896 research outputs found

    Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering

    Get PDF
    In this dissertation, a fully scalable video coding system is proposed. This system achieves full temporal, resolution, and fidelity scalability by combining mesh-based motion-compensated temporal filtering, multihypothesis motion compensation, and an embedded 3D wavelet-coefficient coder. The first major contribution of this work is the introduction of the redundant-wavelet multihypothesis paradigm into motion-compensated temporal filtering, which is achieved by deploying temporal filtering in the domain of a spatially redundant wavelet transform. A regular triangle mesh is used to track motion between frames, and an affine transform between mesh triangles implements motion compensation within a lifting-based temporal transform. Experimental results reveal that the incorporation of redundant-wavelet multihypothesis into mesh-based motion-compensated temporal filtering significantly improves the rate-distortion performance of the scalable coder. The second major contribution is the introduction of a sliding-window implementation of motion-compensated temporal filtering such that video sequences of arbitrarily length may be temporally filtered using a finite-length frame buffer without suffering from severe degradation at buffer boundaries. Finally, as a third major contribution, a novel 3D coder is designed for the coding of the 3D volume of coefficients resulting from the redundant-wavelet based temporal filtering. This coder employs an explicit estimate of the probability of coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple software implementation. Additionally, the coder offers the possibility of a high degree of vectorization particularly well suited to the data-parallel capabilities of modern general-purpose processors or customized hardware. Results show that the proposed coder yields nearly the same rate-distortion performance as a more complicated coefficient coder considered to be state of the art

    Motion Estimation and Compensation in the Redundant Wavelet Domain

    Get PDF
    Despite being the prefered approach for still-image compression for nearly a decade, wavelet-based coding for video has been slow to emerge, due primarily to the fact that the shift variance of the discrete wavelet transform hinders motion estimation and compensation crucial to modern video coders. Recently it has been recognized that a redundant, or overcomplete, wavelet transform is shift invariant and thus permits motion prediction in the wavelet domain. In this dissertation, other uses for the redundancy of overcomplete wavelet transforms in video coding are explored. First, it is demonstrated that the redundant-wavelet domain facilitates the placement of an irregular triangular mesh to video images, thereby exploiting transform redundancy to implement geometries for motion estimation and compensation more general than the traditional block structure widely employed. As the second contribution of this dissertation, a new form of multihypothesis prediction, redundant wavelet multihypothesis, is presented. This new approach to motion estimation and compensation produces motion predictions that are diverse in transform phase to increase prediction accuracy. Finally, it is demonstrated that the proposed redundant-wavelet strategies complement existing advanced video-coding techniques and produce significant performance improvements in a battery of experimental results

    Variable Block Size Motion Compensation In The Redundant Wavelet Domain

    Get PDF
    Video is one of the most powerful forms of multimedia because of the extensive information it delivers. Video sequences are highly correlated both temporally and spatially, a fact which makes the compression of video possible. Modern video systems employ motion estimation and motion compensation (ME/MC) to de-correlate a video sequence temporally. ME/MC forms a prediction of the current frame using the frames which have been already encoded. Consequently, one needs to transmit the corresponding residual image instead of the original frame, as well as a set of motion vectors which describe the scene motion as observed at the encoder. The redundant wavelet transform (RDWT) provides several advantages over the conventional wavelet transform (DWT). The RDWT overcomes the shift invariant problem in DWT. Moreover, RDWT retains all the phase information of wavelet coefficients and provides multiple prediction possibilities for ME/MC in wavelet domain. The general idea of variable size block motion compensation (VSBMC) technique is to partition a frame in such a way that regions with uniform translational motions are divided into larger blocks while those containing complicated motions into smaller blocks, leading to an adaptive distribution of motion vectors (MV) across the frame. The research proposed new adaptive partitioning schemes and decision criteria in RDWT that utilize more effectively the motion content of a frame in terms of various block sizes. The research also proposed a selective subpixel accuracy algorithm for the motion vector using a multiband approach. The selective subpixel accuracy reduces the computations produced by the conventional subpixel algorithm while maintaining the same accuracy. In addition, the method of overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Finally, the research extends the applications of the proposed VSBMC to the 3D video sequences. The experimental results obtained here have shown that VSBMC in the RDWT domain can be a powerful tool for video compression

    Mesh-based video coding for low bit-rate communications

    Get PDF
    In this paper, a new method for low bit-rate content-adaptive mesh-based video coding is proposed. Intra-frame coding of this method employs feature map extraction for node distribution at specific threshold levels to achieve higher density placement of initial nodes for regions that contain high frequency features and conversely sparse placement of initial nodes for smooth regions. Insignificant nodes are largely removed using a subsequent node elimination scheme. The Hilbert scan is then applied before quantization and entropy coding to reduce amount of transmitted information. For moving images, both node position and color parameters of only a subset of nodes may change from frame to frame. It is sufficient to transmit only these changed parameters. The proposed method is well-suited for video coding at very low bit rates, as processing results demonstrate that it provides good subjective and objective image quality at a lower number of required bits

