn be the preorder and inorder 
traversals of T , respectively. We may think of cx,c2, . . . , c „  as 1, 2, . . . , n ,  the 
case where ci, C2, . . . ,  Cn is a permutation of 1, 2, . . . ,  n reducing easily to this case
[52], In preparation for merging, we construct two sequences of triples. The first 
sequence is (1, j i ,  ci), (1, j 2, c2) , . . . ,  ( l , j n, Cn) such that dj( =  c;, (i =  1, 2, . . . ,n ) .  
In  other words, the second coordinate j i  of a generic triple represents the position 
of Ci in the inorder sequence dx, d2, . . . ,  dn. The second sequence consists of the 
triples (2, l ,dx), (2 ,2,^2), • • •, (2,n ,dn) (Refer to Figure 7.3).
Denote by f ]  the set of triples

{(1 j j i ) ^x), ( 1> J2> C2) , . . . ,  (1, j n, Cn), (2, 1, c?x), (2, 2, d2) , . . . ,  (2, n, dn) | ,

and define a binary relation on []  as follows: for arbitrary triples (a, /3,7 ) and 
(a ', /?', 7 ') in n  we have:
R u le  1 . ( (a  =  1) A (a' =  1)) -+ (((a , ft,7 ) -< (a ', /?', 7 ')) «-> (7 <  V)) l  
R u le  2. ((a  =  2) A (a' =  2)) -> (((a ,fl, 7 ) X (a',/3', 7 ')) <->(/?< ? ));
R u le  3. ((a  =  1) A (o' =  2)) -  (((at, j8, 7 ) -< (a ',/3 ',7 ')) ~  ((/3 <  ? )  V (7 <  i ) ) ) -  
In view of the rather forbidding aspect of Rules 1, 2 and 3, an explanation is in 
order. First, note that Rules 1 and 2 confirm that with respect to the relation ~< 
both sequences

(1) j i > Cx), (1 > 2̂) , . . . ,  (1, jn, Cn) &nd (2,1, d\ ), (2,2, cf2) , . . . ,  (2, 72, dn)

are sorted. Intuitively, Rule 3 specifies that in the preorder-inorder traversal 
any pair of distinct labels u and v must occur in the order or
“...U...U...U...U...” [52] (refer to Figure 7.3).

Consider the sequence ex, e2, . . . ,  e2n obtained by extracting the third coor
dinate of the triples in the sequence resulting from merging the two sequences 
above. The following fundamental result proved in [52] will justify our algorithmic 
approach.

Proposition  7.5.1 [52] The sequence el5 e2, . . . ,  e2„ is the preorder-inorder traver
sal of T. □

We now present the details of an algorithm that, starting with the preorder 
and inorder traversals of a binary tree T , produces the preorder-inorder traversal 
ex, e2, . . . ,  e2n of T . As we shall see, once this sequence is available, T  can be 
reconstructed in 0 (1) time.

Let ci =  1, C2 =  2, . . . ,  Cn =  n and di, d2, . . . ,  dn be the preorder and inorder 
traversals of a binary tree. We assume that these sequences are stored in the first
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row of an M M B of size n x 2n in left to right order, with the c,-’s stored to the left 
of the d,-’s. It  is easy to modify the algorithm to work on a mesh of size n x n. 
To construct the sets of triples discussed above, every processor storing Cj needs 
to determine the position of the second copy of c,- in the inorder traversal. Notice 
that every processor storing a dj can construct the corresponding triple without 
needing any further information. The details follow.
Step 1. Begin by replicating the contents of the first row throughout the mesh. 
This is done by tasking every processor P ( l , i )  to broadcasts the item it stores on 
the bus in its own column. Every processor reads the bus and stores the value 
broadcast.
Step 2 . Every processor P ( i , i )  (1 <  i <  n) broadcasts c,- on the bus in row
i. The unique processor storing the second copy of label c< will inform P (i,i )  
of its position in the inorder sequence. A simple data movement now sends this 
information to P ( l , i ) .  Clearly, at the end of Step 2, every processor in the first 
row of the mesh can construct the corresponding triple.
Step 3. Merge the two sequences of triples using Proposition 3.4 and store the 
result in the first row of the mesh. Finally, every processor retains the third 
coordinate of the triple it receives by merging.

