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Despite being the prefered approach for still-image compression for nearly a decade,

wavelet-based coding for video has been slow to emerge, due primarily to the fact

that the shift variance of the discrete wavelet transform hinders motion estimation and

compensation crucial to modern video coders. Recently it hasbeen recognized that a

redundant, or overcomplete, wavelet transform is shift invariant and thus permits motion

prediction in the wavelet domain.

In this dissertation, other uses for the redundancy of overcomplete wavelet

transforms in video coding are explored. First, it is demonstrated that the redundant-

wavelet domain facilitates the placement of an irregular triangular mesh to video images,

thereby exploiting transform redundancy to implement geometries for motion estimation

and compensation more general than the traditional block structure widely employed.

As the second contribution of this dissertation, a new form of multihypothesis

prediction, redundant wavelet multihypothesis, is presented. This new approach to

motion estimation and compensation produces motion predictions that are diverse

in transform phase to increase prediction accuracy. Finally, it is demonstrated



that the proposed redundant-wavelet strategies complement existing advanced video-

coding techniques and produce significant performance improvements in a battery of

experimental results.
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CHAPTER I

INTRODUCTION

Over the last several decades, researchers have searched for efficient ways to

compress, or code, video sequences. The key aspect of this search centers on

decorrelation. A sequence of images is highly correlated both temporally as well as

spatially. That is, temporal correlation is evident in the fact that subsequent frames in

a video sequence usually appear almost identical. In most cases, only small portions of

the scene change from frame to frame. For example, the sequence “Susie” (Fig. 1.1)

contains a person talking on the phone with relatively little movement. Even in the

high-motion sequence “Football” (Fig. 1.2), the players are running and diving, but the

background does not change. In the sequence “Coastguard” (Fig. 1.3), although the

background is moving, the main object, a yacht, remains in the center of the scene. The

sequence “Mother & Daughter” (Fig. 1.4) is a video-conference sequence with only

minor movement since both the background and the position ofthe two persons are

unchanged throughout much of the time.

To decorrelate a video sequence temporally, modern video coders employ motion

estimation and motion compensation (ME/MC). ME/MC forms a prediction of the

current frame using the frames which have been already encoded. Consequently, one

needs to transmit the corresponding residual image insteadof the original frame, as well

as a set of motion vectors which describe the scene motion as observed at the encoder.

Since the residual frame typically contains much less signal energy than the original

frame, and since the motion vectors are relatively few, the total bit rate to code the

motion-estimated frame is usually much less than to code each frame as a still image.
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.1: First 8 frames of the “Susie” sequence.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.2: First 8 frames of the “Football” sequence.
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.3: First 8 frames of the “Coastguard” sequence.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.4: First 8 frames of the “Mother & Daughter” sequence.
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A number of motion-estimation (ME) algorithms have been developed in order to

provide efficient prediction of scene motion between frames. ME schemes can generally

be categorized as either feature matching or region matching. Feature-matching ME is

based on tracking specific image features (e.g., edges); however, the region-tracking

methods are used almost exclusively in modern coders. The most widely used region-

matching technique is block matching, in which the current image is divided into

small blocks. The previous frame, called the reference frame, is searched for the best-

matching block for a given block in the current frame, and theresulting motion vector,

(∆x, ∆y), indicates the position of the best-matching block. To limit the computational

complexity of the ME process, the search is usually limited to some window surrounding

the block position in the reference frame. The procedure of block matching is illustrated

in Fig. 1.5 and the calculation of the residual image is

Diff(x, y, t, ∆t) = f(x, y, t) − f(x + ∆x, y + ∆y, t − ∆t), (1.1)

whereDiff(x, y, t, ∆t) denotes the calculated residual image at position(x, y) in a time

period∆t from time t, while f(x, y, t) denotes the image value at position(x, y) and

time t. This block-based ME/MC approach to video coding was first introduced in [1].

After a video sequence has been decorrelated temporally, there usually exists a great

deal of correlation between pixels of the same frame. To reduce this spatial correlation,

modern video coders perform a reversible transformation ineach residual image such

that, in the transform domain, the energy of the image is relocated to an easily coded

form. There are several methods to spatially transform an image, such as the Discrete

Fourier Transform (DFT), the Discrete Cosine Transform (DCT), and the Discrete

Wavelet Transform (DWT). Among them, the DCT is the most widelyused transform

because of its fast implementation, its early development,and its extensive use in still-
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x+ ∆ x , y+ ∆ y

x,y

dx

dy

Current Frame 
at Time 

Reference Frame 
at Time t t − ∆ t

Figure 1.5: The block-matching algorithm. The dashed blockshows the search window.
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image compression. The traditional hybrid-coding architecture, which features ME/MC

followed by a DCT, is widely employed in modern video-compression systems and an

integral part of standards such as H.261 [2], MPEG-1 [3], MPEG-2 [4], H.263 Version 1

[5], H.263 Version 2 (H.263+) [6], and MPEG-4 [7]. A diagram of this traditional

architecture is shown in Fig. 1.6.

However, given the promising performance of recent wavelet-based still-image

compression algorithms, such as set partitioning in hierarchical trees (SPIHT) [8], there

has recently been interest in deploying ME/MC within such algorithms to produce

wavelet-based video coders. It is hoped that wavelet-basedvideo coding can not only

increase coding efficiency, but also introduce a high degreeof scalability into the coding

scheme such that one compressed representation can be decoded at a variety of rates and

fidelities.

Briefly, a DWT is a multiresolution transform that uses the successive application

of filters to produce low-resolution and high-resolution components, or subbands, of

the original signal. For 2D images, a DWT produces a baseband (a low-resolution

approximation to the image) and a variety of horizontal, vertical, and diagonal subbands

of increasing resolution, as illustrated in Fig. 1.7. We cansee that most of the the energy

in DWT-domain coefficients is packed into the lower-resolution bands. Based on this

property, a number of effective still-image coders have been devised, of which one of

the most popular is the SPIHT coder [8]. In SPIHT, all coefficients are processed in a

parent-offspring structure of hierarchical trees as illustrated in Fig. 1.8. SPIHT uses the

fact that regions of low energy in a given subband can predicteven larger regions of low

energy in higher-resolution subbands for efficient coding.

The most straightforward way to replace the DCT with a DWT in a typical video

coder is to perform ME/MC in the spatial domain and to calculate a DWT on the

resulting residual image, resulting in a system as shown in Fig. 1.9. It has long been
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Input Image
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DCT

Motion
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Figure 1.6: The traditional hybrid coder with motion estimation and motion
compensation (ME/MC) followed by a discrete cosine transform (DCT).
z−1 = frame delay,CODECis any still-image coder.
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(a)

(b)

Figure 1.7: Original and two-scale DWT decomposition of the first frame of the “Susie”
sequence. (a) Original, (b) Two-scale DWT.Bj, Hj, Vj, andDj denote the
baseband, horizontal, vertical, and diagonal subbands, respectively, at scale
j.
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Figure 1.8: Structure of hierarchical trees with the DWT subbands as employed by
SPIHT.
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known (e.g., [9, 10]) that this simple approach has certain drawbacks due to blocking

artifacts which are exacerbated when the DWT is deployed as isusual as a full-

frame transform. To reduce these blocking artifacts, it hasbeen proposed [11] to use

overlapped block motion compensation (OBMC) in the spatial domain before the DWT.

An alternative paradigm, shown in Fig. 1.10, would be to haveME/MC take place in

the wavelet domain. Wavelet-domain ME/MC eliminates the inefficiency due to high-

frequency blocking artifacts; more important, perhaps, isthat resolution-scalable coding

without drift becomes possible. Both direct [9] and hierarchical [12, 13] block-matching

of DWT coefficients have been proposed. However, the fact thatthe usual critically

sampled DWT used ubiquitously in image-compression effortsis shift variant greatly

hinders the ME/MC process when deployed in wavelet domain.

To demonstrate the difficulty that the shift variance of the DWT poses in the task

of tracking motion, consider the example illustrated in Figs. 1.11 and 1.12. Shown in

Fig. 1.11 is a signals(n) and a shifted version of the signal,s(n − 1). We perform a 1-

scale DWT on boths(n) ands(n− 1) and display the resulting coefficients in Fig. 1.12.

Here the Cohen-Daubechies-Feauveau 9-7 filter [14] is used. In original signal domain,

the effect of the shift is readily apparent, and the “motion”of the signal waveform is

easily determined by comparings(n − 1) to s(n). However, in the wavelet domain, the

low-band and high-band signals suffer from the shift-variant characteristic of the DWT.

We can see that, although there is still some correlation between low-band outputs, the

high-band signals are completely dissimilar. In any event,the obtaining of accurate

motion vectors for ME will not be possible using either the low-band or high-band

signals in the DWT domain.

In order to overcome the shift variance of DWT, a number of proposals [15–27] have

been made to use an overcomplete, or redundant, wavelet transform for ME/MC since

such a redundant discrete wavelet transform (RDWT) lacks subsampling and is thus shift
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Figure 1.9: The traditional hybrid coder with a DWT replacingthe usual DCT.z−1 =
frame delay,CODEC is any still-image coder operating in the critically-
sampled-DWT domain.
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invariant. This dissertation will consequently explore the use of RDWT in video coding.

Park and Kim [15] were the first to incorporate the RDWT into a video coder, using an

RDWT-domain reference frame to search for the best match for a block in the DWT of

the current frame. A number of other systems [16–24] have been inspired by their coder,

but all are essentially built on the same block-based RDWT-domain approach of [15].

As the first contribution of this dissertation, we present the redundant wavelet

triangle mesh (RWTM) system which applies a triangle mesh to replace the traditional

block-based ME/MC of [15]. This RWTM system, first developed in [25, 26], yields

performance superior to that of the block-based system of [15].

As the second contribution of this dissertation, we investigate the combination

of RDWT-based ME/MC with multihypothesis MC (MHMC). MHMC, whichcalls

for using several hypothesis predictions of motion, has long been used in video-

coding systems to compensate for the inherent inaccuracy ofthe ME process. In this

dissertation, we develop a new class of MHMC, redundant wavelet multihypothesis

(RWMH) [28, 29], which exploits redundancy in the RDWT domain toimprove motion

prediction. Additional investigation is focused on further exploring the performance of

RWMH. Initially, we consider the combination of RWMH with other, more traditional

forms of multihypothesis. We then explore the use of triangle meshes within RWMH,

essentially combining the RWTM system of the first part of the dissertation with the

RWMH system of the latter part.

