23 research outputs found

    Memristor-Based Digital Systems Design and Architectures

    Get PDF
    Memristor is considered as a suitable alternative solution to resolve the scaling limitation of CMOS technology. In recent years, the use of memristors in circuits design has rapidly increased and attracted researcher’s interest. Advances have been made to both size and complexity of memristor designs. The development of CMOS transistors shows major concerns, such as, increased leakage power, reduced reliability, and high fabrication cost. These factors have affected chip manufacturing process and functionality severely. Therefore, the demand for new devices is increasing. Memristor, is considered as one of the key element in memory and information processing design due to its small size, long-term data storage, low power, and CMOS compatibility. The main objective in this research is to design memristor-based arithmetic circuits and to overcome some of the Memristor based logic design issues. In this thesis, a fast, low area and low power hybrid CMOS memristor based digital circuit design were implemented. Small and large-scale memristor based digital circuits are implemented and provided a solutions for overcoming the memristor degradation and fan-out challenges. As an example, a 4- bit LFSR has been implemented by using MRL scheme with 64 CMOS devices and 64 memristors. The proposed design is more efficient in terms of the area when compared with CMOS- based LFSR circuits. The simulation results proves the functionality of the design. This approach presents acceptable speed in comparison with CMOS-based design and it is faster than IMPLY-based memrisitive LFSR. The propped LFSR has 841 ps de-lay. Furthermore, the proposed design has a significant power reduction of over 66% less than CMOS-based approach. This thesis proposes implementation of memristive 2-D median filter and extends previously published works on memristive Filter design to include this emerging technology characteristics in image processing. The proposed circuit was designed based on Pt/TaOx/Ta redox-based device and Memristor Ratioed Logic (MRL). The proposed filter is designed in Cadence and the memristive median approved tested circuit is translated to Verilog-XL as a behavioral model. Different 512 _ 512 pixels input images contain salt and pepper noise with various noise density ratios are applied to the proposed median filter and the design successfully has substantially removed the noise. The implementation results in comparison with the conventional filters, it gives better Peak Signal to Noise Ratio (PSNR) and Mean Absolute Error (MAE) for different images with different noise density ratios while it saves more area as compared to CMOS-based design. This dissertation proposes a comprehensive framework for design, mapping and synthesis of large-scale memristor-CMOS circuits. This framework provides a synthesis approach that can be applied to all memristor-based digital logic designs. In particular, it is a proposal for a characterization methodology of memristor-based logic cells to generate a standard cell library for large scale simulation. The proposed framework is implemented in the Cadence Virtuoso schematic-level environment and was veri_ed with Verilog-XL, MATLAB, and the Electronic Design Automation (EDA) Synopses compiler after being translated to the behavioral level. The proposed method can be applied to implement any digital logic design. The frame work is deployed for design of the memristor-based parallel 8-bit adder/subtractor and a 2-D memristive-based median filter

    Artificial neural networks and their applications to intelligent fault diagnosis of power transmission lines

    Get PDF
    Over the past thirty years, the idea of computing based on models inspired by human brains and biological neural networks emerged. Artificial neural networks play an important role in the field of machine learning and hold the key to the success of performing many intelligent tasks by machines. They are used in various applications such as pattern recognition, data classification, stock market prediction, aerospace, weather forecasting, control systems, intelligent automation, robotics, and healthcare. Their architectures generally consist of an input layer, multiple hidden layers, and one output layer. They can be implemented on software or hardware. Nowadays, various structures with various names exist for artificial neural networks, each of which has its own particular applications. Those used types in this study include feedforward neural networks, convolutional neural networks, and general regression neural networks. Increasing the number of layers in artificial neural networks as needed for large datasets, implies increased computational expenses. Therefore, besides these basic structures in deep learning, some advanced techniques are proposed to overcome the drawbacks of original structures in deep learning such as transfer learning, federated learning, and reinforcement learning. Furthermore, implementing artificial neural networks in hardware gives scientists and engineers the chance to perform high-dimensional and big data-related tasks because it removes the constraints of memory access time defined as the von Neuman bottleneck. Accordingly, analog and digital circuits are used for artificial neural network implementations without using general-purpose CPUs. In this study, the problem of fault detection, identification, and location estimation of transmission lines is studied and various deep learning approaches are implemented and designed as solutions. This research work focuses on the transmission lines’ datasets, their faults, and the importance of identification, detection, and location estimation of them. It also includes a comprehensive review of the previous studies to perform these three tasks. The application of various artificial neural networks such as feedforward neural networks, convolutional neural networks, and general regression neural networks for identification, detection, and location estimation of transmission line datasets are also discussed in this study. Some advanced methods based on artificial neural networks are taken into account in this thesis such as the transfer learning technique. These methodologies are designed and applied on transmission line datasets to enable the scientist and engineers with using fewer data points for the training purpose and wasting less time on the training step. This work also proposes a transfer learning-based technique for distinguishing faulty and non-faulty insulators in transmission line images. Besides, an effective design for an activation function of the artificial neural networks is proposed in this thesis. Using hyperbolic tangent as an activation function in artificial neural networks has several benefits including inclusiveness and high accuracy