Preorder Traversal: 1,2,3,4,5,6  

Inorder Traversal: 3,2,1,5,4,6

Sequence 1: (1 ,3 ,1),(1 ,2 ,2),(1 ,1 ,3),(1 ,5 ,4),(1 ,4 ,5),(1 ,6 ,6)

Sequence 2: (2 ,1 ,3),(2 ,2 ,2),(2 ,3 ,1),(2 ,4 ,5),(2 ,5 ,4),(2 ,6 ,6)

Merged Sequence: (1 ,3 ,1),(1 ,2 ,2),(1 ,1 ,3),(2 ,1 ,3),(2 ,2 ,2),(2 ,3 ,1)

(1 ,5 ,4),(1 ,4 ,5),(2 ,4 ,5),(2 ,5 ,4),(1 ,6 ,6),(2 ,6 ,6)

Preorder-inorder Traversal: 1,2,3,3,2,1,4,5,5,4,6,6

Figure 7.3: Example of binary tree reconstruction

The correctness of the algorithm follows immediately from Proposition 6.1. 
Since all steps take 0 (1 ) time, we have proved the following result.
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Lem m a 7.5.2 Given the preorder and inorder traversals of an n-node binary 
tree, the corresponding preorder-inorder traversal can be constructed in 0 (1) time 
on an M M B  of size n x n. □

Our next goal is to show that once the preorder-inorder traversal ei, e2, . . . ,  &2n 
is available, the corresponding binary tree can be reconstructed in 0 (1) time. 
Recall, that every label of a node in T  occurs twice in the preorder-inorder traversal. 
Furthermore, by virtue of Step 2 above, the first copy of a label knows the position 
of its duplicate, and vice-versa.

We associate a node u with every pair of identical labels in ei, 6 2 , . . . ,  e2n- Let 
e,- and ej be the first and second copy of a given label. The processor holding e,- 
assigns children pointers as follows:
•  if e,+i is the first copy of a label v, then left(u) <— v; otherwise, left(u) <— nil;
•  if ej+1 is the first copy of a label w, then right(uj) <— to; otherwise, right(o^) <— 
nil.

The setting of pointers takes 0 (1 ) time. Therefore, Lemma 7.5.2 implies the 
following result.

Theorem  7.5.3 An n-node binary tree can be reconstructed from its preorder 
and inorder traversals in constant time on an M M B of size n x n . U

An ordered tree is an object that is either empty, or it consists of a root along 
with a possibly empty list T i, J2, . . . ,  2 * of subtrees, enumerated from left to right. 
Every node in an ordered tree stores a pointer to its leftmost child along with a 
pointer to its right sibling. The purpose of this section is to show that given its 
preorder and postorder traversals, an n-node ordered tree can be reconstructed in 
0(1 ) time on an M M B of size n x n. We are presenting a slightly more general 
result, namely we show how to reconstruct an ordered forest from its preorder and 
postorder traversals.

Our algorithm relies on the well-known one-to-one correspondence between n- 
node ordered forests and n-node binary trees [35]. Specifically, let F  =  (T i, T2, . . . ,  Tm) 
be an ordered forest. The binary tree B (F )  corresponding to F  is either empty 
(in case F  is empty), or else is defined as follows:
• the root of B (F )  is root{T\ );
•  the left subtree of B (F )  is B (Tn, T12, . . . ,  7u ), where Tn, J 12, . • . ,  Ti* are the 
subtrees of root(T\ );
•  the right subtree of B {F )  is B (T i , . . . ,  Tm).
The following result is well-known [35].
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Proposition  7.5.4. F  and B (F )  have the same preorder traversal. Further
more, the postorder traversal of F  is precisely the inorder traversal of B (F ). □ 
Proposition 7.5.4 motivates the following natural approach to reconstruct an or
dered forest F  from its preorder and postorder traversals. First, interpret the two 
traversals of F  as the preorder and inorder traversals of the corresponding binary 
tree B (F ) .  Using the algorithm discussed in the previous section reconstruct B (F ). 
Finally, convert B (F )  to F.