The remainder of this dissertation is organized as follows to describe our work in

detail. Chap. II presents theoretical background on the RDWT. Next, prior uses of the

RDWT in video coding are overviewed in Chap. III. The RWTM and RWMH systems

are then introduced in Chaps. IV and V, respectively, followed by a presentation of

experimental results and observations in Chap. VI. Finally,we make some concluding

remarks in Chap. VII.



CHAPTER II

THE REDUNDANT DISCRETE WAVELET TRANSFORM (RDWT)

In this chapter, we review the redundant discrete wavelet transform (RDWT).

We first overview some theoretical aspects of the transform by comparing it to the

ubiquitous DWT in Sec. 2.1 and then review several practical alternatives for RDWT

implementation and coefficient representation in Sec. 2.2.We then discuss inversion of

the RDWT in Sec. 2.3, and then, finally, we consider the ramifications of the RDWT

for motion estimation (ME) by illustrating its shift invariance in Sec. 2.4. The RDWT

has a long history of development within the signal-processing community. For greater

elaboration on the discussion here, consult [30–34].

2.1 RDWT vs. DWT

The RDWT can be considered to be an approximation to the continuous wavelet

transform that removes the downsampling operation from thetraditional critically

sampled DWT to produce an overcomplete representation. The shift-variance

characteristic of the DWT arises from its use of downsampling, while the RDWT is

shift invariant since the spatial sampling rate is fixed across scale. The RDWT has

been given several appellations over the years, including the “undecimated DWT,” the

“overcomplete DWT,” and thealgorithmeà trous.

To describe the implementation of the RDWT in terms of filter-banks, let us first

illustrate the same for the DWT. A 1D DWT and its inverse are illustrated in Fig. 2.1.

Here, f [n] is the 1D input signal andf ′[n] is the reconstructed signal.h[−k] and

g[−k] are the lowpass and highpass analysis filters, while the corresponding lowpass

16
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Figure 2.1: Two level 1-D DWT analysis and synthesis filter banks.

and highpass synthesis filters areh[k] andg[k]. cj anddj are the low-band and high-

band output coefficients at levelj. DWT analysis, or decomposition, is, mathematically,

cj[k] = (cj+1[k] ∗ h[−k]) ↓ 2, (2.1)

and

dj[k] = (cj+1[k] ∗ g[−k]) ↓ 2, (2.2)

where∗ denotes convolution, and↓ 2 denotes downsampling by a factor of two. That

is, if y[n] = x[n] ↓ 2, then

y[n] = x[2n]. (2.3)

The corresponding operation of DWT synthesis, or reconstruction, is

cj+1[k] = (cj[k] ↑ 2) ∗ h[k] + (dj[k] ↑ 2) ∗ g[k], (2.4)
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where↑ 2 denotes upsampling by a factor of two. That is, ify[n] = x[n] ↑ 2, then

y[n] =







x[n/2], n even,

0, n odd.
(2.5)

In contrast, a 1D RDWT and its inverse are illustrated in Fig. 2.2. The RDWT

eliminates downsampling and upsampling of coefficients, and at each scale, the number

of output coefficients doubles that of the input. The filters themselves are upsampled to

fit the growing data length. Specifically, the filters for scale j are

hj[k] = hj+1[k] ↑ 2, (2.6)

and

gj[k] = gj+1[k] ↑ 2. (2.7)

RDWT analysis is then

cj[k] = (cj+1[k] ∗ hj[−k]), (2.8)
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and

dj[k] = (cj+1[k] ∗ gj[−k]), (2.9)

while RDWT synthesis is

cj+1[k] =
1

2
(cj[k] ∗ hj[k] + dj[k] ∗ gj[k]). (2.10)

(2.6) through (2.10) are known as thealgorithmeà trous[30], since the filter-upsampling

procedure inserts “holes” (“trous” in French) between the filter taps.

2.2 RDWT Implementation and Coefficient Representation

There are several ways to implement the RDWT, and several ways to represent the

resulting overcomplete set of coefficients. The most obvious implementation, direct

implementation of thealgorithmeà trous as given by (2.6) through (2.9), results in

subbands that are exactly the same size as the original signal, as is illustrated for a

1D signal in Fig. 2.3. The advantage of this “spatially coherent” representation is that

each RDWT coefficient is located within its subband in its spatially correct position. By

appropriately subsampling each subband of an RDWT, one can produce exactly the same

coefficients as does a critically sampled DWT applied to the same input signal. In fact,

in aJ-scale 1D RDWT, there exist2J distinct critically sampled DWTs corresponding to

the choice between even- and odd-phase subsampling at each scale of decomposition.

As we will see in Chap. III, the most popular coefficient-representation scheme

employed in RDWT-based video coders is that of a “coefficient tree,” as illustrated in

Fig. 2.4 for a 1D signal. This tree representation is easily created by employing filtering

and downsampling as in the usual critically sampled DWT; however, all “phases” of

downsampled coefficients are retained and arranged as “children” of the signal that was

decomposed. The process is repeated on the lowpass bands of all nodes to achieve
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Figure 2.3: Spatially coherent representation of a two-scale 1D RDWT. Coefficients
retain their correct spatial location within each subband.Gray coefficients
indicate the subsampling pattern necessary to recover one of the2J critically
sampled DWTs.
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multiple decomposition scales. It is straightforward to see that each path from root

to leaf in the RDWT tree constitutes a distinct critically sampled DWT, and there are

2J such critically sampled DWTs in aJ-scale decomposition. An alternative, and

equivalent, implementation of the RDWT tree representation comes from employing

consistent subsampling phase and shifting the lowpass bands by one sample to generate

children in the tree. Indeed, this “low-band-shift” [15] method has been a popular

implementation for the RDWT-based video coders. It can be shown that the coefficients

at a given scale in the tree representation of the RDWT (Fig. 2.4) can be appropriately

“interleaved” to produce the subbands of the spatially coherent representation (Fig. 2.3);

i.e., the two representations consist of exactly the same coefficient values.

The situation is similar for 2D decompositions implementedwith separable 1D

transforms, as illustrated in Fig. 2.5. AJ-scale 2D RDWT consists of4J distinct

critically sampled DWTs. An example of RDWT image is shown in Fig. 2.6

2.3 The Inverse RDWT

The RDWT is a perfectly reconstructing transform. To invert the RDWT, one

can simply independently invert each of the constituent critically sampled DWTs and

average the resulting reconstructions together. However,this implementation of the

inverse RDWT incurs unnecessary duplicate synthesis filterings of the highpass bands;

thus, one usually alternates between synthesis filtering and reconstruction averaging on

a scale-by-scale basis in practical implementations as illustrated in Fig. 2.2. The final

reconstruction of this latter implementation, however, isidentical to that produced by

the conceptually simpler former approach.
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Figure 2.6: An example of a two-scale 2D RDWT applied to the firstframe of “Susie”
sequence.Bj, Hj, Vj, andDj denote the baseband, horizontal, vertical, and
diagonal subbands, respectively, at scalej.
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2.4 Shift Invariance of the RDWT

To demonstrate that the lack of downsampling in the RDWT renders it shift invariant,

let us revisit the example of Figs. 1.11 and 1.12 in Chap. I. TheRDWT outputs of both

the signalss(n) and s(n − 1) of Fig. 1.11 are illustrated in Fig. 2.7. Compared to

Fig. 1.12 in Chap. I, in which it was impossible to determine the amount of motion

in the DWT domain, the RDWT subbands of Fig. 2.7 correctly reflectthe one-sample

motion. That is, the subbands of the RDWT ofs(n − 1) are shifted versions of the

subbands ofs(n), just ass(n − 1) is a shifted version ofs(n), and the amount of shift

in each domain is identical.

The shift invariance of the RDWT implies that ME/MC with an RDWT subband can

be performed essentially in the same manner as in the original spatial-domain frame.

This observation has spawned a number of RDWT-based video-coding systems. In the

next chapter, we survey a number of such systems.
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CHAPTER III

PRIOR USE OF THE RDWT IN VIDEO CODING

Previously, we have seen that the redundancy within the RDWT provides shift

invariance. In this chapter, we will explore a number of video-coding systems that

have been proposed to capitalize upon this shift invarianceto implement ME/MC in the

wavelet domain. As all these systems have their origins in system of [15], we first review

the architecture and performance of this system in Secs. 3.1and 3.2, respectively. We

then consider in Sec. 3.3 a number of refinements that have been proposed to the basic

system.

3.1 Overview of the RDWT-Block System

The majority of prior work concerning RDWT-based video codingoriginates in the

work of Park and Kim [15], in which the system shown in Fig. 3.1was proposed. In

this system, the RDWT is implemented with the “low-band shift”procedure and the

ME/MC is performed with blocks. Hence, we call this technique “RDWT Block”.

In essence, the system of Fig. 3.1 works as follows. An input frame is decomposed

with a critically sampled DWT, and the resulting wavelet-domain coefficients are

partitioned into blocks. Each block consists of all the coefficients in the DWT that

correspond to a particular spatial-domain block in the original image, and thus includes

coefficients from all subbands at all scales. A full-search block-matching algorithm

then computes motion vectors for each wavelet-domain block; the system uses as the

reference for this search an RDWT decomposition of the previous reconstructed frame.

Since these reconstructed RDWT coefficients are arranged in the tree representation

26



27

++

−−

++

++

Input Image
Sequence Output Bitstream

CODEC

CODEC−1

DWT−1

RDWT
Motion

Compensation

DWT

Motion
Estimation zz−1
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as described in Sec. 2.2, the ME procedure of this system amounts to identifying, for

each block of the current frame, a particular critically sampled DWT in the reference-

frame tree (a root-to-leaf path), and a displacement withinthat DWT. Transmission of

a single motion vector per block suffices to convey all of thismotion information to the

decoder. A suitable cross-scale distortion metric that averages distortions incurred in

each subband is used to drive the ME search.

