
WHEN MACHINE LEARNING MEETS INFORMATION THEORY: SOME PRACTICAL

APPLICATIONS TO DATA STORAGE

A Dissertation

by

PULAKESH UPADHYAYA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Anxiao (Andrew) Jiang
Committee Members, Andreas Klappenecker

Yoonsuck Choe
Tie Liu

Head of Department, Scott Schaefer

August 2020

Major Subject: Computer Engineering

Copyright 2020 Pulakesh Upadhyaya

ABSTRACT

Machine learning and information theory are closely inter-related areas. In this dissertation,

we explore topics in their intersection with some practical applications to data storage.

Firstly, we explore how machine learning techniques can be used to improve data reliability

in non-volatile memories (NVMs). NVMs, such as flash memories, store large volumes of data.

However, as devices scale down towards small feature sizes, they suffer from various kinds of noise

and disturbances, thus significantly reducing their reliability. This dissertation explores machine

learning techniques to design decoders that make use of natural redundancy (NR) in data for error

correction. By NR, we mean redundancy inherent in data, which is not added artificially for error

correction. This work studies two different schemes for NR-based error-correcting decoders. In

the first scheme, the NR-based decoding algorithm is aware of the data representation scheme

(e.g., compression, mapping of symbols to bits, meta-data, etc.), and uses that information for

error correction. In the second scenario, the NR-decoder is oblivious of the representation scheme

and uses deep neural networks (DNNs) to recognize the file type as well as perform soft decoding

on it based on NR. In both cases, these NR-based decoders can be combined with traditional error

correction codes (ECCs) to substantially improve their performance.

Secondly, we use concepts from ECCs for designing robust DNNs in hardware. Non-volatile

memory devices like memristors and phase-change memories are used to store the weights of

hardware-implemented DNNs. Errors and faults in these devices (e.g., random noise, stuck-at

faults, cell-level drifting etc.) might degrade the performance of such DNNs in hardware. We use

concepts from analog error-correcting codes to protect the weights of noisy neural networks and to

design robust neural networks in hardware.

To summarize, this dissertation explores two important directions in the intersection of infor-

mation theory and machine learning. We explore how machine learning techniques can be useful

in improving the performance of ECCs. Conversely, we show how information-theoretic concepts

can be used to design robust neural networks in hardware.

ii

DEDICATION

To my parents and sister Manjari.

iii

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Dr. Anxiao (Andrew) Jiang for his continued guidance

and help. As a student who was new to the domain of research, his smiling attitude towards

complicated research problems was enough to dispel my initial doubts. I consider myself extremely

lucky to be one of his students. Without his help, this dissertation would have remained an elusive

dream.

I would also like to thank the members of my dissertation committee, Dr. Andreas Klappe-

necker, Dr. Tie Liu, and Dr. Yoonsuck Choe for their valuable advice. I am deeply grateful to

Dr. Krishna Narayanan for his inputs and his excellent lectures on coding theory, which made my

journey easier. I was lucky to have collaborated with Dr. Jehoshua Bruck, Dr. Netanel Raviv,

Dr. Hongchang Zhao, Dr. Erich Haratsch, Dr. Siddharth Jain, and Jin Sima. I would also like to

express my gratitude to other collaborators from Texas A&M University: Dr. Ying Wang, Kun-

ping Huang, Xiaojing Yu, Palash Parmar, Jacob Mink, Jeffrey Cordero, who helped me with their

excellent insights into various research problems. I would also like to thank Dr. Tom V. Mathew

at I.I.T. Bombay for instilling in me the initial spark for research.

I was lucky to have the constant support of my friends and family. They were kind and un-

derstanding during the most difficult times and continued inspiring me. I would especially like

to thank my sister Manjari for her smiling reassurances. I would also like to thank my friends

I made in College Station: Rajarshi, Arijit, Partha, Neha, Dharanidhar, Pranami, Shriti, Amlan,

Prachee, Prithvi, Ranbir, Pradipta, Shantanu, Suman, Chinmoy, Mriganav, Nilkamal, Bobby, Is-

han, Abhishek Das, Abhishek Sarmah, Jyotikrishna, Jay, Kaustubh, and Anubhav. I would also

like to thank my friends from CSEGSA: Andrew, Scott, Seth, Chris, Dennis, Raniero, and Adam.

I am deeply grateful to my friends outside College Station: Rakesh, Satam, Sushanta, Tanmay,

Tanudeep, Ashutosh, and Yashwanth, who played an important role in making me believe in my-

self as a person.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Anxiao Jiang, Dr. An-

dreas Klappenecker, Dr. Yoonsuck Choe of the Department of Computer Science and Engineering

and Dr. Tie Liu of the Department of Electrical Engineering.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by graduate research and teaching assistantships from Texas

A&M University and funding from National Science Foundation.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES. xii

1. INTRODUCTION. 1

1.1 Motivation . 1
1.2 Research Contributions . 4

1.2.1 Learning Techniques for Correcting Errors by Natural Redundancy 4
1.2.2 LDPC Decoding with Natural Redundancy . 5
1.2.3 Stopping Set Elimination of LDPC Codes by Language-based Natural Re-

dundancy . 6
1.2.4 Deep Learning for Representation-Oblivious Error Correction by Natural

Redundancy . 6
1.2.5 Externally Coded Neural Networks . 7
1.2.6 Internally Coded Neural Networks . 7

1.3 Organization of the Dissertation . 8

2. TWO FUNDAMENTAL APPORACHES: INTERPLAY BETWEEN INFORMATION
THEORY AND MACHINE LEARNING . 9

2.1 Background . 9
2.2 Recent Work . 10

2.2.1 Machine Learning for Information Theory. 10
2.2.2 Information Theory for Machine Learning. 14

2.3 Importance of this Dissertation . 15

3. CORRECTING ERRORS BY NATURAL REDUNDANCY USING LEARNING TECH-
NIQUES . 16

vi

3.1 Introduction. 16
3.2 Sampling-based Decoding for Random Codes . 17

3.2.1 Sliding-Window Decoder for Prefix-free Codes . 17
3.2.2 Sampling-based Decoder for Random Codes . 18

3.3 Capacity of ECC with Natural Redundancy . 22
3.3.1 Channel Capacity with Natural Redundancy. 22
3.3.2 Upper Bound to ECC Sizes with NR . 23

3.4 Computational-Complexity Tradeoff. 24

4. COMBINATION OF LDPC AND MACHINE LEARNING-BASED NATURAL RE-
DUNDANCY DECODING . 27

4.1 Introduction. 27
4.2 Efficient Natural Redundancy Discovery . 28

4.2.1 Discovery of Natural Redundancy in Languages . 28
4.3 Related Works . 30
4.4 NR-Decoding for Languages and Images . 31

4.4.1 NR-Decoding for Language . 31
4.4.2 NR-Decoding for Images . 33

4.4.2.1 Convolutional Neural Network . 35
4.4.2.2 Filter Based on Connected Components . 35
4.4.2.3 Joint Decoder . 35

4.4.3 Decoding Performance of NR Decoders . 36
4.5 Combine NR-decoding with LDPC Codes . 37

4.5.1 Decoding Algorithm. 37
4.5.2 Density Evolution Analysis . 38
4.5.3 Erasure Threshold . 39

4.6 Iterative LDPC Decoding with NR . 40
4.6.1 NR Decoder For Compressed Languages . 40
4.6.2 Iteration with LDPC Decoder . 41
4.6.3 Density Evolution Analysis . 42

5. STOPPING SET ELIMINATION OF LDPC CODES BY LANGUAGE-BASED NAT-
URAL REDUNDANCY . 46

5.1 Introduction. 46
5.2 Related Applications and Related Works . 49

5.2.1 Applications of SSE . 49
5.2.2 Related Works . 50

5.3 NP-Hardness of SSE Problem . 52
5.3.1 NP-completeness of Pseudo Set Cover Problem . 52
5.3.2 NP-hardness of Stopping Set Elimination Problem. 54

5.4 SSE with Constraint on Belief-Propagation Iterations and Its NP-Hardness. 61
5.4.1 Reducing Not-all-equal SAT Problem to SSE1 Problem . 66
5.4.2 Properties of Reduction . 69

5.5 Approximation Algorithm for SSE1 Problem. 82

vii

5.6 Analysis and Algorithms for SSEk Problems . 90
5.6.1 Effect of RBER for Approximation Algorithms . 91
5.6.2 Exact Algorithm for SSE∞ Problem with Stopping Tree. 92
5.6.3 Exact Algorithm for SSEk Problem with Stopping Tree . 97

6. DEEP LEARNING FOR REPRESENTATION-OBLIVIOUS ERROR CORRECTION
BY NATURAL REDUNDANCY . 107

6.1 Introduction. 107
6.2 File Type Recognition Using Deep Learning . 110

6.2.1 DNN Architecture and Training . 111
6.2.2 Experimental Performance . 112

6.3 Soft Decoding by Deep Neural Networks . 114
6.3.1 Portfolio Theory-based Soft Decoding . 115
6.3.2 Soft Decoding for Noisy File Segments . 118