We now present the details of the implementation of our forest reconstruction 
algorithm on an M M B  of size n x 2n. It  is easy to modify the algorithm to work 
on an M M B  of size n X n . We assume that the preorder and postorder traversals 
of an ordered forest F  are stored in the first row of the mesh in left to right order. 
Our algorithm proceeds as follows.
Step 1 . Reconstruct the binary tree B (F )  having the same preorder traversal as 
F  and whose inorder traversal corresponds to the postorder traversal of F;
Step 2. Let u be a generic node in B (F ); the processor in charge of u reinterprets 
pointers as follows:
• if left(u)=u then set l_child(u) <— u;
•  if right(u)=u then set r_sibling(u) <— v.

P reorder Traversal: 1 ,2 ,3 ,4 ,5 ,6 ,7 

Postorder Traversal: 3 ,4 ,5 ,2 ,7 ,6,1 

P reo rd er-in o rd er Traversal o f B (T ):  

1 ,2 ,3 ,3 ,4 ,4 ,5 ,5 ,2 ,6 ,7 ,7 ,6,1 

P o in ter Assignment

Figure 7.4: Example of ordered tree reconstruction

Figure 5 illustrates the reconstruction of an ordered tree from its traversals. The 
upper arrows indicate Lchild pointers and the lower arrows indicate r_sibling point
ers. The correctness of our algorithm is easy to see. Furthermore, by Theorem 
7.5.3 the running time is 0 (1 ). Consequently, we have proved the following result.

Theorem  7.5 .5 . An n-node ordered forest stored in the first row of an M M B  
of size n x n can be reconstructed from its preorder and postorder traversals in

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 (1 ) time. □

7.6 C onclusions
In  this chapter, we have presented a number of time-optimal tree algorithms on 
meshes with multiple broadcasting. Specifically, we have shown that the following 
tasks can be solved in 0 (log n) time:
•  Encode an n-node binary tree into a 2n-bitstring;
•  Encode an n-node ordered tree into a 2n-bitstring;
•  Recover an n-node binary tree from its 2n-bit encoding;
•  Recover an n-node ordered tree from its 2n-bit encoding.
We have also shown that the following tasks can be performed in 0 (1 ) time:
•  Reconstruct an n-node binary tree from its preorder and inorder traversals;
•  Reconstruct an n-node ordered tree (forest) from its preorder and postorder 
traversals.

Our algorithms rely heavily on time-optimal algorithms for sequences of paren
theses that we developed. Specifically, we have shown that each of the following 
tasks can be solved in 0 (logn) time:
•  determining whether a sequence of n parentheses is well-formed;
•  finding all the matching pairs in a well-formed sequence of parentheses;
•  determining the closest enclosing pair for every matching pair in a well-formed 
sequence.

A number of problems are open. In particular, it is not known whether re
constructing an ordered tree in parent-pointer format can be done in less than 
O(logn) time. It is clear that such an algorithm using the closest enclosing pair 
can be devised. However, it is not known whether one can do better.
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Chapter 8 

Conclusions

8.1 C oncluding R em arks
In this thesis, we considered a number of fundamental problems on the M M B ’s 
and presented time-optimal algorithms. In many cases, we also presented relevant 
applications.

In Chapter 1 and Chapter 2 we presented the details of the model of compu
tation and relevant background.

In Chapter 3, we proposed a unifying look at semigroup computations on 
meshes with multiple broadcasting. Specifically, we provided a lower bound by
showing that any algorithm which solves the semigroup computation problem must

2. 1
take at least Q, (max{min{log m, log -^ t}, ^V} )  time. We also have shown that our

m 3  n o

lower bound is tight by designing an algorithm whose running time matches the 
lower bound.

In Chapter 4 we addressed the problem of sorting in general case. We have 
presented a time- and VLSI-optimal sorting algorithm for meshes with multiple 
broadcasting. Specifically, we have shown that once we fix a positive integer con
stant c, we can sort m items in the range <  m <  n in 0 (^=) time.

In Chapter 5, we proposed a time-optimal algorithm for the multiple search 
problem and showed that a number of problems in computer graphics, image 
processing, robotics, and computational geometry reduce to the multiple search 
problem or a variant thereof. More specifically, our algorithm runs in 0(y /m ) time 
on a yjn x y/n mesh with multiple broadcasting. We also showed that this achieves 
the theoretical time lower bound for the problem. Note that the running time of 
our algorithm is independent of n, and thus the algorithm is adaptive.