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Evaluation of Generative Models for Predicting Microstructure Geometries in Laser Powder Bed Fusion Additive Manufacturing

    Get PDF
    In-situ process monitoring for metals additive manufacturing is paramount to the successful build of an object for application in extreme or high stress environments. In selective laser melting additive manufacturing, the process by which a laser melts metal powder during the build will dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty lies in that obtaining enough variety of data to quantify the internal microstructures for the evaluation of its physical properties is problematic, as the laser passes at high speeds over powder grains at a micrometer scale. Imaging the process in-situ is complex and cost-prohibitive. However, generative modes can provide new artificially generated data. Generative adversarial networks synthesize new computationally derived data through a process that learns the underlying features corresponding to the different laser process parameters in a generator network, then improves upon those artificial renderings by evaluating through the discriminator network. While this technique was effective at delivering high-quality images, modifications to the network through conditions showed improved capabilities at creating these new images. Using multiple evaluation metrics, it has been shown that generative models can be used to create new data for various laser process parameter combinations, thereby allowing a more comprehensive evaluation of ideal laser conditions for any particular build

    When Machine Learning Meets Information Theory: Some Practical Applications to Data Storage

    Get PDF
    Machine learning and information theory are closely inter-related areas. In this dissertation, we explore topics in their intersection with some practical applications to data storage. Firstly, we explore how machine learning techniques can be used to improve data reliability in non-volatile memories (NVMs). NVMs, such as flash memories, store large volumes of data. However, as devices scale down towards small feature sizes, they suffer from various kinds of noise and disturbances, thus significantly reducing their reliability. This dissertation explores machine learning techniques to design decoders that make use of natural redundancy (NR) in data for error correction. By NR, we mean redundancy inherent in data, which is not added artificially for error correction. This work studies two different schemes for NR-based error-correcting decoders. In the first scheme, the NR-based decoding algorithm is aware of the data representation scheme (e.g., compression, mapping of symbols to bits, meta-data, etc.), and uses that information for error correction. In the second scenario, the NR-decoder is oblivious of the representation scheme and uses deep neural networks (DNNs) to recognize the file type as well as perform soft decoding on it based on NR. In both cases, these NR-based decoders can be combined with traditional error correction codes (ECCs) to substantially improve their performance. Secondly, we use concepts from ECCs for designing robust DNNs in hardware. Non-volatile memory devices like memristors and phase-change memories are used to store the weights of hardware implemented DNNs. Errors and faults in these devices (e.g., random noise, stuck-at faults, cell-level drifting etc.) might degrade the performance of such DNNs in hardware. We use concepts from analog error-correcting codes to protect the weights of noisy neural networks and to design robust neural networks in hardware. To summarize, this dissertation explores two important directions in the intersection of information theory and machine learning. We explore how machine learning techniques can be useful in improving the performance of ECCs. Conversely, we show how information-theoretic concepts can be used to design robust neural networks in hardware

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Electrification of Smart Cities

    Get PDF
    Electrification plays a key role in decarbonizing energy consumption for various sectors, including transportation, heating, and cooling. There are several essential infrastructures for a smart city, including smart grids and transportation networks. These infrastructures are the complementary solutions to successfully developing novel services, with enhanced energy efficiency and energy security. Five papers are published in this Special Issue that cover various key areas expanding the state-of-the-art in smart cities’ electrification, including transportation, healthcare, and advanced closed-circuit televisions for smart city surveillance
    corecore