6.4 Error Correction for Noisy File Segments . 119
6.5 Conclusion. 122

7. EXTERNALLY CODED NEURAL NETWORKS . 123

7.1 Introduction. 123
7.2 Deterioration of DNN Performance with Noise . 124

7.2.1 Datasets . 124
7.2.2 Results . 124

7.3 Analog Codes for Noisy DNN . 126
7.3.1 Linear Analog Codes . 126
7.3.2 Experimental Performance of Linear Analog Codes in DNNs 128

7.4 Conclusion. 128

8. INTERNALLY CODED NEURAL NETWORKS . 129

8.1 Introduction. 129
8.2 Construction of Coded Neural Networks . 130
8.3 Coded Neural Network Construction By Analog Codes . 132
8.4 Related Work . 133
8.5 Conclusion. 133

9. CONCLUSION AND FUTURE WORK . 134

REFERENCES . 136

viii

LIST OF FIGURES

FIGURE Page

1.1 Interplay between machine learning and information theory. 1

3.1 (a) The number of words Mn whose Huffman codewords have n bits. (b) The
exponent xn in the density 10−xn for words whose Huffman codewords have n bits. . 18

3.2 Performance of sampling-based decoder for random codes. Here the x-axis is n,
and the y-axis is the minimum value of µ(t) for which there exists a feasible solu-
tion to k and m given the condition that PIN(t) ≥ 0.99 for t = 6, 8 and 10. 20

3.3 A decoding scheme that combines NR-decoding with ECC-decoding. 22

4.1 (a) Compress a text by LZW. (b) NR-decoding for erasures. 29

4.2 (a) A sample paragraph from Wikipedia (part of which was omitted to save space).
(b) Phrases in it that have the co-location relationship with “flash memory”. 33

4.3 (a) Examples of handwritten digits. (b) NR-decoder for images. (c) Performance
of NR-decoder. (d) A concatenated decoding scheme. (e) An iterative decoding
scheme. 34

4.4 (a) First three iterations of classic BP decoding (alone) for BEC. (b) First three
iterations of BP-decoding and NR decoding. 43

5.1 A model for collaborative ECC-decoding and NR-decoding. 47

5.2 Statistics of an (8192,7561) LDPC code. (a) UBER for different RBERs near the
code’s decoding threshold. (b) Average stopping-set size for different RBERs. 48

5.3 (a) A bipartite graph Di,j that connects variable nodes si and tj . (b) A symbol for
the graph Di,j . 55

5.4 (a) An instance of the Pseudo Set Cover Problem, where T = {t1, t2, t3, t4, t5} and
S1 = {t1, t3, t4}, S2 = {t1, t3}, S3 = {t2, t4, t5}. (b) The corresponding graph GI .
(c) The corresponding graph GI with full details. (d) The corresponding graph GII . . 57

5.5 (a) A Stopping Set of n variable nodes and n check nodes. (b) After removing a
variable node v1, the remaining nodes become decodable. (c) After the 1st iteration
of BP decoding, v2 and vn are corrected. (d) After the 2nd iteration of BP decoding,
v3 and vn−1 are corrected.. 63

ix

5.6 (a) A graph with a Decodable Set. (b) After check nodes c1 and c3 are removed,
the remaining variable nodes form a Non-decodable Set. 65

5.7 (a) The gadget corresponding to a Boolean variable xi, for i = 1, 2, · · · , n. (b)
Two gadgets corresponding to a clause Cj , for j = 1, 2, · · · , k. (c) The connected
gadget corresponding to a clause Cj , for j = 1, 2, · · · , k. (d) Symbol for Vi. (e)
Symbol for Wj . (f) Connect clause gadget to Boolean variable gadget: case one.
(g) Connect clause gadget to Boolean variable gadget: case two. (h) An example
of connecting a clause gadget to variable gadgets. (i) Simplified representation of
the graph in (h). 68

5.8 (a) The graph Gsse corresponding to the Not-all-equal Problem where n = 4, k =
2, C1 = (x1, x3, x̄4), C2 = (x1, x̄2, x̄3), where gadgets are represented by symbols.
(b) The same graph Gsse in full detail. 70

5.9 A Stopping Graph G = (V ∪ C, E). 83

5.10 An example of the approximation algorithm for SSE1. 87

5.11 Algorithm for SSE∞ on a Stopping Tree. (a) A Stopping Tree G = (V ∪ C, E).
(b) Its BFS (Breadth-First Search) tree GBFS . (c) Process v17. (d) Process v15. (e)
Process v12. (f) Process v8. (g) Process v6. (h) Process v5. (i) Process v1. 95

6.1 Encoding and decoding scheme for a noisy file segment of an initially unknown
file type. The k-bit file segment is encoded by a systematic (n, k) ECC into an
n-bit codeword. The codeword is transmitted through a channel to get a noisy
codeword. Two neural networks use natural redundancy to decode the k noisy
information bits: the first network determines the file type of the file segment, and
then a corresponding neural network for that file type performs soft decoding for
the k noisy information bits. The soft decoding result and the noisy codeword are
both given to the ECC decoder for further error correction. 109

6.2 Architecture of the CNN (convolutional neural network) for File Type Recogni-
tion. Its input is a noisy file segment of 4095 bits, and its output corresponds to
4 candidate file types (HTML, LaTex, PDF and JPEG). The numbers beside each
layer (namely, 4095 × 1, 4093 × 32, · · · , 4 × 1) are the dimension sizes of the
layer’s output data. The numbers inside each layer (namely, 3× 1 or 2× 1) are the
dimension sizes of the corresponding feature-map filter or pooling window. 112

6.3 Neural networks for K = 2 (left) and K = 200 (right). 117

6.4 Architectures of deep neural networks (DNNs) for soft decoding of noisy file seg-
ments. (a) DNN architecture for HTML files for p = 0.8%, 1.2%, 1.6%, (b) DNN
architecture for LaTex files for p = 0.8%, 1.2%, 1.6%, (c) DNN architecture for
PDF and JPEG files when p = 0.8%, (d) DNN architecture for PDF files when
p = 1.2%, 1.6%, (e) DNN architecture for JPEG files when p = 1.2%, 1.6%. 120

x

6.5 Decoding success rate vs bit error rate for (a) pDNN = 1.0% , (b) pDNN = 1.2%, (c)
pDNN = 1.4%, (d) pDNN = 1.6%.. 120

7.1 Classification accuracy (fraction of correct classification) vs Signal to Noise Ratio
(SNR) in dB (high to low) for noisy weights (black lines) and weights corrected by
linear analog codes (green lines) for MNIST dataset. 125

7.2 Accuracy vs SNR in dB(high to low) for noisy weights (black lines) and weights
corrected by linear analog codes (green lines) for CIFAR-10 dataset. 125

7.3 Accuracy vs SNR in dB(high to low) for noisy weights (black lines) and weights
corrected by linear analog codes (green lines) for IMDB dataset. 125

8.1 (a)-(b) An illustration of the Coded Deep Neural Network (CodNN) scheme, where
(a) shows neurons in two adjacent layers, and (b) shows a CodNN scheme that
adds a new middle layer (which is a coded version of its previous layer). (c)-
(d) Improvement in average accuracy and worst-case accuracy by using CodNN
schemes. Here the input layer has n = 10 neurons, the middle layer has m =
20 neurons, and the output layer has k neurons (for k = 8, 10, 20). The solid
curves (denoted by “coded") are for CodNN, and the dashed curves (denoted by
“uncoded") are for the original neural network component. 131

xi

LIST OF TABLES

TABLE Page

1.1 We cover two main topics:(a) Error Correction by Natural Redundancy, (b) Robust
Neural Networks.. 5

3.1 The success rate of decoding with LDPC code alone (Pldpc), the word-recognition
algorithm (Psoft) [1], and the enhanced algorithm using sliding-window decod-
ing (Pslid), when the bit error probability (BER of a binary-symmetric channel)
increases from 0.2% to 1.3%. 21

4.1 Performance of the NR-decoder introduced above for LZW-compressed English text. 36

6.1 Bit error rate (BER) vs Test Accuracy for File Type Recognition (FTR). Here the
“overall test accuracy" is for all 4 types of files together. The last four columns
show the test accuracy for each individual type of files. (Their average value is the
overall test accuracy.) . 113

6.2 Average KL Divergence between true and learned transition probabilities.. 118

xii

1. INTRODUCTION

A lot of interesting research questions lie at the intersection of information theory and machine

learning. Information-theoretic concepts have been used in developing theories of deep learning,

designing robust training and inference algorithms, finding efficient compressed models, studying

deep generative models, etc. Conversely, concepts from machine learning have been used in mod-

ulation, source coding, channel coding, and so on. This dissertation looks at both directions of

the interplay between information theory and machine learning, with a focus on solving problems

related to data storage in non-volatile memory (NVM) devices. Fig. 1.1 shows the broad topics

covered by this dissertation in either direction. Firstly, we show how machine learning techniques

can be used to correct errors in data stored in NVMs. Secondly, we also show how concepts from

error-correcting codes can be used to protect stored weights and to design robust neural networks

in hardware.