In chapter 6, we addressed a number of convexity related problems in sparse
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case. For two n-vertex convex polygons P  and Q, we have established ft (log n) 
time lower bounds for the following problems: computing the area of P; comput
ing the diameter of P;computing the width of P; computing the modality of P; 
computing the smallest area rectangle enclosing P; computing a maximum-area 
inscribed triangle sharing an edge with P; computing the maximum distance be
tween P  and Q ; detecting whether or not P  is contained in the interior of Q. We 
have shown that the bounds are tight by providing O(logn) algorithms to accom
plish these tasks on meshes with multiple broadcasting of size n x n. We have 
also shown that the problem of computing the minimum distance between two 
separable n-vertex polygons stored in one row/column of a mesh with multiple 
broadcasting of size n x n  can be solved in 0 (1) time.

In chapter 7, we presented time-optimal algorithms for a number of parentheses 
and tree problems. Specifically, we have shown that each of the following tasks can 
be solved in 0 (log n) time: determining whether a sequence of n parentheses is well- 
formed; finding all the matching pairs in a well-formed sequence of parentheses; 
determining the closest enclosing pair for every matching pair in a well-formed 
sequence; encoding an n-node binary tree into a 2n-bitstring; encoding an n-node 
ordered tree into a 2n-bitstring; recovering an n-node binary tree from its 2n-bit 
encoding; recovering an n-node ordered tree from its 2n-bit encoding. We have 
also shown that the following tasks can be performed in 0 (1) time: reconstruct an 
n-node binary tree from its preorder and inorder traversals; reconstruct an n-node 
ordered tree (forest) from its preorder and postorder traversals.

However, a number of open problems remain. They are discussed in the fol
lowing section.

8.2 O pen Problem s
As we have done for the semigroup computation problem, similar unifying results 
are desirable for important algorithmic problems on meshes with multiple broad
casting. Candidate problems include, prefix computation, selection, sorting, and 
list ranking among many others. As far as sorting is concerned we would like to 
completely resolve these issues concerning optimal sorting over the entire range 
\fn  <  m <  n. Note that the results of Lin and others [40] show that for m  near 
y /n ,  ft (log n) is the time lower bound for sorting in this architecture. Their results 
imply that a sorting algorithm cannot be VLSI-optimal for m near y/n. It would 
be of interest to know whether the multiple search problem can be solved optimally 
even when the input data is not sorted.

In the sparse case, we have addressed some problems related to convexity, and
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some parentheses and tree problems. This leads to many interesting questions thus 
opening up an entire area for research.

As the work presented in this thesis addresses the general case for the first time, 
this opens an area for further work. In both general and dense cases, it would be of 
interest to prove more lower bounds. I t  would be interesting to see if the counting 
argument developed in this thesis for proving lower bounds can be used in other 
contexts as well.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B ibliography

[1] M . J. Atallah and M. T. Goodrich, Parallel Algorithms for Some Functions 
of Two Convex Polygons, Algorithmica 3, 1988, 535-548.

[2] A. Aggarwal, Optimal Bounds for Finding Maximum on Array of Processors 
W ith k Global Buses, IE E E  Trans, on Computers, C-35, 1986, 62-64.

[3] S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1989.

[4] S. G. Akl and J. Meijer, Parallel Binary Search, IE E E  Trans, on Parallel and 
Distributed Systems, 1, 1990, 247-250.

[5] G. S. Almasi and A. Gottlieb, Highly Parallel Computing, Ben
jamin/Cummings, Redwood City, California, 1990.

[6] A. Aggarwal and R. C. Melville, Fast Computation of the Modality of Poly
gons, Journal of Algorithms, 7, 1986, 369-381.

[7] M. Atallah and S. E. Hambrush, Solving Tree Problems on a Mesh Connected 
Processor Array, Proc. 26th Symp. Foundations of Computer Science, 1985, 
222-231.

[8] A. Bar-Noy and D. Peleg, Square Meshes are not Always Optimal, IE E E  
Trans, on Computers, C-40, 1991, 196-204.

[9] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, 1982.