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced

    Toward sparse and geometry adapted video approximations

    Get PDF
    Video signals are sequences of natural images, where images are often modeled as piecewise-smooth signals. Hence, video can be seen as a 3D piecewise-smooth signal made of piecewise-smooth regions that move through time. Based on the piecewise-smooth model and on related theoretical work on rate-distortion performance of wavelet and oracle based coding schemes, one can better analyze the appropriate coding strategies that adaptive video codecs need to implement in order to be efficient. Efficient video representations for coding purposes require the use of adaptive signal decompositions able to capture appropriately the structure and redundancy appearing in video signals. Adaptivity needs to be such that it allows for proper modeling of signals in order to represent these with the lowest possible coding cost. Video is a very structured signal with high geometric content. This includes temporal geometry (normally represented by motion information) as well as spatial geometry. Clearly, most of past and present strategies used to represent video signals do not exploit properly its spatial geometry. Similarly to the case of images, a very interesting approach seems to be the decomposition of video using large over-complete libraries of basis functions able to represent salient geometric features of the signal. In the framework of video, these features should model 2D geometric video components as well as their temporal evolution, forming spatio-temporal 3D geometric primitives. Through this PhD dissertation, different aspects on the use of adaptivity in video representation are studied looking toward exploiting both aspects of video: its piecewise nature and the geometry. The first part of this work studies the use of localized temporal adaptivity in subband video coding. This is done considering two transformation schemes used for video coding: 3D wavelet representations and motion compensated temporal filtering. A theoretical R-D analysis as well as empirical results demonstrate how temporal adaptivity improves coding performance of moving edges in 3D transform (without motion compensation) based video coding. Adaptivity allows, at the same time, to equally exploit redundancy in non-moving video areas. The analogy between motion compensated video and 1D piecewise-smooth signals is studied as well. This motivates the introduction of local length adaptivity within frame-adaptive motion compensated lifted wavelet decompositions. This allows an optimal rate-distortion performance when video motion trajectories are shorter than the transformation "Group Of Pictures", or when efficient motion compensation can not be ensured. After studying temporal adaptivity, the second part of this thesis is dedicated to understand the fundamentals of how can temporal and spatial geometry be jointly exploited. This work builds on some previous results that considered the representation of spatial geometry in video (but not temporal, i.e, without motion). In order to obtain flexible and efficient (sparse) signal representations, using redundant dictionaries, the use of highly non-linear decomposition algorithms, like Matching Pursuit, is required. General signal representation using these techniques is still quite unexplored. For this reason, previous to the study of video representation, some aspects of non-linear decomposition algorithms and the efficient decomposition of images using Matching Pursuits and a geometric dictionary are investigated. A part of this investigation concerns the study on the influence of using a priori models within approximation non-linear algorithms. Dictionaries with a high internal coherence have some problems to obtain optimally sparse signal representations when used with Matching Pursuits. It is proved, theoretically and empirically, that inserting in this algorithm a priori models allows to improve the capacity to obtain sparse signal approximations, mainly when coherent dictionaries are used. Another point discussed in this preliminary study, on the use of Matching Pursuits, concerns the approach used in this work for the decompositions of video frames and images. The technique proposed in this thesis improves a previous work, where authors had to recur to sub-optimal Matching Pursuit strategies (using Genetic Algorithms), given the size of the functions library. In this work the use of full search strategies is made possible, at the same time that approximation efficiency is significantly improved and computational complexity is reduced. Finally, a priori based Matching Pursuit geometric decompositions are investigated for geometric video representations. Regularity constraints are taken into account to recover the temporal evolution of spatial geometric signal components. The results obtained for coding and multi-modal (audio-visual) signal analysis, clarify many unknowns and show to be promising, encouraging to prosecute research on the subject

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding

    Fast Search Approaches for Fractal Image Coding: Review of Contemporary Literature

    Get PDF
    Fractal Image Compression FIC as a model was conceptualized in the 1989 In furtherance there are numerous models that has been developed in the process Existence of fractals were initially observed and depicted in the Iterated Function System IFS and the IFS solutions were used for encoding images The process of IFS pertaining to any image constitutes much lesser space for recording than the actual image which has led to the development of representation the image using IFS form and how the image compression systems has taken shape It is very important that the time consumed for encoding has to be addressed for achieving optimal compression conditions and predominantly the inputs that are shared in the solutions proposed in the study depict the fact that despite of certain developments that has taken place still there are potential chances of scope for improvement From the review of exhaustive range of models that are depicted in the model it is evident that over period of time numerous advancements have taken place in the FCI model and is adapted at image compression in varied levels This study focus on the existing range of literature on FCI and the insights of various models has been depicted in this stud
    corecore