Information Theory Machine Learning

Error Correction By Natural Redundancy

Robust Neural Networks

Figure 1.1: Interplay between machine learning and information theory.

1.1 Motivation

The first direction we explore in our research is to use machine learning for error correction

in data. We live in the age of the big data revolution, and it has been estimated that over 90%

of the total volume of existing data was produced in the last two years. Emerging data storage

technologies are an integral part of this revolution. Non-volatile memories, such as flash memories,

have been used almost ubiquitously in such data storage systems. Their popularity is due to the fact

they are not only faster to read and write than traditional hard-disk drives, but also robust and less

1

prone to physical wear and tear. In addition, they are of smaller size and are more energy-efficient,

which makes them good candidates for big-data storage.

However, these devices have some of their own limitations. As devices scale down, various

types of noise might accumulate in these devices over time, making their long-term reliability a

critical challenge [2, 3]. For example, inter-cell interference is a significant source of errors in

flash memory cells. Additionally, flash memory cells wear out after a limited number of reads and

writes. Other devices such as phase-change memories (PCM) also suffer from write endurance

issues [4].

The traditional approach to improve data reliability is to use error-correcting codes (ECC),

which add external redundancy (e.g., parity bits/symbols) to correct errors in data [5, 6]. Usually,

data is first compressed by a source coding scheme before external redundancy is added by an

ECC encoder [7]. However, there is a need to improve the long-term reliability of data, while at

the same time reducing the storage overhead.

In this dissertation, we present a novel approach to improve data reliability, in case traditional

ECC decoding fails. A lot of internal redundancy remains in data even after compression (be-

cause of practical issues such as sub-optimal compression based on local features). We call such

redundancy natural redundancy (NR). For example, let us consider data compression for the En-

glish language. The compression ratio of the well-known character-based Huffman code is 4.59

bits per character, which is significantly higher than Shannon’s estimate of the entropy of printed

English (1.34 bits per character) [8]. If we consider Shannon’s prediction as a standard, 71% of

character-based Huffman-compressed data consists of NR.

An information system can utilize such NR in two distinct ways. The first way is to develop

enhanced compression schemes, which often use deep learning to further compress the data by

removing leftover redundancy [9, 10]. This is a popular and active research area, and better com-

pression ratios have been achieved for high distortion regimes. A second way, which we explore

in this dissertation, uses NR for error correction. New error-correcting decoders are designed to

mine NR in data, use it for error correction, and eventually combine it with ECC decoders for

2

enhanced performance. The main motivation behind using NR for error correction comes from

the fact that data reprocessing might prove costly for storage systems, which already store large

volumes of data. This dissertation explores schemes that make most of the information stored in

devices (which already contains NR) and uses it as a rich resource for error correction.

We explore two distinct schemes for error correction using NR. In the first scheme, which we

cover in Chapters 3, 4, and 5 of this dissertation, the NR-decoder is aware of the compression

schemes and the type of the source. The NR-decoder then uses machine learning and algorithmic

techniques to correct errors. We call such a scheme a representation-aware scheme. In the second

scheme, which we explore in Chapter 6 of this dissertation, we do not need any prior knowledge of

how data compression and representation in files. We call such a scheme a representation-oblivious

scheme. This approach is particularly useful for storage systems where error correction happens

at a lower level in device controllers. These controllers do not have access to data compression

schemes or file types, which makes this approach more practical for use in such storage systems.

However, some key challenges exist in using NR for error correction. NR is usually complex

and unstructured. In addition, the nature of such residual redundancy varies from source to source.

(For example, language-based data has a different type of NR as compared to images.) To over-

come these challenges, the representation-aware schemes explored in this dissertation use both

algorithmic and machine learning techniques for error correction. We show analytically how such

schemes improve the erasure thresholds of ECCs. On the other hand, our representation-oblivious

scheme makes use of deep learning techniques to identify the file type and then perform soft de-

coding on that file type. We show experimentally how the soft decoding result is then combined

with an ECC decoder for improved performance (especially when the bit error rate exceeds the

threshold of the ECC decoder).

To summarize, in the first direction, we explore machine learning techniques to improve the

performance of traditional ECC decoders. In the second direction in our research, we explore ideas

from information theory for building robust hardware-implemented neural networks. Deep neural

networks (DNNs) are an important tool in artificial intelligence (AI) and have been used in a wide

3

range of applications, such as computer vision, robotics, recommendation systems, healthcare,

environmental monitoring, etc. In recent times, the implementation of DNNs in hardware has

become a popular area of research [11, 12, 13, 14, 15, 16, 17, 18]. Hardware-implemented DNNs

are used in sensors, phones, security cameras, wearable devices, and so on. These techniques

are advancing rapidly and will make artificial intelligence (AI) systems more pervasive in the

future [19, 20].

However, several reliability issues might affect the performance of hardware-implemented

DNNs. As integrated circuits (ICs) move towards smaller feature sizes and DNNs are used in

extreme environments for long periods of time, they might suffer severe stability and endurance is-

sues [21, 22, 23, 24]. For example, the non-volatile memories that are used to store analog weights

of such DNNs, such as phase-change memories or memristors, have well-known challenges in

cell-level drifting, data retention, sneak-path interferences [25, 26, 27]. Such issues can cause

significant performance issues and data loss. If these issues are not resolved, the application of

hardware-implemented DNNs in critical areas (e.g, healthcare, public safety, industrial production

etc.) will remain less convenient.

In this dissertation, we propose two approaches to make neural networks robust based on analog

error-correcting codes. In the first approach, which we term external, analog codes are used to

protect the analog weights of hardware-implemented neural networks. In the second approach,

which we term internal, we use concepts from analog codes to convert neural networks to an

inherently robust form.

1.2 Research Contributions

Table 1.1 shows the topics covered by this dissertation in two broader areas, (a) error correction

by natural redundancy, and (b) robust neural networks. These topics are summarized below:

1.2.1 Learning Techniques for Correcting Errors by Natural Redundancy

Digital storage systems store huge volumes of data. However, as devices scale down to smaller

sizes, there emerge significant challenges with respect to long time reliability of data. The usual

4

Error Correction by NR Robust Neural Networks
(a) Learning Techniques for Error Correction Using NR

(b) LDPC decoding with NR (a) Externally Coded Neural Networks
(c) Stopping set elimination of LDPC codes using NR (b) Internally Coded Neural Networks
(d) Representation Oblivious Error Correction by NR

Table 1.1: We cover two main topics:(a) Error Correction by Natural Redundancy, (b) Robust
Neural Networks.

approach in correcting errors in storage systems is the use of error-correcting codes, which add

structured redundancy to data and increase the overall reliability. In our work, we try a different

approach [28, 29]. A lot of redundancy remains in data even after compression. The primary reason

for it is the fact that compression algorithms have to take into account computational complexity,

and therefore do not completely remove the redundancy from data. We design algorithms and

learning techniques to use this residual NR in data for error correction. We then combine our

approach with error-correcting codes to further improve the performance. In this work, we explore

several aspects of natural redundancy in data. The first contribution is the development of effective

algorithms that discover NR in language-based compressed data. We also discuss the efficient

decoding of codes with random structures and the capacity of error-correcting codes in the presence

of natural redundancy. We then examine the trade-off between the time complexity of source and

channel decoding.

1.2.2 LDPC Decoding with Natural Redundancy

The previous work shows how NR is a significant resource that can be utilized for error-

correction. In this work [30], we examine the problem more theoretically. We study the com-

bination of NR-based decoders with LDPC codes and show that the error-correction capability of

the combined decoder is significantly enhanced. We derive analytical equations for the density evo-

lution of LDPC codes when side information is available from the NR-decoder. We also propose

a theoretical model for compressed languages and study the performance of an iterative scheme,

where the NR-decoder and the LDPC decoder perform decoding in multiple iterations. We also

5

present theoretical results which show the upper bound to the code sizes of error-correcting codes

in the event that they are assisted by NR-based decoders.

1.2.3 Stopping Set Elimination of LDPC Codes by Language-based Natural Redundancy

In the previous work, we consider a decoding scheme which consists of two decoders: ECC-

Decoder and NR-Decoder, which work collaboratively to correct errors in data. In this work [31],

we explore another generic decoding model, which is motivated by language-based NR decoders.