[10] 0 . Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin, Highly 
Parallelizable Problems, Proc. 21st Annual A C M  Symp. on the Theory of 
Computing, 1989, 770-785.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[11] W .-E. Blanz, D. Petkovic, and J. L. C. Sanz, Algorithms and Architectures for 
Machine Vision, in C. H. Chen, ed., Signal Processing Handbook, M. Dekker, 
New York, 1989.

[12] K. E. Batcher, Design of Massively Parallel Processor, IE E E  Trans, on Com
puters, C-29, 1980, 836-840.

[13] D. Bhagavathi, P. J. Looges, S. Olariu, J. L. Schwing, and J. Zhang, A Fast Se
lection Algorithm on Meshes with Multiple Broadcasting, Proc. International 
Conference on Parallel Processing, St-Charles, Illinois, 1992, 111-10-17.

[14] D. Bhagavathi, S. Olariu, W . Shen, and L. Wilson, A Time-Optimal M ulti
ple Search Algorithm on Enhanced Meshes, with Applications, Proc. Fourth 
Canadian Computational Geometry Conference, St-Johns, August 1992, 359- 
364.

[15] D. Bhagavathi, S. Olariu, J. L. Schwing, and J. Zhang, Convex Polygon Prob
lems on Meshes with Multiple Broadcasting, Parallel Processing Letters, to 
appear.

[16] D. Bhagavathi, S. Olariu, W . Shen, and L. Wilson, A Time-Optimal Multiple 
Search Algorithm on Enhanced Meshes, with Applications, Journal of Parallel 
and Distributed Computing, to appear.

[17] D. Bhagavathi, H. Gurla, S. Olariu, J. L. Schwing, and J. Zhang, Square 
Meshes or not Optimal for Convex Hull Computation, Proc. International 
Conference on Parallel Processing, St-Charles, Illinois, 1992, 111-10-17.

[18] S. H. Bokhari, Finding Maximum on an Array Processor with a Global Bus, 
IE E E  Trans, on Computers C-33, no. 2, Feb. 1984, 133-139.

[19] B. K. Bhattacharya and G. T. Toussaint, Efficient Algorithms for Computing 
the Maximum Distance Between two Finite Planar Sets, Journal of Algo
rithms, 4, 1983, 121-126.

[20] R. Calm, R. Poulsen, and G. Toussaint, Segmentation of Cervical Cell Images, 
Journal of Histochemistry and Cytochemistry, 25, 1977, 681-688.

[21] Y . C. Chen, W. T. Chen, G. H. Chen and J. P. Shen, Designing Efficient Par
allel Algorithms on Mesh Connected Computers with Multiple Broadcasting, 
IE E E  Trans. Parallel and Distributed Systems, 1, no. 2, Apr. 1990.

[22] Y. C. Chen, W. T. Chen, G. H. Chen, Efficient Median Finding and its Appli
cations to Two-Variable Linear Programming on Mesh Connected Computers

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with Multiple Broadcasting, Journal of Parallel and Distributed Computing, 
15, 1992, 79-84.

[23] F. Chin and C. A. Wang, Optimal Algorithms for the Minimum Distance 
Between two Separated Convex Polygons, University of Alberta, Tech. Report, 
Jan. 1983.

[24] S. A. Cook, C. Dwork, and R. Reischuk, Upper and Lower Time Bounds 
for Parallel Random Access Machines Without Simultaneous Writes, SIAM  
Journal on Computing, 15, 1986, 87-97.

[25] E. R. Dougherty and C. R. Giardina, Mathematical Methods for Artificial 
Intelligence and Autonomous Systems, Prentice-Hall, Englewood Cliffs, 1988.

[26] D. P. Dobkin and L. Snyder, On a General Method for Maximizing and Min
imizing Among Certain Geometric Problems, Proc. 20th Annual Symp. on 
Foundations of Computer Science, 1979, 9-17.

[27] R. 0 . Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley 
and Sons, New York, 1973.

[28] H. Freeman and R. Shapira, Determining the Minimum Area Encasing Rect
angle for an Arbitrary Closed Curve, Communications of the ACM, 18, 1975, 
409-413.