Specifically, aB × B block of DWT coefficients is extracted from the critically

sampled DWT of the current frame as illustrated in Fig. 3.2. Asshown, this block

consists of all the DWT coefficients in the various subbands that correspond to the given

spatial location of the block. In the block-matching searchof the RDWT-block system,

this DWT block is compared toB×B blocks extracted from the RDWT of the reference

frame, as illustrated in Fig. 3.2. In the RDWT of the reference frame, the coefficients

are arranged in the tree representation that results from the low-band-shift procedure

described in Sec. 2.2. Since the tree representation of the RDWT consists of multiple

critically sampled DWTs, the block-matching procedure of the RDWT-block system

compares the current-frame DWT block to reference-frame blocks extracted from each

critically sampled DWT of the RDWT of the reference frame as illustrated in Fig. 3.2.

Specifically, a block ofB ×B coefficients is extracted from the DWT of the current

frame and compared to blocks ofB × B coefficients extracted from the RDWT of the

reference frame as illustrated in Fig. 3.2. Mathematically, the distortion metric for

the ME search is as follows. LetScur
j be subbandS at scalej of the DWT of the

current frame, andSref
j be subbandS at scalej of the RDWT of the reference frame,

where1 6 j 6 J , andS is B, H, V , or D, for the baseband, horizontal, vertical, or

diagonal subbands, respectively. Let(x, y) be the location of a block in the original
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image coordinates. The corresponding motion vector is

(∆x, ∆y) = arg min
−W6∆x,∆y6W

MAE(x, y, ∆x, ∆y) (3.1)

where the mean absolute error (MAE) is

MAE(x, y, ∆x, ∆y) =

2−J

B2

B/2J

∑

k=1

B/2J

∑

l=1

∣

∣

∣
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, (3.2)

and W > 0 is the search-window size. In (3.2),k and l indicate the different

subsampling phases in RDWT tree-structure representation. In summary, a single

critically sampled DWT of the current frame is predicted in a block-by-block manner

from a wavelet-domain reference frame wherein all phases are retained. By using such

an overcomplete expansion of the reference frame, the best-matching block from all

possible phases is obtained, and the shift-variant nature of the critically sampled DWT

is overcome.

We note that, although the original development [15] of the RDWT-block system

used the tree representation of the RDWT, it is possible to use the spatially coherent

representation as well. That is, as discussed in Sec. 2.2, itis possible to interleave the

coefficients from the tree representation of the RDWT to produce the spatially coherent
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domain. The MAE is calculated between these blocks.



31

Current frame
DWT domain

Reference frame
RDWT domain

MAE

Block Block
BB BB

BB BB

Figure 3.3: The motion estimation procedure of [15], spatially coherent representation,
whereB × B coefficients are extracted out to build a block in DWT as well
as RDWT domain. The MAE is calculated between these blocks.
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representation. In this case, the block-matching search ofthe RDWT-block system then

becomes as illustrated in Fig. 3.3. Although equivalent algorithmically to the search

of Fig. 3.2, this alternative implementation has certain conceptual advantages that will

facilitate the introduction of RDWT-based coders that we willdevelop in subsequent

chapters.

3.2 Performance of the of RDWT-Block System

In these experiments, we compare the RDWT block with direct wavelet-domain

block-based ME/MC (DWT Block). In the DWT-Block system, both thecurrent and

reference frames are in the critically subsampled DWT domain. Consequently the

ME/MC in this system suffers from shift-variance problem. We use the 100-frame

“Football” SIF sequence, the 70-frame “Susie” SIF sequence, the 300-frame “Mother &

Daughter” CIF sequence, and the 300-frame “Coastguard” CIF sequence. All sequences

are grayscale. The first frame is intra-encoded (I-frame) while all subsequent frames

use ME/MC (P-frames). Both wavelet transforms (DWT and RDWT) usethe Cohen-

Daubechies-Feauveau 9-7 filter [14] with symmetric extension and a decomposition of

J = 3 levels. Both ME/MC methods use integer-pixel accuracy and approximately the

same number of motion vectors per frame.

The average PSNRs are shown in Table 3.1 and indicate at least 3-dB gain over all

sequences. Thus, driving ME/MC in the RDWT domain instead of critically sampled

DWT domain yields significantly better motion prediction. Frame-by-frame PSNR

profiles for the “Football” and “Susie” sequences are shown in Figs. 3.4 and 3.5. Fig. 3.6

gives the reconstructed images of frame 6 of “Football”, where we can easily see that

the RDWT-block system significantly outperforms the DWT-blocksystem.
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Table 3.1: Distortion averaged over all frames of the sequence.

PSNR (dB)
Football† Susie Mother & Daughter Coastguard

DWT Block 24.4 33.5 33.4 24.0
RDWT Block 27.9 37.4 40.8 28.9
Rate is 0.25 bpp except†, which is 0.5 bpp.
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Figure 3.4: Comparison of DWT Block to RDWT Block—frame-by-frame PSNR for
“Football” at 0.5 bpp (1.3 Mbps).
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(a)

(b)

(c)

Figure 3.6: Original and reconstructed images for frame 6 of“Football”. (a) Original,
(b) DWT Block, (c) RDWT Block.
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3.3 Other RDWT Video-coding Systems

Subsequent work has further refined the system depicted in Fig. 3.1. In particular,

in [16, 23, 24], multiple motion vectors are transmitted foreach current-frame block

by estimating motion in each subband independently. By doingso, a fast algorithm

for calculating the level-by-level RDWT coefficients is achieved. The system of [17]

employs interpolation between the coefficients in distinctroot-to-leaf paths of the

RDWT tree to enable motion compensation to be performed with sub-pixel accuracy.

Additionally, resolution-scalable video coders [18, 21, 23, 24] have been devised that

constrain the ME/MC procedure to process each scale of the wavelet decomposition

independently. Each of these systems built upon the architecture of Fig. 3.1 retains

its block-based ME/MC procedure and its system structure. That is, the current

frame is decomposed into DWT coefficients, the reference frame is decomposed into

RDWT coefficients, and in the ME procedure, the current DWT blockis matched to an

overcomplete RDWT reference block. Next, we will look at two important refinements

proposed to the RDWT-block system: in-band prediction and half-pixel accuracy.

3.3.1 In-band Prediction

In the RDWT domain, there are a total of3 × J + 1 subbands for aJ-level

decomposition. In the RDWT-block system described above, oneset of motion vectors

describes motion in all subbands simultaneously. In order to support resolution, quality,

and frame-rate scalability, ME/MC can be performed level-by-level [16, 21, 23, 24]. In

this case, although the current and the reference frames aredecomposed intoJ levels of

wavelet decomposition, ME is first employed on the highest level, levelJ , consisting of

four subbands,BJ , HJ , VJ , andDJ . Block-based ME then finds the motion vectors at

levelJ , and the motion vectors along with the residual image at level J are transmitted.

If the target bitrate is larger than the bit rate used to code the level-J motion vectors and
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residual image, ME is carried out in levelJ − 1, and so on. Coincident with completion

of the encoding at the encoder side and decoding at the decoder side at each level, the

reference image is refined. Thus, the reference image is updated upon receiving the

motion vectors level-by-level. This in-band prediction introduces resolution scalability

into RDWT ME/MC, at the cost of the increased overhead for motionvectors.

3.3.2 Half-pixel Accuracy

Another refinement to the RDWT-block system is to extend the integer-pixel

accuracy used in [15] to half-pixel accuracy [17]. In this approach, the RDWT reference

frame is bilinearly interpolated to obtain a new reference frame in sub-pixel accuracy.

This half-pixel interpolation is illustrated in (3.3) – (3.5) and Fig. 3.7, whereA, B, C

andD indicate the integer pixels, whilea, b andc are the interpolated half pixels.a, b

andc are obtained by bilinear interpolation fromA, B, C andD as

a = (A + B)/2, (3.3)

b = (A + C)/2, (3.4)

c = (A + B + C + D)/4. (3.5)

A© a4 B©

b4 c4 4

C© 4 D©

© Integer-pixel position.
4 Half-pixel position.

Figure 3.7: Half-pixel accuracy obtained by interpolation.
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Table 3.2: Distortion averaged over all frames of the sequence.

PSNR (dB)
Football† Susie Mother & Daughter Coastguard

RDWT Block Integer Accuracy 27.9 37.4 40.8 28.9
RDWT Block Half Accuracy 29.1 38.1 39.4 30.1
Rate is 0.25 bpp except†, which is 0.5 bpp.

The RDWT-block system is then modified so that the search as illustrated in Fig. 3.3

is carried out with half-pixel accuracy in the interpolatedRDWT reference frame. This

incurs the addition of one bit of precision to each componentof the motion vectors.

The average PSNRs are shown in Table 3.2 and frame-by-frame PSNR profiles for the

“Football” and “Susie” sequences are shown in Figs. 3.8 and 3.9. We see that the

performance is improved significantly for the “Football”, “Susie”, and “Coastguard”

sequences when half-pixel accuracy is used.

In this chapter, we have reviewed a number of video-coding systems that employ the

RDWT to provide shift invariance, thus enabling ME/MC to take place in the wavelet

domain. However, as we will see in the following chapters, the redundancy inherent in

the RDWT can be employed for ends other than just shift invariance. Specifically, in the

next chapter we will introduce a system that exploits the redundancy of the RDWT to

enable ME/MC with geometry more general than that of the blocks used in the systems

we have thus far considered.
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CHAPTER IV

REDUNDANT WAVELET TRIANGLE MESH (RWTM)

As has been illustrated in the previous chapter, the RDWT is shift-invariant;

consequently the RDWT domain is much more amemable to ME/MC than the critically

sampled DWT domain. The system by Park and Kim [15] and other related systems

[16–18, 21, 23, 24] demonstrate the efficiency of this approach. These systems eliminate

high-frequency artifacts associated with a wavelet transform of MC residuals by moving

the ME/MC into the wavelet domain while using a redundant transform to overcome the

problems of shift variance. However, all these prior systems still rely on the traditional

block-based ME/MC architecture. In this chapter, we move beyond this block structure

to explore the benefits of more general ME/MC geometries.

Specifically, we drive ME/MC with an irregular triangle meshrather than the

traditional block-based structure to build the redundant-wavelet-triangle-mesh (RWTM)

system. The motivation for mesh-based ME/MC is that a mesh structure can oftentimes

better match the motion of objects in video than can fixed-sized blocks. For example,

highly detailed areas should be divided into many small irregularly shaped regions

to be individually compensated, whereas larger ME/MC regions can suffice for areas

with little detail. This fine-tuning of ME/MC is impossible in traditional block-based

approaches since the size of the block is fixed. However, in mesh-based approaches,

such as triangle-mesh ME/MC [35], the regions are sized and shaped according to

the local level of detail in the image. Specifically, in triangle-mesh ME/MC, triangle

vertices, or “control points,” are selected to track edges of objects in the image.