In this case, we look at fixed-length LDPC codes and the Stopping-Set Elimination Problem for

these codes. Given erasures in data, decoding in LDPC codes fails if every parity-check equation

involves at least two erasures. Such a set of erasures is called a Stopping Set. NR-based decoders

can be used to recover such erasures. However, such decoders are usually of higher complexity,

therefore we want to use them to remove the fewest number of erasures from the stopping set so

that the belief propagation decoding algorithm of LDPC codes (which has lower complexity) can

decode the remaining erasures in k iterations. We study cases where k =∞ and prove that such a

problem is NP-hard. We also present an approximation algorithm when k = 1, and design efficient

exact algorithms for general k when the stopping graphs of these stopping sets form trees.

1.2.4 Deep Learning for Representation-Oblivious Error Correction by Natural Redun-

dancy

In the previous works, we studied representation-aware schemes, where the NR-decoder is

aware of the compression algorithms and uses that knowledge to perform decoding accordingly.

In this work [32], we present a new scheme which is representation-oblivious. In such a scheme,

the decoder does not have any prior knowledge of data representation (e.g., data compression

algorithms, mappings from symbols to bits, metadata, and so on). Such an approach makes it con-

venient to use in storage systems, where error correction is a low-level operation, usually executed

by the controller. We show how such a scheme can use deep learning to identify the file type, and

perform soft decoding on noisy file segments based on the natural redundancy of the recognized

file type. We then combine the soft decoding results with belief propagation decoder of a high-rate

6

fixed-length LDPC code (typical for storage systems). The results of our experiments demonstrate

the efficiency of the scheme in correcting errors in data, especially when the bit error rates in these

file segments are significantly higher than the thresholds of the given LDPC code.

1.2.5 Externally Coded Neural Networks

In recent times, there has been a lot of interest in the implementation of neural networks in

hardware. When the analog weights of a neural network are stored in hardware devices (e.g.,

memristors), various types of noise will accumulate, leading to degradation in their classification

(or regression) performance. In our work [33], we study the use of analog codes for correcting the

noisy weights of a neural network. Such a scheme is external, where the internal structure of the

neural network remains the same. Specifically, we study the performance of linear analog codes

in systematic forms. The results show that analog codes not only improve performance but also

allow graceful degradation of performance under Additive White Gaussian Noise (AWGN).

1.2.6 Internally Coded Neural Networks

Deep Neural Networks (DNNs) have been used ubiquitously in artificial intelligence, result-

ing in revolutionary impact in many applications, including mission-critical ones. However, their

intrinsic properties are not easily explained. In recent times, it has been shown how DNNs are

sensitive to various kinds of noise, whether adversarial or random. This makes it important to

address the issue of their robustness, especially if they are to be deployed in critical applications

like autonomous driving and under extreme conditions. With an eye on solving these problems,

we propose the construction of robust DNNs with the help of concepts from coding theory. In such

applications, either the data or the internal DNN layers are coded using error-correcting codes,

which guarantee robust computation in the presence of noise. In this work [34, 35], we focus on

linear analog codes. In contrast to many existing solutions, we do not alter the training algorithms

to ensure robustness. We only transform an already trained neural network into a coded form.

7

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Section 2, we review two fundamental

approaches to solving problems in the intersection of information theory and machine learning. In

Section 3, we study error correction schemes that use natural redundancy in data to correct errors.

In Section 4, we study the sequential and iterative combination of natural redundancy decoders

with LDPC codes, and present results of density evolution. In Section 5, we study the problem

of interaction of language-based natural redundancy decoders with fixed length LDPC codes, and

study the problem of stopping set elimination is such codes. In Section 6, we study a deep learning-

based representation-oblivious scheme for error correction using natural redundancy. In Section

7, we study error correction in hardware-implemented neural networks by using error-correcting

codes. In Section 8, we study robust neural networks for coded classification. In Section 9, we

present the conclusions and future work.

8

2. TWO FUNDAMENTAL APPORACHES: INTERPLAY BETWEEN INFORMATION

THEORY AND MACHINE LEARNING

2.1 Background

The journeys of information theory and machine learning have always been closely intertwined.

David Mackay, in his seminal book describes these fields as “two sides of the same coin" [36].

These fields, though apparently independent, have influenced each other in more ways than one.

However, these similarities should not be too surprising either, as both these disciplines have been

fundamentally influenced by statistics. For instance, both machine learning algorithms and channel

decoders fundamentally perform statistical inference tasks.

Historically, information theorists were interested in the problem of making computers perform

tasks that were normally performed by human beings. In the 1960s, when the foundations of learn-

ing and information theory were both emerging, people were interested in fundamental problems

that were common to both fields. Claude Shannon, who is known as the “father of information the-

ory", looked into some interesting problems, such as making a mouse-like device solve a maze, or

programming a computer how to play chess [37], and believed that these seemingly insignificant

problems would provide meaningful insights into making machines perform more complicated

tasks, such as making a melody, or performing mathematical operations. Norbert Weiner [38] be-

lieved areas such as control, communication, and learning should be considered a part of a larger

field of study known as cybernetics.

In the ’80s and the ’90s there were also works from the information-theoretic community

on using neural networks for solving problems in information theory. For instance, Bruck et

al. studied how maximum-likelihood decoding of linear block codes and neural network opti-

mization were related problems [39]. Another work proposed a generalized convergence theorem

for neural networks [40]. The capacity of densely-connected associative neural networks was

studied in [41]. Bichsel and Seitz viewed neural networks as multistage encoders and suggested

9

information-theoretic concepts like conditional class entropy to find the optimal number of neu-

rons in hidden layers [42]. Another information-theoretic approach to finding the optimal number

of hidden layer neurons in stochastic feed-forward neural networks was also studied in [43]. Kan-

ter suggests an information-theoretic method of estimating the maximal capacity per weight for a

two-layered discrete neural network when the magnitude of the weights was bounded [44]. The

use of information theory in the analysis of neural coding of brains has also been studied exten-

sively [45]. Hoffman, with the help of algorithmic information theory, predicted how the task of

learning would require either complex programs or providing programs with a lot of data [46].

In the present age, when machine learning has played a central role in the information revo-

lution, concepts like entropy, cross-entropy, mutual information, or Kullback-Leibler Divergence

(KLD) have been widely used in machine learning literature. Cross entropy is a widely-used loss

function for classification models like logistic regression [47]. Estimates of mutual information

have been used in feature selection problems [48]. Divergence measures such as KLD are useful

in unsupervised learning methods like variational autoencoders [49].

2.2 Recent Work

In addition to the work in the past, there has been a renewed interest in exploring ideas at the

intersection of machine learning and information theory. Some of the most recent works in the in-

tersection of information theory and machine learning are reviewed in this sub-section. We explore

recent work in both directions; (1) machine learning for information theory, and (2) information

theory for machine learning.

2.2.1 Machine Learning for Information Theory

Machine learning techniques have become widely popular among information theorists in re-

cent times. This is because machine learning can be used to solve complex problems like channel

estimation, and the design of trainable communication systems holds promise for future applica-

tions in 6G/7G systems. Neural networks can be used to perform iterative quantization and opti-

mization to build better and smarter communication system models[50]. Trainable communication

10

systems have been explored to design deep learning-based decoders in receivers that decode signals

with in-phase and quadrature imbalance [51]. Machine learning has also been used in performing

channel estimation in orthogonal frequency division multiplexing systems with lower complexity

and storage overhead [52]. Online meta-learning techniques can be used to perform fast end-to-

end training of encoders and decoders over fading noisy channels [53]. Recent works have also

proposed training for autoencoders based on Wasserstein General Adversarial Networks(GANs) in

practical over-the-air setups [54].

Learning techniques also improve the performance of error-correcting codes, such as LDPC

codes, Polar codes, Reed Solomon codes, Turbo codes, Convolutional codes, and so on. In [55],

neural decoders are built for both linear and non-linear block codes, and a good generalization

property is obtained, wherein training at a particular SNR (0 dB) works well across a wide range

of SNRs (-5 dB to 7.5 dB). Iterative soft decoding of Reed-Solomon codes can also be improved

using deep learning algorithms [56].

Deep learning has been shown to improve the performance of alternating direction method of

multipliers (ADMM) decoders over traditional LDPC decoding schemes [57]. Recurrent quan-

tized neural networks have also been shown to design low-precision linear finite alphabet iterative

decoders for LDPC codes, with better performance, lower complexity, and faster convergence

than floating-point BP algorithms. [58]. Channel decoding based on a combination of complex-

valued CNNs with traditional BP algorithms has also been suggested to reduce correlated noise in

a channel. Such a scheme improves upon the performance of the traditional BP algorithm [59].

Reinforcement-learning based methods have also been suggested to improve sequential decod-

ing decisions in channel decodings. Such iterative decoders can become adaptive to their current

state [60].

