92 research outputs found

    Neuromorphic In-Memory Computing Framework using Memtransistor Cross-bar based Support Vector Machines

    Full text link
    This paper presents a novel framework for designing support vector machines (SVMs), which does not impose restriction on the SVM kernel to be positive-definite and allows the user to define memory constraint in terms of fixed template vectors. This makes the framework scalable and enables its implementation for low-power, high-density and memory constrained embedded application. An efficient hardware implementation of the same is also discussed, which utilizes novel low power memtransistor based cross-bar architecture, and is robust to device mismatch and randomness. We used memtransistor measurement data, and showed that the designed SVMs can achieve classification accuracy comparable to traditional SVMs on both synthetic and real-world benchmark datasets. This framework would be beneficial for design of SVM based wake-up systems for internet of things (IoTs) and edge devices where memtransistors can be used to optimize system's energy-efficiency and perform in-memory matrix-vector multiplication (MVM).Comment: 4 pages, 5 figures, MWSCAS 201

    Memtransistor Devices Based on MoS 2 Multilayers with Volatile Switching due to Ag Cation Migration

    Get PDF
    In the recent years, the need for fast, robust, and scalable memory devices have spurred the exploration of advanced materials with unique electrical properties. Among these materials, 2D semiconductors are promising candidates as they combine atomically thin size, semiconductor behavior, and complementary metal-oxide-semiconductor compatibility. Here a three-terminal memtransistor device, based on multilayer MoS2 with ultrashort channel length, that combines the usual transistor behavior of 2D semiconductors with resistive switching memory operation is presented. The volatile switching behavior is explained by the Ag cation migration along the channel surface. An extensive physical and electrical characterization to investigate the fundamental properties of the device, is presented. Finally, a chain-type memory array architecture similar to a NAND flash structure consisting of memtransistors is demonstrated, where the individual memory devices can be selected for write and read, paving the way for high-density, 3D memories based on 2D semiconductors

    A walk on the frontier of energy electronics with power ultra-wide bandgap oxides and ultra-thin neuromorphic 2D materials

    Get PDF
    Altres ajuts: the ICN2 is funded also by the CERCA programme / Generalitat de CatalunyaUltra-wide bandgap (UWBG) semiconductors and ultra-thin two-dimensional materials (2D) are at the very frontier of the electronics for energy management or energy electronics. A new generation of UWBG semiconductors will open new territories for higher power rated power electronics and deeper ultraviolet optoelectronics. Gallium oxide - GaO(4.5-4.9 eV), has recently emerged as a suitable platform for extending the limits which are set by conventional (-3 eV) WBG e.g. SiC and GaN and transparent conductive oxides (TCO) e.g. In2O3, ZnO, SnO2. Besides, GaO, the first efficient oxide semiconductor for energy electronics, is opening the door to many more semiconductor oxides (indeed, the largest family of UWBGs) to be investigated. Among these new power electronic materials, ZnGa2O4 (-5 eV) enables bipolar energy electronics, based on a spinel chemistry, for the first time. In the lower power rating end, power consumption also is also a main issue for modern computers and supercomputers. With the predicted end of the Moores law, the memory wall and the heat wall, new electronics materials and new computing paradigms are required to balance the big data (information) and energy requirements, just as the human brain does. Atomically thin 2D-materials, and the rich associated material systems (e.g. graphene (metal), MoS2 (semiconductor) and h-BN (insulator)), have also attracted a lot of attention recently for beyond-silicon neuromorphic computing with record ultra-low power consumption. Thus, energy nanoelectronics based on UWBG and 2D materials are simultaneously extending the current frontiers of electronics and addressing the issue of electricity consumption, a central theme in the actions against climate chang

    Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing

    Get PDF
    Here, various synaptic functions and neural network simulation based pattern-recognition using novel, solution-processed organic memtransistors (memTs) with an unconventional redox-gating mechanism are demonstrated. Our synaptic memT device using conjugated polymer thin-film and redox-active solid electrolyte as the gate dielectric can be routinely operated at gate voltages (V(GS)) below − 1.5 V, subthreshold-swings (S) smaller than 120 mV/dec, and ON/OFF current ratio larger than 10(8). Large hysteresis in transfer curves depicts the signature of non-volatile resistive switching (RS) property with ON/OFF ratio as high as 10(5). In addition, our memT device also shows many synaptic functions, including the availability of many conducting-states (> 500) that are used for efficient pattern recognition using the simplest neural network simulation model with training and test accuracy higher than 90%. Overall, the presented approach opens a new and promising way to fabricate high-performance artificial synapses and their arrays for the implementation of hardware-oriented neural network

    Capacitive effects and memristive switching in three terminal multilayered MoS<inf>2</inf>devices

    Get PDF
    We report on the electrical properties of gated two-terminal multilayered molybdenum disulfide (MoS2) memristor devices having a planar architecture. The approach based on highly dispersed MoS2 flakes drop cast onto a bottom gated Si/SiO2 (100nm) wafer containing metal Pd contact electrodes yields devices that exhibit a number of complex properties including memristive and capacitive effects as well as multiple non-zero-crossing current-voltage hysteresis effects. The devices also show a reaction to a varying gate bias. An increasingly positive gate led to the devices displaying a linear ohmic I-V response while an increasingly negative gate bias drove the system to behave more memristive with a widening hysteresis loop

    A gate-programmable van der Waals metal-ferroelectric-semiconductor memory

    Full text link
    Ferroelecticity, one of the keys to realize nonvolatile memories owing to the remanent electric polarization, has been an emerging phenomenon in the two-dimensional (2D) limit. Yet the demonstrations of van der Waals (vdW) memories using 2D ferroelectric materials as an ingredient are very limited. Especially, gate-tunable ferroelectric vdW memristive device, which holds promises in future neuromorphic applications, remains challenging. Here, we show a prototype gate-programmable memory by vertically assembling graphite, CuInP2S6, and MoS2 layers into a metal-ferroelectric-semiconductor architecture. The resulted devices exhibit two-terminal switchable electro-resistance with on-off ratios exceeding 105 and long-term retention, akin to a conventional memristor but strongly coupled to the ferroelectric characteristics of the CuInP2S6 layer. By controlling the top gate, Fermi level of MoS2 can be set inside (outside) of its band gap to quench (enable) the memristive behaviour, yielding a three-terminal gate programmable nonvolatile vdW memory. Our findings pave the way for the engineering of ferroelectric-mediated memories in future implementations of nanoelectronics

    Standards for the Characterization of Endurance in Resistive Switching Devices

    Get PDF
    Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >106 cycles were based on resistance versus cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device. We recommend not to use such a characterization method because it is highly inaccurate and unreliable (i.e., it cannot reliably demonstrate that the device effectively switches in every cycle and it ignores cycle-to-cycle and device-to-device variability). This has created a blurry vision of the real performance of RS devices and in many cases has exaggerated their potential. This article proposes and describes a method for the correct characterization of switching endurance in RS devices; this method aims to construct endurance plots showing one data point per cycle and resistive state and combine data from multiple devices. Adopting this recommended method should result in more reliable literature in the field of RS technologies, which should accelerate their integration in commercial products
    • …
    corecore