41
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In this chapter, we describe our RWTM system in detail. We firstoverview the

system architecture in Sec. 4.1, and then describe details of the ME/MC process in

Secs. 4.2 – 4.4. We will defer experimental evaluation of theperformance of the RWTM

until Chap. VI. The discussion in this chapter elaborates on our previous publication

[25, 26] in which the RWTM system was first developed.

4.1 Overview of the RWTM System

The encoder of our RWTM video-coding system is depicted in Fig. 4.1 and operates

as follows. The input image is first transformed using a RDWT, and control points

are identified in the previous reference frame by locating the most salient image edges.

The motion of these control points from the reference frame to the current frame is

estimated in the RDWT domain, and motion vectors are transmitted to the decoder to

allow it to track control-point motion. MC is accomplished by first using a triangulation

algorithm to generate a triangle mesh on the control points in the reference frame

and then using affine transformations to predict, subband bysubband, triangles in the

current frame from triangles in the reference frame. Residing in the RDWT domain,

the motion-compensated residual is itself redundant; consequently, it is downsampled

before coding. The final encoding step consists of a wavelet-domain still-image coder;

for the experiments presented later in Chap. VI, we use SPIHT [8], but any wavelet-

domain still-image coder would suffice.

At the decoder side, motion of the control points is tracked,and a triangulation in

the reference frame identical to that used in the encoder is produced. A reconstructed

spatial-domain image is produced by inverting the still-image coding, adding on a

subsampled RDWT-domain prediction, and inverting the DWT. Finally, a RDWT

operation produces the reference-frame subbands for generating the prediction of the

next-frame subbands in the RDWT domain. Below, we explore the various components
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of our proposed system in greater detail. To a certain extent, our RWTM coder adopts

the triangle-mesh ME/MC approach of [35], originally developed in the spatial domain,

to the RDWT domain and uses the redundancy inherent in the RDWT to guide mesh

placement.

4.2 Selection of Control Points

The choosing of proper control points is crucial to the accuracy of triangle-mesh ME.

Typically, one wants control points to track salient image features (e.g., edges). The

redundancy of the RDWT facilitates the identification of salient features in an image,

especially image edges, since a simple correlation operation can easily accomplish edge

identification [36]. Specifically, the direct multiplication of the RDWT coefficients at

adjacent scales distinguishes important features from thebackground due to the fact

that wavelet-coefficient magnitudes are correlated acrossscales. Coefficient-magnitude

correlation is well known to exist in the usual critically sampled DWT also; however, the

changing temporal sampling rate of the critically sampled DWT makes the calculation

of an explicit correlation mask across scales much more difficult [36].

To create the correlation mask for the reference frame, we multiply the vertical (V ),

horizontal (H), and diagonal (D) bands together across scales and combine the products;

i.e.,

mask(x, y) =

∣

∣

∣

∣

∣

J1
∏

j=J0

Vj(x, y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

J1
∏

j=J0

Hj(x, y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

J1
∏

j=J0

Dj(x, y)

∣

∣

∣

∣

∣

, (4.1)

whereJ0 and J1 are the starting and ending scales, respectively, of the correlation

operation. We note that calculation of the correlation maskin this manner is possible
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due to the fact that each RDWT subband is the same size as the original image. Fig. 4.2

shows the correlation mask for the first frame of the sequence“Susie,” where we use the

subbands from the two highest-frequency scales in the products above.

To identify control points within the correlation mask, we have devised the following

procedure which attempts to place control points on the mostsalient image edges while

ensuring a somewhat uniform spatial spread of the control points across the image. We

first determine the global maximum of the mask,

maskmax = max
x,y

mask(x, y), (4.2)

and set a threshold,τ , as

τ = α · maskmax, (4.3)

where the threshold parameterα, 0 ≤ α ≤ 1, is tailored to a specific sequence for

best performance—sequences with faster motion or smaller objects need more control

points and thus a smaller value ofα. We next divide the mask intoM × M blocks

and select at most one point in each block as a control point, processing theM × M

blocks in raster-scan order. Specifically, in each block, weselect the point with the

largest mask value that is located a distance ofdmin or greater from an already identified

control point. We then compare the mask value of this candidate point toτ—if greater

than or equal toτ , we add this candidate point to the set of selected control points. As

an example, consider Fig. 4.3, in which four points marked1 through4 have the mask

valuesp1 > p2 > p3 > p4. ‘The ‘X” marks two previously selected control points in

nearby blocks. The shaded circles are the areas that do not satisfy the minimum-distance

criterion, while the raster-scan order is shown by the arrows. Althoughp1 > p2 > p3,

points1 and2 reside in the shaded areas, and so are discarded. Thus, point3 is selected
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Figure 4.2: Correlation mask for the first frame of “Susie”.



47

XX

XX

11

22 33
44

d
min

d
min

Figure 4.3: Selection of control points in a block.



48

as the candidate point to compare toτ . However, if point3 and4 have the same mask

value, i.e., ifp3 = p4, point4 will be chosen because of the raster-scan order. Note that

we usually end up with each block containing one control point, although it is possible

that, because of the thresholding operation, any given block might not contain a control

point.

Finally, we add control points equally spaced along the image border to the points

chosen via the correlation mask so that the meshed area covers the entire image. These

border points always have zero motion vectors and thus are not included in the motion-

vector information transmitted by the encoder.

4.3 Motion Estimation

Each non-border control point identified in the reference frame via the correlation

mask has an associated motion vector describing the movement of that control point

from the reference frame to the current frame. These motion vectors are obtained

by finding the best matching point in the current frame for each control point in the

reference frame. This match is accomplished by calculatingthe absolute difference of

a B × B block centered at the control point in the reference frame and blocks in a

search window about the control-point location in the current frame, similar to the usual

block-based ME process. Our triangle-mesh ME is quite similar to the triangle-mesh

ME proposed in [35] in the spatial domain. However, because our ME takes place

in the RDWT domain, for a given vector in the search window, we calculate absolute

differences for all the subbands at all scales and sum them together to produce a cross-

subband, cross-scale distortion, as was proposed in [15] for block-based ME in the

RDWT domain. We choose the vector that minimizes this cross-subband, cross-scale

distortion as the motion vector for the current control point.
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Specifically, the motion vector,(∆x, ∆y), for control point(x, y) in the reference

frame is the vector in the search window about(x, y) in the current frame that minimizes

the mean absolute error (MAE). Specifically,

(∆x, ∆y) = arg min
−W6∆x,∆y6W

MAE(x − B/2, y − B/2, ∆x, ∆y) (4.4)

where

MAE(x, y, ∆x, ∆y) =
1

B2

B
∑

k=1

B
∑

l=1

AE(x + k, y + l, ∆x, ∆y), (4.5)

and the absolute error (AE) is

AE(x, y, ∆x,∆y) =
J

∑

j=1

2−j

{
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∣
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+ 2−J
∣

∣

∣
Bcur

J (x + ∆x, y + ∆y) − Bref
J (x, y)

∣

∣

∣
, (4.6)

wherecur andref denote subbands from the current and reference frames, respectively,

andBj, Hj, Vj, andDj are the baseband, horizontal, vertical, and diagonal subbands,

respectively, at scalej. In the search, motion vectors are chosen from a window of size

W > 0 such that−W ≤ ∆x, ∆y ≤ W , and the block size,B is assumed to be odd.

4.4 Triangulation and Affine Transform

As in the spatial-domain triangle-mesh ME/MC of [35], afterthe control points

are selected in the reference frame, a triangle mesh is computed using Delaunay

triangulation [37]. A single triangle mesh is used for all subbands of the RDWT as

depicted in Fig. 4.4; this is possible since each RDWT subband has the same size. MC
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Figure 4.4: RDWT subbands and triangle mesh for the first frame of “Susie”. Clockwise
from upper-left: baseband,B3; vertical subbandV3; subbandV1; and
subbandV2. A single triangle mesh is applied to all subbands at all
orientations and scales, even though only the vertical subbands are shown
here.
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proceeds by mapping each triangle in the reference frame into the current frame using

an affine six-parameter model as described in [38]; this affine mapping is performed for

each triangle in each subband separately.

Affine transforms are widely used in computer graphics. In homogeneous

coordinates, affine transforms can represent translation,rotation, and scaling.

Consequently, an affine transform can map a point inside one triangle to point inside

another triangle. The affine transform is a vector-matrix equation,
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
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, (4.7)

wherex andy are the coordinates of a coefficient in a triangle in the current frame,x′

andy′ are the corresponding coordinates in the reference-frame triangle, anda1, a2, a3,

b1, b2, andb3 are the six parameters of an affine transform that is determined for each

pair of current- and reference-frame triangles independently. To determine the transform

parameters, we evaluate (4.7) for each of the three verticesof the triangle in the current

frame using the known relation between the current- and reference-frame vertices,


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x′

y′
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 =





x

y



 −





∆x

∆y



 , (4.8)

to yield six equations in six unknowns. Once the parameters of the transform are

determined, it is applied to a coefficient location in the current frame to determine

the corresponding location in the reference frame, from which a prediction of the

coefficient is determined. Bilinear interpolation is employed to calculate predictions

for locations that lie off the RDWT-coefficient grid in the reference frame. In order
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to maximize computational efficiency, the affine transformation is carried out only for

those coefficients in the current frame that will survive thesubsequent RDWT-to-DWT

downsampling operation.

In this chapter, we have presented a video-coding system that exploits the RDWT

not only for its shift invariance, but also for its ability tofacilitate the placement of a

triangular mesh for ME/MC via a simple correlation operation. In the next chapter, we

develop another use for the redundancy of the RDWT—we use the redundancy of the

RDWT to provide multihypothesis prediction for ME/MC.