An attention-based one-shot decoding scheme for Polar codes has been studied, which uses

deep learning to be able to decode shorter codes with low computational complexity [61]. A con-

volutional neural network for decoding polar codes is proposed in [62], and the decoding process

is shown to be faster for shorter codes, whose block length is 32. The work [63] shows how polar

11

neural decoders usually work well on the binary symmetric channel and binary erasure channels,

however, they are less robust to the mismatch in training/validation statistics for binary asymmetric

channel and suggests alternative constructions of such neural decoders using domain adaptation

techniques. Syndrome-enabled unsupervised learning at the receiver has also been shown to be

useful in improving the performance of a Polar decoder [64]. Novel deep learning techniques such

as transfer learning have also been used to train neural network decoders. Such a scheme seeks to

address the problem of underfitting in neural Polar decoders [65].

A coding scheme for 1-bit receivers is developed using deep learning and outperforms Turbo

codes for finite block lengths [66]. Feedback Auto Turbo Encoders with CNN architectures have

been used to combine interleaver and iterative decoding to show a significantly improved perfor-

mance over traditional turbo codes [67]. Autoencoders have also been used for joint coding and

modulation schemes for codes with very short block lengths, with a focus on Bernoulli-Gaussian

impulsive noise channels [68].

A convolutional decoder based on convolutional neural networks (CNNs) that performs com-

parably to the Viterbi soft decoding algorithms is proposed [69]. Farsad et al. [70] consider the

problem of symbol detection in different channels and implement well-known algorithms by re-

placing channel state information with data-driven machine learning methods. These methods

work in a hybrid manner with known decoding algorithms like Viterbi and Bahl-Cocke-Jelinek-

Raviv (BCJR) algorithms. Neural architectures such as fully convolutional U-nets have been used

to design efficient decoders for convolutional codes over AWGN channels [71]. Deep neural net-

works have also been proposed to design a posteriori probability detector to replace trellis-based

BCJR or Viterbi algorithms for two-dimensional magnetic recording. This scheme also has a lower

per-bit latency [72].

Autoencoding deep neural networks have also been used for symbol demapping and decoding

and such schemes have been shown to produce lower error rates when compared with traditional

schemes based on constellation demapping and LDPC decoding [73]. Deep learning-based end-to-

end systems have also been suggested in [74], where the neural encoder performs joint modulation

12

and encoding, and the neural decoder performs joint decoding and demodulation.

Joint source-channel coding has been suggested for images using auto-encoders and such

schemes have several advantages like graceful degradation and adaptiveness to different chan-

nels [75]. For bandwidth-limited channels, the problem of learning an optimal joint compression

and error correction scheme facilitated by a neural network has been studied, which leads to lower

distortion compared to a separate source-channel scheme, for a wide range of SNRs [76].Neural

architectures have also been proposed for bit-interleaved coded modulation systems, and new joint

probabilistic and geometric shaping using neural networks significantly outperform traditional

schemes [77].

In optical communication for unmanned aerial vehicles (UAVs), where channel estimation is

a complex task, conditional Generative Adversarial Networks can be used to simulate real chan-

nels [78]. The system is end-to-end and the transmitter and receiver are implemented using DNNs.

For visible light communications, a deep learning-based run-length limited decoder performs com-

parably to existing schemes, while reducing computational complexity [79]. A deep learning de-

coder has also been suggested for free space optical (FSO) channels, and these decoders have been

shown to be stable in the presence of turbulence [80]. Satorras et al. introduce graph neural net-

works for factor graphs, and suggest improved algorithms that combine the advantages provided

by belief propagation and graph neural networks [81]. Such a scheme outperforms the traditional

belief propagation scheme for LDPC codes over bursty channels.

Deep learning has also been used in areas like lattices. A DNN model has been proposed

which takes the lattice generator matrix and sphere radius as input to count the number of lattice

points in a sphere with 80% accuracy [82]. A neural estimator has also been suggested to estimate

information-theoretic quantities like the transfer entropy metric [83].

The use of machine learning techniques can provide important tools to solve many problems

in communication systems in the future. Such techniques will not only be useful not only in the

application layer but also in medium access layers and application layers [84]. Such techniques

can also be explored in the context of storage systems, which store big data. In addition to the

13

work cited here, there have been various works over time, which have looked at the idea of using

machine learning techniques for solving traditional information-theoretic problems.

2.2.2 Information Theory for Machine Learning

Information theorists have also been interested in using concepts from information theory to

understand the black box of deep learning. One interesting approach is the use of information

bottleneck theory in [85, 86]. These works claim that the training process in deep learning can be

seen as preserving mutual information about the target output from the input. Learning is supposed

to proceed in two stages, a fitting phase followed by a compression phase [86]. However, a recent

work [87] shows how such notion of compression holds only for the tanh activation function and

not for ReLU, which is the most widely used activation function in recent times. This work outlines

the fact that noise assumptions are important in the application of information theory in explaining

the generalization performance of deep learning. A tractable method of estimating entropy and

mutual information between different layers of DNNs has also been proposed [88].

An approximate Fisher information-based method for characterizing stochastic gradient de-

scent training for DNNs has also been explored [89]. Ideas such as Huffman codes have been

used in algorithms designed for model compression and quantization, for efficient implementation

of DNNs in hardware [13]. Information theory has been useful in improving the performance of

general adversarial networks (GANs) in using unsupervised learning to learn disentangled repre-

sentations [90]. A mutual information-based approach to ensure fair and robust training in the

presence of noise and poisoning has been explored in [91].

Neural network weights are generally analog values. High-density information storage devices

can be used to store the weights of neural networks implemented in hardware. Analog codes

have been shown to be useful for such devices. It achieves a higher capacity than discrete coding

schemes and also has other added benefits like lower complexity and energy efficiency [92]. When

analog weights of a neural network are stored in devices such as memristors, analog codes could

be a viable option for error correction. Coded computation can be used to build robust distributed

systems, which are resilient to failures and delays. Machine learning can be used within the coded

14

computation framework to exhibit resilience to non-linear computations [93]. There have also been

other notable works in this area, and we skip the details for our convenience.

2.3 Importance of this Dissertation

Our review shows how a wide range of topics in the intersection of machine learning and in-

formation theory have been explored recently. However, this dissertation looks at some unique,

yet practical problems, which have not been deeply explored in the past. The importance of this

dissertation lies in the fact that we look at some practical problems from the point of view of data

storage, and suggest novel solutions. Data storage systems are going to be an integral part of new

information systems in the future to not only store big data but also as part of devices that perform

artificial intelligence tasks. The use of natural redundancy for error correction has been explored

in innovative ways, with ideas from several areas, such as algorithmic techniques, denoising, con-

volutional neural networks, statistical language processing, autoencoding neural networks, joint

source-channel coding, etc. This makes our approach easily generalizable to other related areas,

such as distributed storage and satellite communication systems. Additionally, we look into the

problem of building robust neural networks which perform reliable computation in the presence of

noise.

15

3. CORRECTING ERRORS BY NATURAL REDUNDANCY USING LEARNING

TECHNIQUES 1

3.1 Introduction

The storage of big data has become increasingly important. Every day a large amount of data

– 2.5 billion GB – is generated. However, its long-term reliability has significant challenges. For

example, non-volatile memories (NVMs), such as flash memories and phase-change memories,

store a substantial portion of big data due to their fast speed, physical robustness and large storage

capacity. However they have data retention problems, where charge leakage or cell-level drifting

makes data more noisy over time. Operations such as reads and writes cause accumulative dis-

turbance in NVM data. Furthermore, erasures of NVM cells degrade cell quality and make cells

more prone to errors over time. There is a strong motivation in elevating the long-term reliability

of big-data storage to the next level.

The most effective way to protect data has been error-correcting codes (ECCs). By adding re-

dundancy to data in a disciplined way, errors can be effectively corrected. We call such redundancy

artificial redundancy. The recent advancement in learning and the availability of big data for study

have offered a new opportunity for error correction: to use the natural redundancy in data for error

correction. By natural redundancy (NR), we refer to the inherent redundancy in data that is not

artificially added for error correction, such as various features in languages and images, structural

features in databases, etc. Due to practical reasons (e.g., high complexity for compression, and

lack of precise models for data), even after compression, lots of redundancy often still exist.

This section studies how to use the natural redundancy in data for error correction, with a

focus on languages and images. It is a topic related to joint source-channel coding and denoising.

The idea of using the leftover redundancy at a source encoder to improve the performance of

ECCs has been studied within the field of joint source-channel coding (JSCC) [94, 95, 96, 97, 98,

1 c©IEEE 2017. Parts of this section are reprinted, with permission, from A. Jiang, P. Upadhyaya, E. F. Haratsch
and J. Bruck, "Correcting errors by natural redundancy," 2017 Information Theory and Applications Workshop (ITA),
San Diego, CA, 2017.

16

99, 100, 101, 102]. However, not many works have considered JSCC specifically for language-

based sources, and exploiting the redundancy in the language structure via an efficient decoding

algorithm remains as a significant challenge. Related to JSCC, denoising is also an interesting

and well studied technique [103, 104, 105, 106, 107, 108, 109, 110, 111]. A denoiser can use the

statistics and features of input data to reduce its noise level for further processing.