[29] W . M . Gentleman, Some Complexity Results for M atrix Computations on 
Parallel Processors, Journal of ACM, 25, 1978, 112-115.

[30] H. Gurla, Leftmost One Computation of Meshes with Broadcasting, Info. 
Processing Letters, to appear.

[31] J. L. Hennessy and D. A. Patterson, Computer Architecture, A Quantitative 
Approach, Morgan Kaufmann Publishers, San Manteo, 1990.

[32] M . E. Houle and G. T. Toussaint, Computing the width of a set, Proc. First 
Annual AC M  Symp. on Computational Geometry, 1985, 1-7.

[33] C. S. Jeong and D. T. Lee, Parallel Convex Hull Algorithms in 2- and 3- 
dimensions on Mesh-Connected Computers, Algorithmica, 5, 1990, 155-177.

[34] H. F. Sawyer and P. L. Sawyer, A Multiprocessor System for Finite Element 
Structural Analysis, Comput. Struct. , (10) 1979, 21-29

[35] D. Knuth, The Art of Computer Programming: Fundamental Algorithms, 1, 
2nd edition, Addison-Wesley, Reading, 1973.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[36] R. M. Karp and V. Ramachandran, A Survey of Parallel Algorithms for Shared 
Memory Machines, in Handbook of Theoretical Computer Science, J. van 
Leeuwen, ed., North-Holland, 1990, 869-941.

[37] V . P. Kumar and C. S. Raghavendra, Array Processor with Multiple Broad
casting, Journal of Parallel and Distributed Computing, 2, 1987, 173-190.

[38] F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures: 
Arrays, Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, 1992.

[39] H. Li and M . Maresca, Polymorphic-Torus Network, IE E E  Trans, on Com
puters, C-38, no. 9, 1989, 1345-1351.

[40] R. Lin, S. Olariu, J. L. Schwing, and J. Zhang, Simulating Enhanced Meshes, 
with Applications, Parallel Processing Letters, to appear.

[41] T . Lozano-Perez, Spatial Planning: A Configurational Space Approach, IE E E  
Trans, on Computers, C-32, 1983, 108-119.

[42] M . Lu, Constructing the Voronoi Diagram on a Mesh-Connected Computer, 
Proc. of the International Conference on Parallel Processing, 1985, 806-811.

[43] M . Maresca and H. Li, Connection Autonomy and SIMD Computers: a VLSI 
Implementation, Journal of Parallel and Distributed Computing, 7, 1989, 302- 
320.

[44] D. Nassimi and S. Sahni, Bitonic Sort on a Mesh-Connected Parallel Com
puter, IE E E  Trans, on Computers, C-27, 1979.

[45] D. Nassimi and S. Sahni, Finding Connected Components and Connected 
Ones on a Mesh-Connected Parallel Computer, S IA M  Journal on Computing, 
9, 1980, 744-757.

[46] S. Olariu, On the Unimodality of Convex Polygons, Information Processing 
Letters, 29, 1988, 289-292.

[47] S. Olariu, A Simple Linear-Time Algorithm for Computing the RNG and MST  
of Unimodal Polygons, Information Processing Letters, 31, 1989, 243-247.

[48] S. Olariu, The Morphology of Convex Polygons, Computers and mathematics, 
with Applications, 24, 1992, 59-68.

[49] S. Olariu, J. L. Schwing, and J. Zhang, Time-Optimal Sorting and Applica
tions o n n x n  Enhanced Meshes, Proc. IE E E  International Conf. on Computer 
Systems and Software Engineering, The Hague, May 1992.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[50] S. Olariu, J. L. Schwing, and J. Zhang, Optimal Parallel Encoding and Decod
ing Algorithms for Trees, International Journal of Foundations of Computer 
Science, 3, 1992, 1-10.

[51] S. Olariu, J. L. Schwing, and J. Zhang, Convex Hull Computation on En
hanced Meshes, Department of Computer Science, Old Dominion University, 
Technical Report TR-92-23, June 1992.

[52] S. Olariu, C. M. Overstreet, and Z. Wen, Parallel Reconstruction of Binary 
Trees, Journal of Parallel and Distributed Computing, to appear.

[53] T . Pavlidis, Computer Graphics, Computer Science Press, Potomac, M D, 
1978.