CHAPTER V

REDUNDANT WAVELET MULTIHYPOTHESIS (RWMH) MOTION

COMPENSATION

In the previous chapters, we have seen the RDWT used in a number of video-coding

systems, including the RWTM system we developed in Chap. IV. Inmost of those

systems, the redundancy inherent in the RDWT is used exclusively to permit ME/MC

in the wavelet domain by overcoming the well known shift variance of the critically

sampled DWT ubiquitous to wavelet-based compression methods. The one exception

is our RWTM system which additionally exploits the redundancy in the transform to

facilitate the fitting of a triangle mesh to the images.

In this chapter, we present an entirely new use for the redundancy in the RDWT.

Specifically, we present a system in which transform redundancy is employed to

yield multiple predictions of motion that are combined intoa single multihypothesis

prediction. This system represents a new paradigm in multihypothesis MC

(MHMC) wherein diversity in transform phase yields multihypothesis predictions that

significantly enhance coding performance.

We first overview the general technique of MHMC in Sec. 5.1, and then present

the architecture of our redundant-wavelet multihypothesis (RWMH) system in Sec. 5.2.

In Secs. 5.3 – 5.5, we consider a number of refinements to the basic RWMH system,

namely a more sophisticated ME/MC search process (Sec. 5.3), and the combining of

RWMH with other types of multihypothesis (Secs. 5.4 and 5.5).Finally, in Sec. 5.6, we

consider the deployment of triangle meshes as developed in Chap. IV for the RWTM

53
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system with the RWMH framework. The discussion in this chapter elaborates on our

previous publications [28, 29] in which the RWMH system was first developed.

5.1 Multihypothesis Motion Compensation (MHMC)

Multihypothesis MC (MHMC) [39] forms a prediction of pixels(x, y) in the current

frame as a combination of multiple predictions in an effort to combat the uncertainty

inherent in the ME process. Assuming that the combination ofthese hypothesis

predictions is linear, we have that the prediction ofs(x, y) is

s̃(x, y) =
∑

i

wi(x, y)s̃i(x, y), (5.1)

where the multiple predictions̃si(x, y) are combined according to some weights

wi(x, y). A number of MHMC techniques have been proposed over the lastdecade.

One approach to MHMC is to implement multihypothesis prediction in the spatial

dimensions; i.e., the predictions̃si(x, y) are culled from spatially distinct locations in

the reference frame. Included in this class of MHMC would be fractional-pixel MC

[40] and overlapped block motion compensation (OBMC) [41, 42]. Another approach

is to deploy MHMC in the temporal dimension by choosing predictions s̃i(x, y) from

multiple reference frames. Examples of this class of MHMC are bidirectional prediction

(B-frames) as used in MPEG-2 and H.263 and long-term-memory motion compensation

(LTMMC) [43]. Of course, it is possible to combine these two classes by choosing

multiple predictions that are diverse both spatially and temporally [44]. Note that the

calculation of (5.1) in the decoder must be identical to thatin the encoder; consequently,

it will be necessary to transmit the weightswi(x, y) to the decoder as side information

in the case that the weights are not fixed or not determinable from information already

possessed by the decoder. Although implementation dependent, B-frames and LTMMC
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typically incur this additional side-information burden while fractional-pixel MC and

OBMC do not.

In this chapter, we develop a new class of MHMC by extending the multihypothesis-

prediction concept into the transform domain. Specifically, we perform ME/MC in the

domain of a redundant, or overcomplete, wavelet transform,and use multiple predictions

that are diverse in transform phase. First, we observe that each of the critically sampled

DWTs within a RDWT will “view” motion from a different perspective. Consequently,

if motion is predicted in the RDWT domain, the inverse RDWT forms amultihypothesis

prediction in the form of (5.1). Specifically, for aJ-scale RDWT, the reconstruction

from DWT i of the RDWT iss̃i(x, y), 0 ≤ i < 4J , whilewi(x, y) = 4−J , ∀i. Below, we

present our RWMH video-coding system [28] that performs MHMCin precisely this

fashion.

An interesting aspect of the phase-diversity approach to MHMC is that low-

resolution information is inherently predicted with a greater number of hypotheses

which corresponds to the greater difficulty inherent in estimating motion in signals with

spatially low resolution. Additionally, since the weighting of the individual predictions

is carried out implicitly in the form of an inverse transform, no side information need be

sent to the decoder. Finally, we show below that our phase-diversity MHMC functions

complementary to other forms of MHMC; specifically, we combine RWMH with two

forms of spatial-diversity MHMC to achieve performance superior to that of either class

of MHMC operating alone.

5.2 Overview of the RWMH System

The encoder of our RWMH video-coding system is depicted in Fig. 5.1. The current

and reference frames are transformed into RDWT coefficients, and both ME and MC

take place in this redundant-wavelet domain.
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In aJ-scale RDWT decomposition, eachB×B block in the original spatial domain

corresponds to3J + 1 blocks of the same size, one in each subband. The collection

of these co-located blocks is called aset. Each set contains all the different phases

of RDWT coefficients. In the ME procedure, block matching is used to determine the

motion of each set as a whole. Specifically, a block-matchingprocedure uses a cross-

subband distortion measure that sums absolute errors for each block of the set similar to

the cross-subband ME procedure of [15]. However in our metric, the coefficients from

all phases in both current and reference frames contribute to the distortion measurement,

in contrast to the metric of [15], in which only coefficients from a single critically

subsampled DWT in the current frame contribute. Specifically, the motion vector for

the set located at(x, y) is

(∆x, ∆y) = arg min
−W6∆x,∆y6W

MAE(x, y, ∆x, ∆y), (5.2)

where

MAE(x, y, ∆x, ∆y) =
1

B2

B
∑

k=1

B
∑

l=1

AE(x + k, y + l, ∆x, ∆y). (5.3)

The absolute error (AE) is
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, (5.4)

wherecur andref denote subbands from the current and reference frames, respectively,

andBj, Hj, Vj, andDj are the baseband, horizontal, vertical, and diagonal subbands,

respectively, at scalej. A window [−W,W ] is used for the block search, and, to speed
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the search, a 1-scale RDWT, rather than the fullJ-scale transform, is used for the block-

matching ME procedure.

After the ME search has determined motion vectors for each set, a motion-

compensated frame is then created in the RDWT domain using the same motion

vector for each block of the set. The inverse RDWT is performed on this RDWT-

domain motion-compensated frame, combining the multiple phases into a spatial-

domain multihypothesis prediction. This spatial-domain prediction is subtracted from

the current frame, and the residual is coded. This final encoding step consists of a

still-image coder; for the experiments later in Chap. VI, we use SPIHT [8], but any

still-image coder, wavelet-based or otherwise, would suffice.

At the decoder side, a spatial-domain residual image is produced by inverting the

still-image coding. The reconstructed image is obtained byadding the prediction image,

which is the same as that at the encoder side, to the residual image. Reconstruction is

necessarily followed by a RDWT operation to produce the reference-frame subbands for

generating the prediction for the next frame in the RDWT domain.

5.3 Phase-optimal Vector Search

In the system as described above, each critically sampled DWTin the RDWT yields

a different prediction of the motion of the frame, and these separate predictions are

combined into a single multihypothesis prediction via the inverse-RDWT operation.

However, all of the constituent DWTs use the same motion-vector field to describe the

motion. More accurate prediction results when motion fieldsare optimized to each

DWT, albeit at the expense of additional rate.

Specifically, we propose a multiscale hierarchical ME scheme which assigns to each

phase at each scale a different motion-vector field. This hierarchical ME approach bears

some resemblance to traditional hierarchical ME/MC [45]; however, in our case, the
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hierarchy starts at high resolution and proceeds toward lowresolution. That is, we

refine, for each phase at each scale, the motion vectors resulting from the block search

described above starting at scale 1 and continuing to scaleJ . Consider a block of size

B × B at scale 1 and call the motion vectorV determined for this block using the

procedure above the “all-phase” motion vector. We perform ablock search with a small

window of [−W ′,W ′] about the location indicated by the all-phase motion vectorfor

this block. However, in the cross-subband distortion metric for this search, we include

only those coefficients belonging to phase 0; additionally,this distortion metric is limited

to only the subbands at scale 1. This search will yield a “single-phase” motion vector,

V1,0. We repeat this process for the other three phases yielding single-phase vectorsV1,1,

V1,2, andV1,3. In addition toV , for each block, we transmit “refinement” vectors

v1,i = V1,i − V (5.5)

for each phasei.

For scalesj > 1, we can use the vectorV1,i for all the phases that are descendants of

phasei at scale 1. Alternatively, we can apply the above procedure to further refine the

motion estimate for higher scales. For example, in scale 2, we search in a[−W ′,W ′]

window aboutV1,0 to find the four motion vectors for the four phases at scale 2 that are

children of phase 0 at scale 1. Note that, for each additionalscale of refinement, the

number of additional refinement vectors that need to be sent increases by a factor of 4—

there will be 4 refinement vectors per set for one scale of refinement, 16 for two scales of

refinement, etc. Fig. 5.2 illustrates this multiscale motion-vector refinement procedure.

After this hierarchical search, for each set, we will obtainan “all-phase” search vector

V followed by a number of refinement vectors for each phase at each scale.
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The PSNR performance of the RWMH system improves as more scales of

refinement vectors are used; Fig. 5.3 illustrates this improvement for several scales

of refinement for the “Susie” sequence at a fixed rate. We observe diminishing

returns—the amount of PSNR improvement decreases with eachadditional scale of

refinement. However, since the number of refinement vectors grows dramatically with

each additional scale of refinement, we have concluded that the cost in rate does not

justify the incremental increase in PSNR performance beyond one scale of refinement.

Thus, for the experiments later in Chap. VI, we transmit for each set of blocks one

all-phase motion vector and four single-phase refinement vectors.W ′ is chosen so that

W ′ � W in order to minimize the rate burden associated with the refinement vectors.