This section explores several new topics on NR: the efficient list decoding of random codes; the

error-correction capability of ECCs with NR; and the computational-complexity tradeoff between

source and channel coding.

3.2 Sampling-based Decoding for Random Codes

3.2.1 Sliding-Window Decoder for Prefix-free Codes

Prefix-free codes are another important choice for compression. In [1, 112, 113, 114], Huff-

man codes for English-text characters were used for the study of NR, where every character (letter

or punctuation mark) is represented by a variable-length Huffman codeword. A significant chal-

lenge for NR-decoding is that the compressed file does not specify the boundaries of Huffman

codewords, making it difficult to recognize words/phrases, especially for high BER. To address the

problem, we propose a sliding-window decoding technique: use a sliding window (of a variable

size) to check different segments of the noisy compressed file; and if by flipping at most a few bits,

the bits in the window can be decompressed as a long yet relatively common word/phrase (such

as “information”), then this solution is highly likely to be correct, because long words/phrases are

extremely sparse. The latter point is shown in the following example.

Example1. Consider lower-case words. Assume there are Mn words whose Huffman codewords

have n bits. Then the density of such words is Dn = Mn

2n
= 10−xn . We show Mn and xn (collected

from Wikipedia, a very large text corpus) in Fig. 3.1. It can be seen that the word density decreases

exponentially fast for large n. So long words are very sparse. �

The sliding-window technique can enhance existing NR-decoders, such as the Word-Recognition

NR-decoding algorithm in [1]. The key is how to correct errors inside a window both efficiently

17

Figure 3.1: (a) The number of wordsMn whose Huffman codewords have n bits. (b) The exponent
xn in the density 10−xn for words whose Huffman codewords have n bits.

and reliably, without exhaustive search. That leads to the random-code decoding algorithm below.

3.2.2 Sampling-based Decoder for Random Codes

Consider a window of n bits. It can have 2n possible values; however, only a small subset of

them C ⊂ {0, 1}n correspond to valid words/phrases. Let y = (y1, y2, · · · , yn) ∈ {0, 1}n be the

bit-string we receive in the window, and let t < n be an integer parameter. Assuming that there

exists a codeword x ∈ C with Hamming distance dH(x,y) = t, we would like to find x with

high probability and low time complexity. Note that an exhaustive search will have complexity(
n
t

)
= O(nt), which is exponential in t and inefficient in practice.

We start by defining a sampling function. Given a set P ⊆ {1, 2, · · · , n}, the sampling func-

tion fn,P : {0, 1}n → {0, 1, ?}n is: ∀ b = (b1, b2, · · · , bn) ∈ {0, 1}n, we have fn,P (b) =

(b′1, b
′
2, · · · , b′n) where each b′i = bi if i ∈ P and b′i =? otherwise. (Here “?” represents an un-

sampled bit.) Define the sample-value set as Vn,P , {(b1, b2, · · · , bn) ∈ {0, 1, ?}n|for 1 ≤ i ≤

n, bi =? if i /∈ P}. We have |Vn,P | = 2|P |. For any sample value s ∈ Vn,P , let En,P (C, s) ⊆ C be

the subset of codewords that, when sampled by fn,P , have the sample value s; that is, En,P (C, s) ,

{b ∈ C | fn,P (b) = s}. En,P (C, s) may contain zero, one or more codewords of C.

We build a data structure called sample dictionary Dicn,P (C) , {(s, En,P (C, s)) | s ∈ Vn,P}.

It is a set of (key, value) pairs, where each key is a sample value s ∈ Vn,P , and its corresponding

18

value is the set En,P (C, s). Given y, if its sample value fn,P (y) matches that of x, we can use it to

look up the dictionary, and find x in the set En,P (C, fn,P (y)).

We now generalize the above discussion to k sampling functions fn,P1 , fn,P2 , · · · , fn,Pk . By

choosing a suitable k, a good balance between decoding complexity and decoding-success prob-

ability can be achieved. Let P1, P2, · · · , Pk be k subsets of {1, 2, · · · , n}. We can use the k

corresponding sampling functions fn,P1 , fn,P2 , · · · , fn,Pk to sample the code C, and get an aggre-

gated sample dictionary Dicn,P1,··· ,Pk(C) , {(i, s, En,Pi(C, s)) | 1 ≤ i ≤ k, s ∈ Vn,Pi}. We build

the dictionary before decoding as preprocessing.

Define the candidate codewords for y as Candn,P1,··· ,Pk(C,y) ,
⋃k
i=1En,Pi(C, fn,Pi(y)). They

are codewords that match y for at least one of the k sampling functions. So we can also define it

as Candn,P1,··· ,Pk(C,y) , {b ∈ C | ∃1 ≤ i ≤ k such that fn,Pi(b) = fn,Pi(y)}.

We now describe our decoding strategy: given a received string y ∈ {0, 1}n, use the k sample

values fn,P1(y), fn,P2(y), · · · , fn,Pk(y) as keys to look up values in the dictionary Dicn,P1,··· ,Pk(C),

and return a set of candidate codewords Candn,P1,··· ,Pk(C,y). (The candidate codewords will be

filtered further based on their Hamming distance to y, the frequencies of its words/phrases in train-

ing texts, co-location relationship with phrases elsewhere, etc., and be combined with an existing

NR-decoder such as [1]. Our objective here is to include x as a candidate codeword.)

We now analyze two aspects of the decoding strategy’s performance: its probability of includ-

ing x as a candidate codeword, and its expected time complexity. Given any a = (a1, · · · , an) ∈

{0, 1}n and b = (b1, · · · , bn) ∈ {0, 1}n, define M(a,b) = {i | 1 ≤ i ≤ n, ai = bi}. We have

|M(a,b)| = n− dH(a,b). Let PIN(t) denote the probability that the target codeword x is among

the candidate codewords, namely, PIN(t) , Pr{x ∈ Candn,P1,··· ,Pk(C,y) | x ∈ C, dH(x,y) = t}.

Lemma2. ∀b ∈ C, b ∈ Candn,P1,··· ,Pk(C,y) if and only if there exists i ∈ {1, 2, · · · , k} such that

Pi ⊆M(b,y).

C is an unstructured code. To facilitate analysis, we assume the following random model: Let

C be a random code, whose codewords are chosen independently and uniformly at random from

the vector space {0, 1}n. In addition, let |P1| = |P2| = · · · = |Pk| = m for some m ≤ n − t, and

19

let each Pi independently choose its m elements uniformly at random from {1, 2, · · · , n} without

replacement.

Theorem3. PIN(t) = 1−
(

1− (n−tm)
(nm)

)k
.

The time complexity of decoding is determined by the number of candidate codewords we need

to examine. For i = 1, 2, · · · , k, the i-th sampling function fn,Pi samples m bits of the received

string y, and uses the sample fn,Pi(y) to look up the set of candidate codewords En,Pi(C, fn,Pi(y))

in the dictionary. So the total number of candidate codewords to examine (with possible over-

lapping for different sampling functions) is
∑k

i=1 |En,Pi(C, fn,Pi(y))|. Let µ(t) denote the ex-

pected number of candidate codewords to examine given that there exists a codeword x ∈ C with

dH(x,y) = t.

Theorem4. µ(t) = k

(
(n−tm)
(nm)

+ (|C| − 1)
(
1
2

)m).

Figure 3.2: Performance of sampling-based decoder for random codes. Here the x-axis is n, and
the y-axis is the minimum value of µ(t) for which there exists a feasible solution to k and m given
the condition that PIN(t) ≥ 0.99 for t = 6, 8 and 10.

Since long words/phrases are very sparse, µ(t) can be quite small for large n. Given n, |C|

and t, we choose the parameters k and m to achieve a good balance between decoding complexity

20

and success rate. For example, when n = 48 and t = 10, for n-bit English words compressed by

Huffman coding (for example, “information” is such a 48-bit word, and there are |C| = 12, 895

such words), we can choose parameters m and k such that only less than 250 (instead of
(
48
10

)
�

250) candidate words need to be checked on average, and the correct word is included in the

checked words with probability PIN(t) ≥ 0.99. We show more results in Fig. 3.2, where we let

n = 40 to 60, t = 6, 8 and 10, and show the minimum value of µ(t) for which there exist values

of k and m that make PIN(t) ≥ 0.99. We see that µ(t) varies between 1 and 1,617, which is much

less than
(
n
t

)
. (The curve for t = 6 is between 1 and 4, so it looks almost flat.) Note that here

the corresponding values of
(
n
t

)
is approximately between 107 and 1012. It can be seen that the

decoding algorithm reduces the number of candidate codewords substantially.

We have combined the word-recognition algorithm in [1] with the sliding-window decoding

technique here, for suitably chosen n and t. The new algorithm improves the error-correction

performance substantially. Consider compressed texts protected by an (4376, 4095) LDPC code

designed by MacKay [115], which has rate 0.936 and is designed for BSC of error probability 0.2%

(a typical parameter setting in storage systems). We compare the new algorithm with two known

algorithms: using the BP decoding of the LDPC code alone, and the word-recognition algorithm

in [1]. The results are shown in Table 3.1, where success rate is defined as the probability that an

LDPC codeword is decoded correctly.