[54] B. Preas and M. Lorenzetti, Eds., Physical Design and Automation of VLSI 
Systems, Benjamin/Cummings, Menlo Park, 1988.

[55] D. Parkinson, D. J. Hunt, and K. S. MacQueen, The A M T  DAP 500, 33rd 
IE E E  Comp. Society International Conferrence, Feb. 1988, 196-199.

[56] V . K. P. Kumar and D. I. Reisis, Image Computations on Meshes with Mul
tiple Broadcast, IE E E  Trans. Pattern Analysis and Machine Intelligence, 11, 
No. 11, 1989, 1194-1202.

[57] F. P. Preparata and M . I. Shamos, Computational Geometry, An Introduc
tion, Springer-Verlag, New York, Berlin, 1988.

[58] A. Rosenfeld and A. Kak, Digital Picture Processing, Academic Press, 1-2, 
1982.

[59] J. Rothstein, Bus Automata, Brains, and Mental Models, IE E E  Trans, on 
Systems Man Cybernetics 18, 1988.

[60] H. S. Stone, High-Performance Computer Architecture, Second, Edition, 
Addison-Wesley, Reading, M A, 1990.

[61] Q. F. Stout, Mesh Connected Computers with Broadcasting, IE E E  Trans on 
Computers, C-32, 826-830, Sept. 1983.

[62] Q. F. Stout, Meshes with Multiple Buses, in Proc. 27th IE E E  Symp. Founda
tions of Comput. Sciences 1986, 264-273.

[63] D. Tabak, Multiprocessors, Prentice-Hall, Englewood Cliffs, New Jersey, 1990

[64] C. D. Thompson, The VLSI Complexity of Sorting, IE E E  Trans, on Comput
ers, C-32, 1983, 1171-1184.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[65] C. D. Thompson and H. T. Kung, Sorting on a Mesh-Connected Parallel 
Computer, Comm, of the ACM , 20, 1977, 263-271.

[66] G. T . Toussaint Ed., Computational Geometry, Elsevier Science Publishers, 
North-Holland, 1985.

[67] G. T. Toussaint, Complexity, Convexity and Unimodality, International Jour
nal of Computing and Information Sciences 13, 1984, 197-217.

[68] G. T . Toussaint, Computational Morphology, North-Holland, Amsterdam, 
1988.

[69] R. E. Tarjan and U. Vishkin, An Efficient Parallel Biconnectivity Algorithm, 
SIA M  Journal on Computing, 14 1985, 862-874.

[70] J. Ullman, Computational Aspects of VLSI, Computer Science Press, Po
tomac, M D, 1984.

[71] D. Vernon, Machine Vision, Automated Visual Inspection and Robot Vision, 
Prentice-Hall, 1991.

[72] Z. Wen, Parallel Multiple Search, Info. Proc. Letters, 37, Feb. 1991, 181-186.

[73] S. Zaks, Lexicographic Generation of Ordered Trees, Theoretical Computer 
Science, 10 (1980), 63-82.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA

I  was born in Warangal, India, in August 1966. I  was raised in Hyderabad. I  
received a State Merit Award and a national Merit Award for outstanding perfor
mance in high school and junior college. I  obtained my B.E. in Electrical Engineer
ing, in 1987 from Osmania University and my M.Tech in Computer Science from 
University of Hyderabad, in 1989. I  worked with the Real-Time Systems Group in 
CMC, Hyderabad before joining the Ph.D. program at Old Dominion University 
in 1990.

I  worked with Dr. Stephan Olariu in the area of Parallel Algorithms. For 
my dissertation, I  developed Time-Optimal Algorithms on Meshes with Multiple 
Broadcasting. M y other research interests include image processing, Computa
tional Geometry and Parallel Algorithms for the PRAM  model. During my Ph.D. 
program I  worked as a Teaching Assistant for the first two years and was a Special 
Doctoral Research Assistant for one year. During my Ph.D. program I  published 
a number of papers in various conferences and journals.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Old Dominion University
	ODU Digital Commons
	Spring 1993

	Time-Optimal Algorithms on Meshes With Multiple Broadcasting
	Dharmavani Bhagavathi
	Recommended Citation


	tmp.1569413877.pdf.tc0_I