5.4 Combining RWMH with Spatial-diversity Multihypothesis

The RWMH system is a generalization to the wavelet-domain ME/MC approaches

based on [15] which are based on single-hypothesis prediction. In this section,

we further enhance performance by increasing the number of hypotheses. That is,

we combine our RWMH technique with other multihypothesis methods, specifically,

serveral that employ spatial-diversity. The results of Chap. VI will show that the

two classes of multihypothesis prediction—phase-diversity and spatial-diversity—

complement each other such that their combination yields performance superior to

that of either class alone. This synergy is possible since the RDWT preserves the

spatial relation of the original image. Two prominent paradigms for spatial-diversity

multihypothesis are overlapped block MC (OBMC) and sub-pixelaccuracy. In order to

reduce computation complexity and avoid transmitting excessive overhead information,

we choose not to use refinement vectors as described in the previous section in

conjuction with the spatial-diversity multihypothesis approaches.
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5.4.1 Overlapped Block Motion Compensation (OBMC)

In conventional block-based motion prediction, each blockis motion-compensated

independently of other blocks. Consequently, the motion vector for a given block is

not necessarily the same as the vectors of its adjacent blocks even though it is likely

that the motion of the neighboring blocks is similar. This disparity causes discontinuity

among consecutive blocks in the motion-compensated frame,a major cause of blocking

artifacts. To mitigate this effect, OBMC was proposed in [41]. In OBMC, a weighted

sum of multiple predictions is used to motion-compensate each block. LetPi(x, y) be

a prediction of the current block obtained from a reference block, which is weighted

by matrixWi(x, y). In OBMC, thePi predictions of the current block are generated by

using the motion vectors of neighboring blocks. Then, the weighted prediction is,

P̃i(x, y) = Pi(x, y) × Wi(x, y), (5.6)

where× represents element-by-element multiplication. The final prediction of the

current block is

P (x, y) =
∑

i

P̃i(x, y), (5.7)

which is a form of MHMC when compared to (5.1) in Sec. 5.1.

Since we drive our RWMH with a block-based search, blocking artifacts will

occur in the RDWT-domain motion-compensated frame, causing coding inefficiency

in the corresponding residual image. OBMC as developed in [41, 42] is a simple

and straightforward solution to this problem. It is well known that OBMC in the

spatial domain can increase performance greatly; thus, it has been adopted in the H.263

standard [5, 6]. Since RDWT coefficients retain the “spatial coherence” of the original

image (Sec.2.2), OBMC in the RDWT domain is straightforward. Since there are3J +1
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subbands for aJ-scale decomposition, we must deploy OBMC in all the subbandsin

the RDWT domain following the same procedure.

We follow the simple OBMC scheme of H.263 [5, 6] in order to implement OBMC

within RWMH. In each subband, we define16 × 16 macroblocks which are further

divided into four8 × 8 blocks. As illustrated in Fig. 5.4, the vectors of the four blocks

within a macroblock and the neighboring eight blocks are used to form a prediction of

the current macroblock. The prediction of the current blockfrom the reference frame

is a weighted sum of three blocks obtained through the motionvector for the current

block (∆x, ∆y) and the motion vectors of the two nearest neighboring blocks, one from

the vertical direction(∆V
x , ∆V

y ) and one from the horizonal direction(∆H
x , ∆H

y ). As

illustrated in Fig. 5.4, according to different location ofthose prediction blocks, there

are three8 × 8 matrices of weighting values illustrated in Figs. 5.5, 5.6,and 5.7. The

predictionP (x, y) is an8 × 8 block,

P (x, y) = P̃ (x, y) × W (i, j) + P̃V (x, y) × WV (i, j) + P̃H(x, y) × WH(i, j)/8, (5.8)

wherep(x + ∆k
x, y + ∆k

y) is the prediction value at position(x + ∆k
x, y + ∆k

y) in the

reference frame, and

P̃ (x, y) = p(x + ∆x, y + ∆y), (5.9)

P̃V (x, y) = p(x + ∆V
x , y + ∆V

y ), (5.10)

P̃H(x, y) = p(x + ∆H
x , y + ∆H

y ). (5.11)

The resulting system is denoted as RWMH-OBMC.
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Figure 5.5: Weighting values,W , for prediction with motion vector of current block.
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Figure 5.6: Weighting values,WV , for prediction with motion vectors of the blocks on
top or bottom of current block.
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Figure 5.7: Weighting values,WH , for prediction with motion vectors of the blocks to
the left or right of current block.

5.4.2 Sub-pixel Accuracy

The modern generation of ME/MC algorithms specify motion vectors with an

increased resolution, that is, with fractional-pixel accuracy. Although increased motion-

vector resolution entails a larger bit-rate overhead, the increased accuracy yields better

motion prediction, a small MC residual, and a reduced reconstruction distortion.

Usually, the increased distortion performance will more than offset the added rate

overhead for a net coding gain. For example, half-pixel accuracy has been successfully

used in MPEG-1 [3], MPEG-2 [4], and H.263 [5, 6]. In half-pixel mode, the motion

vectors take full- and half-pixel values. In the case of a half-pixel motion vector, the
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position in the reference frame to which the vector points isbetween integer-pixel

positions. Since pixels are assumed to lie only at integer positions, the reference frame

has no pixel value associated with half-pixel positions; consequently, interpolation

is used to construct such values off the integer-pixel grid.Extensive literature has

shown that a simple bilinear interpolation can achieve goodperformance for half-

pixel accuracy. However, to further increase the accuracy to quarter-pixel, bilinear

interpolation of the half-pixel values will not improve performance since the additional

motion-vector overhead usually outweights the potential reduction in distortion. Instead

of mere interpolation of only the nearby half-pixel values,an improved sample-

interpolation process adopted in MPEG-4 [7] increases the coding efficiency by taking

into account aliasing components.

Half-pixel accuracy in the wavelet domain has been implemented in [17], and

performance superior to that of full-pixel ME/MC was observed. In our work, we

investigate increasing the resolution of the RWMH-OBMC system to quarter-pixel

accuracy and find that the quarter-pixel technique employedin MPEG-4 [7] in the

spatial domain can be directly applied to RDWT coefficients. Specifically, the two-step

procedure in MPEG-4 [7] for the quarter-pixel interpolation is illustrated in Fig. 5.8.

First, a 1D 8-tap filter is applied on the integer-pixel values to generate values on

the half-pixel grid. Let the integer-grid RDWT coefficients beSj, where scalej is

1 6 j 6 J , andS ∈ {B,H, V,D}. The 8-tap interpolation filter isf [n],

f [0] =
160

256
, (5.12)

f [1] =
−48

256
, (5.13)

f [2] =
24

256
, (5.14)
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f [3] =
−8

256
, (5.15)

f [n] = 0, n > 4, (5.16)

f [−n] = f [n − 1]. (5.17)

Assume subbandSj is of sizeM×N . The interpolation filter is first applied horizontally

to subbandSj to produceS̃j of sizeM × 2N ,

S̃j(x, y) =















Sj(
x
2
, y) x even,

ry[n] ∗ f [n]

∣

∣

∣

∣

n=dx
2
e

x odd,
(5.18)

wherery[n] is theyth row of Sj(x, y). Next, the filter is applied vertically to producêSj

of size2M × 2N ,

Ŝj(x, y) =















S̃j(x, y
2
) y even,

cx[n] ∗ f [n]

∣

∣

∣

∣

n=d y

2
e

y odd,
(5.19)

where cx[n] is the xth column of S̃j(x, y). Next, the quarter-pixel coefficients are

calculated by bilinear interpolation of the half-pixel coefficients. Again, this process

is carried out identically in each RDWT subband.

After expanding the reference frame to the quarter-pixel accuracy, we search for the

best match for each macroblock to obtain quarter-pixel accurate motion vectors. The

integer part of these vectors is transmitted using Table 3 ofH.261 (VLC table for MVD)

[2], and the fractional part of the vectors is sent by appending a two-bit fixed-length

binary code to the Huffman codeword. The overhead bits needed to code the vectors in

this manner is nearly the same as in H.263 [5].
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Figure 5.8: Quarter-pixel accuracy obtained by filtering and interpolation.
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As in [17], simple bilinear interpolation between adjacentcoefficients produces

values on the half-pixel grid. Bilinear interpolation applied directly on the integer-

grid RDWT coefficients can also be employed to produce values onthe quarter-pixel

grid; however the efficiency of this approach is less than that achieved through use of

interpolation filters as described above, as demonstrated in Figs. 5.9 and 5.10.

5.5 Combining RWMH with Temporal-diversity Multihypothesis

Like as with spatial-diversity multihypothesis, RWMH can also be deployed in

conjunction with temporal-diversity approaches. Specifically, we choose long-term-

memory motion compensation (LTMMC) [43] to combine with our RWMH system.

The new system is denoted as RWMH-LT.

LTMMC uses multiple reference frames to predict the currentframe as illustrated

in Fig. 5.11. One approach to LTMMC is to find the best prediction of a block from

a number of reference frames, as shown in Fig. 5.12(a), in which case, the index

of the chosen frame is transmitted as overhead information.Another approach is a

multihypothesis LTMMC which invokes a combination of several reference frames to

predict the current frame, as shown in Fig. 5.12(b). We use this latter approach to

generate the predicted image, using the three previous frames. In order to save bits in

coding overhead information, we set the weights in MHMC equation (5.1) as

w1(x, y) = 0.5,

w2(x, y) = 0.25,

w3(x, y) = 0.25. (5.20)
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Figure 5.11: Long-term-memory motion compensation (LTMMC)[43] predictor.
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Consequently there is no need to transmit the weights, but we still need to transmit a

total of three sets of motion vectors, one for each referenceframe.

5.6 Combining RWMH with RWTM

As a final refinement of the RWMH approach, we revisit the RWTM system of

Chap. IV. That is, the RWTM system employed the redundancy of the RDWT to

facilitate triangle-mesh ME/MC, whereas the RWMH systems considered thus far in

this chapter employ the traditional block geometry. In thissection we build a new

system, RWTMMH, by combining RWMH and RWTM. The encoder of our RWTMMH

video-coding system is depicted in Fig. 5.13. After the triangle-mesh ME/MC in the

RDWT domain, we apply an inverse RDWT to form a multihypothesis prediction which

averages the phase-diversity predictions. Later, we will see that this multihypothesis

RWTM approach outperforms our former single-hypothesis approach introduced in

Chap. IV.