BER 0.2% 0.3% 0.4% 0.5% 0.6% 0.7%
Pldpc 100% 98.2% 77.5% 27.4% 2.9% 0
Psoft 100% 99.9% 99.5% 97.9% 94.2% 84.6%
Pslid 100% 100% 99.9% 99.2% 98.4% 94.5%

BER 0.8% 0.9% 1.0% 1.1% 1.2% 1.3%
Pldpc 0 0 0 0 0 0
Psoft 67.1% 47.8% 26.7% 12.4% 3.9% 1.4%
Pslid 84.8% 68.3% 47.9% 28.7% 14.2% 5.8%

Table 3.1: The success rate of decoding with LDPC code alone (Pldpc), the word-recognition algo-
rithm (Psoft) [1], and the enhanced algorithm using sliding-window decoding (Pslid), when the bit
error probability (BER of a binary-symmetric channel) increases from 0.2% to 1.3%.

21

3.3 Capacity of ECC with Natural Redundancy

In this section, we study two closely related theoretical models for ECCs with NR. We first

study the capacity for information transmission when NR-decoding is present before ECC-decoding.

We then study ECCs with finite length, and present an upper bound to the code sizes given that the

ECCs receive assistance from NR-decoding.

3.3.1 Channel Capacity with Natural Redundancy

Consider compressed data with NR protected as information bits by a systematic ECC. A

decoding scheme is shown in Fig. 3.3, where an NR-decoder is followed by an ECC-decoder.

For the ECC, the channel together with the NR-decoder can be seen as a compound channel,

where the channel adds noise and the NR-decoder reduces noise. The compound-channel capac-

ity is defined in the conventional way, namely, as the maximum rate at which the channel input

Xn
1 = (x1, x2, · · · , xn) (with n→∞) can be transmitted reliably.

Figure 3.3: A decoding scheme that combines NR-decoding with ECC-decoding.

We have studied NR-decoding for both BEC and BSC in previous sections. Note that in prin-

ciple, the NR-decoder can decode not only information bits, but also parity-check bits by using

parity-check constraints. That motivates us to study the following two compound-channel models:

(1) in the Compound-BEC model, the BEC erases each bit xi ∈ {0, 1} independently with proba-

bility p; then for each bit yi, if it is an erasure, the NR-decoder marks it as “original erasure” (so

that this marked information is known to the ECC decoder), then independently recovers its value

22

(correctly) as xi with probability (1 − δ)(1 − ε), recovers its value (incorrectly) as 1 − xi with

probability (1− δ)ε, and let it remain as an erasure with probability δ; (2) in the Compound-BSC

Model, the BSC flips each bit xi ∈ {0, 1} independently with probability p; then for each bit yi, the

NR-decoder marks it as “NR-decoded bit” independently with probability r. If yi is marked as an

“NR-decoded bit”, the NR-decoder independently sets its value (correctly) to xi with probability

1− q, and sets its value (incorrectly) to 1− xi with probability q < p.

Theorem5. The capacity of Compound-BEC is Cc−BEC = 1− p + p(1− δ)(1−H(ε)). And the

capacity of Compound-BSC is Cc−BSC = (1− r)(1−H(p)) + r(1−H(q)).

3.3.2 Upper Bound to ECC Sizes with NR

The previous sections have presented analysis specifically for LDPC codes with belief-propagation

decoding algorithms. Let us now consider general finite-length ECCs and their sizes. The NR-

decoders for images and languages presented in Section II have a common feature: they both have

very low error probabilities introduced by NR-decoding, namely, the corrections are made with

high confidence by NR-decoders. That motivates us to study the following theoretical model for

error correction.

LetA = {0, 1, · · · , q−1} be an alphabet, where q ≥ 2. Let C ⊆ An be a code of length n. Let

r and t be integer parameters with r+ t ≤ n. Let the decoding process be an NR-decoder followed

by an ECC-decoder, as shown in Fig. 3.3. Given a noisy word y = (y1, y2, · · · , yn) ∈ An, assume

that the NR-decoder can determine the correct values of at least r symbols with certainty, without

introducing additional errors. (Note that in practice, the errors corrected by the NR-decoder are

only a small portion of such bits (symbols with q = 2). Many more such bits are non-errors,

and the NR-decoder can determine that they are error-free because they belong to highly likely

patterns, such as long and common phrases. Also note that in general, the NR-decoder can decode

both information bits and parity-check bits.) Let P ⊆ {1, 2, · · · , n} denote the indexes of such

determined symbols (where |P | ≥ r), and without loss of generality (WLOG), we may assume

|P | = r for code analysis (because having larger |P | only helps more). WLOG, we may also

23

assume that the symbols of y with indexes in P are already correct symbols (because the NR-

decoder determines their values anyway). After the NR-decoding, the ECC-decoder takes the

pair (y, P) as input, and decodes it using maximum-likelihood (ML) decoding: the output is a

codeword x = (x1, x2, · · · , xn) ∈ C such that: (1) ∀ i ∈ P , xi = yi; (2) the Hamming distance

dH(x,y) , |{i | 1 ≤ i ≤ n, xi 6= yi}| = |{i | 1 ≤ i ≤ n, i /∈ P, xi 6= yi}| is minimized.

∀ x,y ∈ An and P ⊆ {1, 2, · · · , n}, if xi = yi for every i ∈ P , we say x =P y. We define

St,P (x) , {(y, P) | x =P y, dH(x,y) ≤ t}. If ∀ x1,x2 ∈ C and P ⊆ {1, 2, · · · , n} with |P | = r,

we have St,P (x1)∩St,P (x2) = ∅, we call C an (r, t)-ECC. An (r, t)-ECC is an error-correcting code

that can correct t Hamming errors when the NR-decoder determines the values of any r symbols.

It is an extension of t-error correcting codes. We have the following sphere packing bound.

Theorem6. For an (r, t)-ECC C with code length n, alphabet size q and r+ t ≤ n, the code’s size

|C| ≤ qn∑t
i=0

(
n−r
i

)
(q − 1)i

.

3.4 Computational-Complexity Tradeoff

NR can be used for both compression and error correction. How to use it suitably depends on

many factors, such as available coding techniques, hardware design, etc. In this work, we discuss

one such tradeoff: the computational complexity of using NR for compression or error correction.

Real NR is hard to model precisely, so we explore this topic from a theoretical point of view,

and consider NR in general forms. We show that certain types of redundancy are computationally

efficient for compression, while others are so for error correction. Note that there exist works on

analyzing the hardness of certain types of source coding schemes [116, 117, 118] and channel

coding schemes [119, 120, 121, 122, 123]. In contrast, here we focus on the tradeoff between the

two.

LetB = (b1, b2, · · · , bn) ∈ {0, 1}n be an n-bit message with NR. Define V : {0, 1}n → {0, 1}

as a validity function: B is a valid message if and only if V(B) = 1. The set of all valid messages

of n bits isM , {B ∈ {0, 1}n | V(B) = 1}. For simplicity, for both source and channel coding,

24

assume that the valid messages inM are equally likely.

First, consider source coding. Let k = dlog2 |M|e. Define an optimal lossless compression

scheme to be an injective function Copt : M → {0, 1}k that compresses any valid message

B ∈ M to a distinct k-bit vector Copt(B). Define the Data Compression Problem as follows:

Given a validity function V , find an injective function Copt : M→ {0, 1}k.

Next, consider channel coding. Assume that a valid message X = (x1, x2, · · · , xn) ∈ M

is transmitted through a binary-symmetric channel (BSC), and is received as a noisy message

Y = (y1, y2, · · · , yn) ∈ {0, 1}n. Maximum likelihood (ML) decoding requires us to find a message

Z = (z1, z2, · · · , zn) ∈ M that minimizes the Hamming distance dH(Y, Z). Define the Error

Correction Problem as follows: Given a validity function V and a message Y ∈ {0, 1}n, find a

valid message Z ∈M that minimizes the Hamming distance dH(Y, Z).

Let F be the set of all functions from the domain {0, 1}n to the codomain {0, 1}. (We have

|F| = 22n .) The function V represents NR in data. In practice, different types of data have different

types of NR. Let us define the latter concept formally. For any subset T ⊆ F , let T be called a type

of validity functions (which represents a type of NR). When V can only be a function in T (instead

ofF), we denote the Data Compression Problem and the Error Correction Problem by PTdc and PTec,

respectively. The hardness of the problems PTdc and PTec depends on T . Let Sdc=NP,ec=P denote

the set of types T (where each type is a subset of F) for which the data compression problem

PTdc is NP-hard while the error correction problem PTec is polynomial-time solvable. Similarly, let

Sdc=P,ec=NP (or Sdc=P,ec=P , Sdc=NP,ec=NP , respectively) denote the set of types T for which PTdc is

polynomial-time solvable while PTec is NP-hard (or PTdc and PTec are both polynomial-time solvable,

or both NP-hard, respectively). The following theorem shows that there exist validity-function

types for each of those four possible cases.