In this chapter, we introduced the concept of phase-diverstiy multihypothesis which

exploits the redundancy of the RDWT to increase prediction accuracy of ME/MC. We

developed a number of video-coding systems based on this notion of RWMH, employing

other multihypothesis strategies in conjunction with our proposed approach. In the next

chapter, we evaluate the performance of these systems against other RDWT-based video

coders.
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Figure 5.12: (a) Long-term-memory motion compensation. One previous frame is
chosen to predict the current block. (b) Multihypothesis long-term-
memory motion compensation. Three previous frames are linearly
combined to predict the current block.
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CHAPTER VI

RESULTS AND OBSERVATIONS

In this chapter, we present a body of experimental results toevaluate the

effectiveness of the RWTM system proposed in Chap. IV and the RWMH system

proposed in Chap. V. We first show, in Secs. 6.1 and 6.2, respectively, that the

RWTM and RWMH systems offer performance significantly superior to the RDWT-

Block system of [15] which was described in Chap. III as the foundation of all prior

proposed uses of the RDWT in video coding. Then, in Secs. 6.2 and6.3, we investigate

the use of spatial and temporal diversity, respectively, inconjunction with the phase

diversity of the RWMH system. Finally, in Sec. 6.4, we evaluate the performance gains

possible through the merging of RWMH with RWTM.

6.1 The RWTM System

Experimental results use the 100-frame “Football” SIF sequence, the 70-frame

“Susie” SIF sequence, the 300-frame “Mother & Daughter” CIF sequence, and the 300-

frame “Coastguard” CIF sequence. All sequences are grayscaleand have a temporal

sampling of 30 frames/sec. (noninterlaced). The first frameis intra-encoded (I-frame)

while all subsequent frames use ME/MC (P-frames). All wavelet transforms (DWT and

RDWT) use the Cohen-Daubechies-Feauveau 9-7 filter [14] with symmetric extension

and a decomposition ofJ = 3 levels. Unless otherwise indicated, all ME/MC

methods use integer-pixel accuracy and approximately the same number of motion

vectors per frame. The core compression engine in all experiments is the QccPack [46]

76
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implementation of SPIHT [8]; since SPIHT produces an embedded coding, each frame

of the sequence is coded at exactly the specified target rate.

For our proposed RWTM system, we calculate the correlation mask of (4.1) using

J1 = J = 3 for all sequences. We useJ0 = 1 for “Football” andJ0 = 2 for the

other sequences. We select control points in the mask usingM × M blocks, ensuring

compliance with a minimum distance ofdmin and a threshold as in (4.3). For the

experiments here, we useM = 16 anddmin = 8 for all sequences. We use a threshold

parameter ofα = 0 for “Football” andα = 0.972 for the other sequences. To estimate

motion of the control points, we use a block of sizeB × B centered around the control

point in the reference and search in a window of±W in the current frame. For the

results here, we useB = 17 andW = 15 for all sequences.

We compare our proposed RWTM technique to both block- and mesh-based ME/MC

in both the spatial and wavelet domains. Specifically, in these results, “Spatial Block”

refers to block-based ME/MC in the spatial domain, the traditional method employed in

video-coding standards, followed by a full-frame, critically sampled DWT and SPIHT

coding. “Spatial Mesh” is an irregular triangle-mesh ME/MCin the spatial domain

[35], followed by full-frame, critically sampled DWT and SPIHT. “RDWT Block” is

the technique proposed in [15] and used subsequently in [16–18, 21] which employs

block-based ME/MC to locate DWT blocks in the RDWT domain.

Frame-by-frame PSNR profiles for “Susie” and “Football” areshown in Figs. 6.1

and 6.2. Original and reconstructed frames are shown for “Football” in Fig. 6.3. Finally,

PSNR values averaged over all frames of the sequences are tabulated in Table 6.1 for a

fixed bit rate.

The experimental results shown in Table 6.1 and Figs. 6.1 and6.2 indicate that our

proposed RWTM method outperforms other ME/MC techniques operating in both the

spatial and wavelet domains. In terms of average PSNR performance (Tab. 6.1), RWTM
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Figure 6.1: Comparison of RWTM to other methods—frame-by-frame PSNR for
“Football” at 0.5 bpp (1.3 Mbps).

Table 6.1: Distortion averaged over all frames of the sequence.
PSNR (dB)

Spatial Spatial RDWT
Block Mesh Block RWTM

Football† 26.3 27.4 27.9 28.3
Susie 36.0 37.5 37.4 37.8
Mother & daughter 40.2 41.6 40.8 41.7
Coastguard 28.1 28.0 28.9 28.7

Rate is 0.25 bpp except†, which is 0.5 bpp.
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(a)

(b) (c)

(d) (e)

Figure 6.3: Original and reconstructed images for frame 66 of “Football” (cropped to
show detail). (a) Original, (b) Spatial Block, (c) Spatial Mesh, (d) RDWT
Block, (e) RWTM.
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outperforms its nearest competitor (“RDWT Block”) by 0.4 dB forboth the fast-motion

“Football” and the slow-moving “Susie” sequences. It is interesting to note that our

combination of triangle-mesh ME/MC and RDWT-based ME/MC outperforms either

technique applied alone.

The success of our approach lies in that the shift invarianceof the RDWT makes it an

ideal candidate for the implementation of ME/MC in the wavelet domain. This fact has

been exploited previously by others [15–18, 21] using the coefficient-tree representation

of the RDWT wherein each root-to-leaf path represents a distinct critically sampled

DWT of a different phase. In these techniques, the ME/MC procedure “switches”

between root-to-leaf paths in the RDWT coefficient tree as the phase of the motion

under consideration changes. In our system, on the other hand, we preserve the

spatial coherence of the coefficients, thereby permitting easy identification of control

points through a simple correlation operation—spatial-domain mesh-based techniques

typically employ a more costly convolution operator to accomplish this same task. In

addition, we exploit all phase information in the current aswell as reference frames to

determine motion, whereas other RDWT techniques use a critically sampled wavelet-

domain representation of the current frame.

6.2 The RWMH System

In this section the test sequences, wavelet filter, and coding engine are the same as

for the RWTM system. The RDWT-based MHMC procedure usesB = 16, W = 15,

andW ′ = 1. All rate figures include all motion-vector overhead.

We illustrate that our proposed RWMH system yields significant performance

improvement over the system of [15], which is a single-phaseequivalent to our RWMH

system. In the system of [15], ME is executed within the RDWT domain; however,

only a single critically sampled DWT is predicted, and the ME is optimized to that
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Table 6.2: Distortion averaged over all frames of the sequence.

PSNR (dB)
Spatial RDWT
Block Block RWMH

Football† 26.3 27.9 28.6
Susie 36.0 37.4 37.8
Mother & daughter 40.2 40.8 41.2
Coastguard 28.1 28.9 29.5
Rate is 0.25 bpp except†, which is 0.5 bpp.

single phase. Average PSNR figures for fixed bit rate are tabulated in Table 6.2, and

frame-by-frame PSNR profiles for two sequences “Football” and “Susie” are shown in

Figs. 6.4 and 6.5. In these results, “RDWT Block” and “Spatial Block” refers to the

same methods specified in the previous section.

These results illustrate that multihypothesis predictionin the form of our RWMH

system achieves at least a 0.4-dB gain over single-phase prediction. For sequences

with complex motion, our RWMH system achieves even larger performance gains.

For example, RWMH exhibits a gain of nearly 1 dB over the systemof [15] for the

“Football” sequence, and a gain of over 2 dB over the spatial-domain system.

The observed performance gain lies in the fact that RWMH extends the idea

of MHMC into transform domain. Recognizing that different phases in RDWT

coefficients view the motion from different perspectives, we treat each critically sampled

DWT within the RDWT as a separate hypothesis prediction. An inverse RDWT

operation implicitly combines the multiple predictions with no need for side information

concerning prediction weights. Additionally, we use a hierarchical search to tailor the

motion-vector field to individual phases. Substantial gains are obtained in comparison

to an equivalent single-phase prediction.
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Figure 6.4: Comparison of RWMH to RDWT Block—frame-by-frame PSNRfor
“Football” at 0.5 bpp (1.3 Mbps).
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Table 6.3: Distortion averaged over all frames of the sequence.

PSNR (dB)
RWMH RWMH-OBMC RWMH-OBMC-1/4

Football† 28.6 29.2 29.9
Susie 37.8 38.9 39.8
Mother & daughter 41.2 42.3 43.9
Coastguard 29.5 30.1 31.1
Rate is 0.25 bpp except†, which is 0.5 bpp.

Further improvement can be obtained by combining phase-diversity multihypothesis

as represented by RWMH with spatial-diversity multihypothesis in the form of OBMC

and fractional-pixel ME/MC. In Table 6.3, we compare averagePSNRs of RWMH

with integer-pixel accuracy, RWMH coupled with OBMC with integer-pixel accuracy

(RWMH-OBMC), and RWMH coupled with OBMC with quarter-pixel accuracy

(RWMH-OBMC-1/4). The combination of spatial- and phase-diversity multihypothesis

as represented by RWMH-OBMC-1/4 gains at least 0.7-dB over the other approaches for

both low-motion sequences (“Susie”) as well as high-motionsequences (“Football”).

Frame-by-frame PSNR profiles for two sequences are shown in Figs. 6.6 and 6.7. In

Fig. 6.8, we examine frame 76 of the “Football” sequence to compare the reconstructed

images. We see that, while the addition of OBMC, which eliminates blocking artifacts

resulting from the block-based search, produces increasedperformance over all frames

of these sequences, the addition of quarter-pixel accuracyis most effective when motion

is slow (e.g., the first 40 frames of “Susie” in Fig. 6.7).

The results indicate that adding both OBMC and fractional-pixel accuracy to RWMH

produces significant performance gains. Additionally, we have found that both of these

spatial-diversity multihypothesis techniques can be deployed within RDWT subbands

in essentially the same form as their original spatial-domain implementations.
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“Susie” at 0.25 bpp (634 kbps).
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(a)

(b)

(c)

Figure 6.8: Original and reconstructed images for frame 76 of “Football” (cropped to
show detail). (a) Original, (b) RWMH in integer-pixel, (c) RWMH-OBMC-
1/4.
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Table 6.4: Distortion averaged over all frames of the sequence.

PSNR (dB)
Football† Susie Mother & Daughter Coastguard

RWMH 28.6 37.8 41.2 29.5
RWMH-LT 29.1 38.7 42.8 30.1
Rate is 0.25 bpp except†, which is 0.5 bpp.

6.3 The RWMH-LT System

The results of the previous section indicate that RWMH operates complementary

to other forms of multihypothesis. Specificially, we demonstrated gains for

multihypothesis techniques employing spatial diversity.In this section, we show

that RWMH also functions complementary to multihypothesis techniques employing

temporal diversity, specifically long-term memory MC (LTMMC). To this end, we

examine performance of the RWMH-LT system proposed in Sec. 5.5.

The average PSNRs of four sequences are shown in Table 6.4. Frame-by-frame

PSNR profiles for two sequences “Football” and “Susie” are shown in Figs. 6.9 and 6.10.

Since we are not considering spatial diversity with these results, ME/MC is performed

with integer-pixel accuracy in both systems. We see that adding temporal diversity

yields at least 0.5-dB gain over all sequences regardless asto whether the sequences

have high or low motion activity. In the “Mother & Daughter” sequence, there is 1.6-dB

gain. Consequently, we conclude that adding temporal-diversity multihypothesis to our

RWMH system improves performance just as spatial-diversitydoes. This gain comes in

spite of the fact that the motion-vector overhead of RWMH-LT is three times that of the

RWMH system.
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Figure 6.9: Comparison of RWMH to RWMH-LT—frame-by-frame PSNRfor
“Football” at 0.5 bpp (1.3 Mbps).
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Figure 6.10: Comparison of RWMH to RWMH-LT—frame-by-frame PSNR for “Susie”
at 0.25 bpp (634 kbps).
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Table 6.5: Distortion averaged over all frames of the sequence.

PSNR (dB)
Football† Susie Mother & Daughter Coastguard

RWTM 28.3 37.8 41.7 28.7
RWTMMH 28.6 38.3 41.9 29.3
Rate is 0.25 bpp except†, which is 0.5 bpp.

6.4 The RWTMMH System

In this final section of this chapter, we demonstrate that thereplacing of

the traditional block-based geometry employed in our RWMH systems with the

triangle-mesh structure developed for our RWTM system produces performance gain.

Specifically, we compare the performance of the original RWMHsystem (for simplicity

of discussion we do not include the spatial- and temporal-diversity refinements

previously investigated) to the RWTMMH system proposed in Sec. 5.6.

The average PSNRs are shown in Table 6.5. Frame-by-frame PSNRprofiles for two

sequences are shown in Figs. 6.11 and 6.12. There is at least 0.2dB gain for RWTMMH

over RWTM.

The results of this chapter have indicated that the RDWT can play a role in video-

coding systems beyond just the introduction of shift invariance for ME/MC. Specifically,

it can facilitate ME/MC geometries more general than traditional block structures as

well as provide the basis for phase-diversity multihypothesis, all the while functioning

complementary to a number of advanced video-coding techniques. In the next chapter,

we make some concluding remarks concerning the work we have presented.
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Figure 6.11: Comparison of RWTM and RWTMMH—frame-by-frame PSNR for
“Football” at 0.5 bpp (1.3 Mbps).
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“Susie” at 0.25 bpp (634 kbps).



CHAPTER VII
CONCLUSION

To summarize the work accomplished in this dissertation, wehave built several

systems which are each based on the idea of ME/MC in the domainof a redundant

wavelet transform. As was demonstrated in [15] and in a number of prior investigations

[16–18, 21, 23, 24], in the RDWT domain, the shift variance of the usual critically

sampled DWT no longer poses a problem for the estimation of object motion. However,

as we have demonstrated in this disserattion, the redundancy of RDWT can be exploited

for ends other than just its mere shift invariance. Specifically, the RDWT can facilitate

the deployment of an irregular triangle mesh instead of block-based ME/MC to eliminate

of blocking artifacts as was done in our RWTM system introduced in Chap. IV.

Additionally, it is possible to use the RDWT redundancy to enable multihypothesis

prediction with phase-diversity to increase prediction accuracy as was done in the

RWMH system introduced in Chap. V. In addition to phase-diversity, we can also

implement spatial-diversity (e.g., OBMC and subpixel accuracy), and temporal-diversity

(e.g., LTMMC), to our RWMH system to build a highly multihypothesis system such

that each form of multihypothesis complements the others for significantly improved

performance as was demonstrated in the results of Chap. V. Finally, we also were

able to combine RWTM with RWMH to get a phase-diversity system with improved

performance.

Modern video-compression systems are built upon a large collection of diverse

techniques, all of which improve system performance in somefashion to various

degrees. For example, it has been recognized that the significant performance

improvement observed of the current H.263 Version 2 (H.263+) [6] standard results from

95
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no one single coding element; rather, it is the accumulationof a large and diverse set of

coding techniques that yield performance superior to priorsystems [47]. The RDWT-

based techniques considered in this dissertation are no different in this respect—each

provides a significant, albeit incremental, gain in performance.

However there exists limitations to the combining of all these techniques. That is, not

all techniques produce gains for all sequences over all frames. Rather, some techniques

work well for, say, slowly moving scenes, while others work better for fast motion.

Consequently, modern video-coding standards are typicallycomposed of numerous

coding modes such that individual coding techniques can be switched on or off as

needed. The techniques we have proposed here should also be subject to such mode

control—we may not, for example, use the phase-diversity ofthe RWMH technique on

every frame of a sequence, but rather use it only when performance warrants. Coding

standards (H.263 Version 2 [6]) already make such mode-control decisions for spatial-

diversity and temporal-diversity multihypothesis approaches like sub-pixel accuracy and

B-frames. Although beyond the scope of this dissertation, mode-control strategies for

phase-diversity multihypothesis will be needed for any truly practical implementation

of RWMH.
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[9] F. Dufaux, F. Moscheni, and M. Shütz, “Motion compensated wavelet transform
coding,” in Proceedings of the International Picture Coding Symposium,
Sacramento, CA, 1994.

[10] G. Van der Auwera, A. Munteanu, G. Lafruit, and J. Cornelis, “Video coding
based on motion estimation in the wavelet detail images,” inProceedings of the
International Conference on Acoustics, Speech, and Signal Processing, Seattle,
WA, May 1998, vol. 5, pp. 2801–2804.

[11] S. A. Martucci, I. Sodagar, T. Chiang, and Y.-Q. Zhang, “Azerotree wavelet video
coder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 7,
no. 1, pp. 109–118, February 1997.

97



98

[12] Y.-Q. Zhang and S. Zafar, “Motion-compensated wavelettransform coding for
color video compression,”IEEE Transactions on Circuits and Systems for Video
Technology, vol. 2, no. 3, pp. 285–296, September 1992.

[13] T. Naveen and J. W. Woods, “Motion compensated multiresolution transmission
of high definition video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 4, no. 1, pp. 29–41, February 1994.

[14] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using
wavelet transform,” IEEE Transactions on Image Processing, vol. 1, no. 2, pp.
205–220, April 1992.

[15] H.-W. Park and H.-S. Kim, “Motion estimation using low-band-shift method for
wavelet-based moving-picture coding,”IEEE Transactions on Image Processing,
vol. 9, no. 4, pp. 577–587, April 2000.

[16] H. S. Kim and H. W. Park, “Wavelet-based moving-picturecoding using shift-
invariant motion estimation in wavelet domain,”Signal Processing: Image
Communication, vol. 16, no. 7, pp. 669–679, April 2001.

[17] X. Li, L. Kerofsky, and S. Lei, “All-phase motion compensated prediction in
the wavelet domain for high performance video coding,” inProceedings of the
International Conference on Image Processing, Thessaloniki, Greece, October
2001, vol. 2, pp. 538–541.

[18] X. Li and L. Kerofsky, “High-performance resolution-scalable video coding
via all-phase motion-compensated prediction of wavelet coefficients,” in Visual
Communications and Image Processing, C.-C. J. Kuo, Ed. Proc. SPIE 4671,
January 2002, pp. 1080–1090.

[19] X. Li and S. Lei, “Efficient motion field representation in the wavelet domain
for video compression,” inProceedings of the International Conference on Image
Processing, Rochester, NY, September 2002, vol. 3, pp. 257–260.

[20] G. Van der Auwera, A. Munteanu, P. Schelkens, and J. Cornelius, “Scalable
wavelet video-coding with in-band prediction—The bottom-up overcomplete
discrete wavelet transform,” inProceedings of the International Conference on
Image Processing, Rochester, NY, September 2002, vol. 3, pp. 725–728.

[21] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, P. Schelkens, and
J. Cornelius, “Scalable wavelet video-coding with in-band prediction—
Implementation and experimental results,” inProceedings of the International
Conference on Image Processing, Rochester, NY, 2002, vol. 3, pp. 729–732.



99

[22] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, P. Schelkens, and
J. Cornelius, “A new method for complete-to-overcomplete discrete wavelet
transforms,” inProceedings of the International Conference on Digital Signal
Processing, Santorini, Greece, July 2002, pp. 501–504.

[23] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, J. Barbarien, P. Schelkens,
and J. Cornelius, “Wavelet-based fine granularity scalable video coding with in-
band prediction,” ISO/IEC JTC1/SC29/WG11, MPEG2002/M7906, Jeju Island,
South Korea, March 2002.

[24] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, P. Schelkens, and
J. Cornelius, “Wavelet-based fully-scalable video coding with in-band prediction,”
in Proceedings of the3rd IEEE Benelux Signal Processing Symposium, Leuven,
Belgium, March 2002, pp. 217–220.

[25] S. Cui, Y. Wang, and J. E. Fowler, “Mesh-based motion estimation and
compensation in the wavelet domain using a redundant transform,” in Proceedings
of the International Conference on Image Processing, Rochester, NY, September
2002, vol. 1, pp. 693–696.

[26] S. Cui, Y. Wang, and J. E. Fowler, “Motion estimation and compensation in the
redundant-wavelet domain using triangle meshes,”IEEE Transactions on Circuits
and Systems for Video Technology, October 2002, submitted.

[27] N. Sebe, C. Lamba, and M. S. Lew, “An overcomplete discrete wavelet transform
for video compression,” inProceedings of the IEEE International Conference on
Multimedia and Expo, Lausanne, Switzerland, August 2002, vol. 2, pp. 541–644.

[28] S. Cui, Y. Wang, and J. E. Fowler, “Multihypothesis motion compensation in the
redundant wavelet domain,” inProceedings of the International Conference on
Image Processing, Barcelona, Spain, 2003, to appear.

[29] S. Cui, Y. Wang, and J. E. Fowler, “Motion compensation via redundant-
wavelet multihypothesis,”IEEE Transactions on Circuits and Systems for Video
Technology, February 2003, submitted.

[30] P. Dutilleux, “An implementation of the “algorithmèa trous” to compute the
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