Theorem 7. The four sets Sdc=NP,ec=P , Sdc=P,ec=NP , Sdc=P,ec=P and Sdc=NP,ec=NP are all non-

empty.

The above result shows a wide range of possibilities for the computational-complexity tradeoff

between source and channel coding. In practice, it is worthwhile to study the properties of natural

25

redundancy (e.g., whether the redundancy is mainly local or global, which differs for different

types of data), and choose appropriate coding schemes based on computational complexity along

with other important factors.

26

4. COMBINATION OF LDPC AND MACHINE LEARNING-BASED NATURAL

REDUNDANCY DECODING 1

4.1 Introduction

Big-data storage is having increasingly wide applications. However, it faces a substantial chal-

lenge – how to recover data from errors as effectively as possible for reliable long-term storage –

due to accumulative noise in storage media. For example, flash memories and other NVMs have

noise mechanisms such as charge leakage, read/write disturbs, and cell-quality degradation due to

P/E cycling. They make data more and more noisy over time. So there is a strong motivation in

exploring new techniques for error correction.

In this work, we study how to correct errors using natural redundancy (NR) in compressed

data, and how to combine it with error-correcting codes (ECCs). By natural redundancy, we refer

to the redundancy in data that is not artificially added for error correction, such as features in

languages/images and structures in databases. In comparison, the redundancy in an ECC (which

we shall call artificial redundancy) is added in a disciplined way with the specific goal of effective

error correction. NR is often a rich resource for error correction for data that are uncompressed or

compressed imperfectly. There are various reasons for imperfect compression in practical systems,

including high complexity of optimal compression, our limited understanding on the data models

(e.g., for languages and images), etc. For data that are encoded as ECCs and later corrupted by

errors, as our understanding on the data model improves, we can design better and better NR-

decoders to correct the errors.

Example 8. Consider texts compressed by an LZW algorithm that uses a fixed dictionary of size

2`. The dictionary has 2` text strings (called patterns) of variable lengths, where every pattern is

encoded as an `-bit codeword. Given a text to compress, the LZW algorithm scans it and partitions

1 c©IEEE 2017. Parts of this section are reprinted, with permission, from P. Upadhyaya and A. A. Jiang, “On LDPC
decoding with natural redundancy," 55th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), Monticello, IL, 2017.

27

it into patterns, and maps them to codewords. For instance, if ` = 20 and the text is “Flash memory

is an electronic · · · ”, the partitioning and LZW-codewords can be as illustrated in Fig. 4.1 (a).

Now suppose some bits in the LZW-codewords are erased. An NR-Decoder can check all the

possible solutions, map each solution back to patterns, and use a dictionary of words to eliminate

those solutions that contain invalid words. (Such a dictionary of words has been commonly used in

spell checkers.) If all the remaining solutions agree on the value of an erased bit, then that erasure

is decoded by the NR-Decoder. For instance, suppose each LZW-codeword in Fig. 4.1 (a) suffers

from two erasures, which lead to four possible solutions/patterns (see Fig. 4.1 (b)). By combining

the patterns for each codeword, we can rule out many solutions. For instance, the combination

“should becnomially ars an ele” can be eliminated due to the invalid word “becnomially”. In fact,

the only combination without invalid words (without considering words on the boundary of the

string, which might be part of a longer word) is “Flash memory is an ele”, so the NR-Decoder can

recover all six erasures in the three codewords. (In practice, it is also possible that we get more

than one combination that contain only valid words. In that case, an erased bit can be corrected if

all such combinations set the same value for that erasure.)

Suppose that the LZW-codewords, seen as information bits, are protected by a systematic ECC.

Then the ECC-Decoder can correct erasures by parity-check constraints, and the NR-Decoder can

correct erasures by NR. They can work collaboratively to maximize the number of correctable

erasures. �

4.2 Efficient Natural Redundancy Discovery

4.2.1 Discovery of Natural Redundancy in Languages

As this work is largely motivated by language-based NR, it is worthwhile to note that an LZW

algorithm with a dictionary of 220 patterns (as in the above example) can compress the English

language to 2.94 bits per character. The UNIX Compress command uses LZW with a smaller

dictionary and so achieves a lower compression ratio. There are compression algorithms for lan-

guages with higher compression ratios (e.g., syllable-based Burrows-Wheeler Transform achiev-

28

Figure 4.1: (a) Compress a text by LZW. (b) NR-decoding for erasures.

ing 2 bits/character [124]). However, there is still a gap toward Shannon’s estimation of 1.34

bits/character for the entropy of English [8], which gives motivation for NR-Decoders. And one

may reasonably conjecture that a similar scenario exists for images and videos.

In this work, we study the utilization of NR for erasure correction, including for languages and

images. The paper is organized as follows. In Section 4.3, we survey related works. In Section

4.4, we introduce the discovery and utilization of NR in data for erasure correction, including

for languages and images. In Section 4.5, we study a scheme that combines NR-decoding with

low-density parity-check (LDPC) codes, and derive analytical formulas for the density evolution

of LDPC decoding given information from the NR-decoder, which are useful for measuring the

overall decoding performance. In Section 4.6, we propose a theoretical model for compressed

languages, and study the performance of iterative decoding between the LDPC decoder and the

NR-decoder.

29

4.3 Related Works

Error-correction with NR is related to joint source-channel coding and denoising. The idea of

using the inherent redundancy in a source – or the leftover redundancy at the output of a source

encoder – to enhance the performance of the ECC has been studied within the field of joint source-

channel coding. In [97], source-controlled channel coding using a soft-output Viterbi algorithm

is considered. In [94], a trellis based decoder is used as a source decoder in an iterative decoding

scheme. Joint decoding of Huffman and Turbo codes is proposed in [96]. In [98], joint decoding

of variable length codes (VLCs) and convolutional/Turbo codes is analyzed. Joint decoding using

LDPC codes for VLCs and images are illustrated in [101] and [102], respectively. However, not

many works have considered JSCC specifically for language-based sources, and exploiting the

redundancy in the language structure via an efficient decoding algorithm remains as a significant

challenge. Related to joint source-channel coding, denoising is also an interesting and well studied

technique [107, 108, 109, 110, 111]. A denoiser can use the statistics and features of input data

to reduce its noise level for further processing. For discrete memoryless channels with stationary

input sequences, a universal algorithm that performs asymptotically as well as optimal denoisers

are given in [125]. The algorithm is also universal for a semi-stochastic setting, where the channel

input is an individual sequence and the randomness in the channel output is solely due to the

channel’s noise.

Spell-checking softwares are a typical example of using NR to correct errors in languages.

They are widely used in text editors. A spell-checking software usually works at the character

level (namely, it does not consider how characters or text strings are encoded by bits), is for un-

compressed texts, and uses the validity of words and the correctness of grammar to correct errors

that appear in the typing of texts.

Using NR to correct errors at the bit level in compressed texts has been studied in a number of

works. In [112], texts compressed by Huffman coding is considered, and a dynamic programming

algorithm is used to partition the noisy bit sequence into subsequences that represents words, and

to select likely solutions based on the frequencies of words and phrases. In [1], texts that are

30

compressed by Huffman coding and then protected by LDPC codes are studied. An efficient greedy

algorithm is used to decompress the noisy bit string, and partition it into stable and unstable regions

based on whether each region contains recognizable words and phrases. The stable and unstable

regions have polarized RBERs, which are provided as soft information to the LDPC code for better

decoding performance. The algorithm is enhanced in [113] by a machine learning method for

content recognition, and an iterative decoding algorithm between the NR-Decoder and the ECC-

Decoder is used to further improve performance. In [114], texts compressed by Huffman coding

and protected by Polar codes are studied. The validity of words is used to prune branches in a list

sequential decoding algorithm, and a trie data structure for words is used to make the algorithm

more efficient. A concatenated-code model that views the text with NR as the outer code and the

Polar code as the inner code is considered, and the rate improvement for the Polar code due to NR

is analyzed. That model is further studied in [126], where an optimal algorithm that maximizes the

code rate improvement by unfreezing some frozen bits to store information is presented. A model

that views NR as the output of a side information channel at the channel decoder is also studied,

where NR is shown to improve the random error exponent.

4.4 NR-Decoding for Languages and Images

In this section, we present techniques for using NR in compressed data, including languages

and images, for correcting erasures.

4.4.1 NR-Decoding for Language

Consider English texts that are compressed by an LZW algorithm that uses a fixed dictionary

of size 2`. We have introduced a technique that corrects bit erasures based on the validity of words

in Example 8. For long compressed texts with erasures, to make the NR-decoding efficient, we

use a decoding algorithm based on sliding-windows of variable lengths as follows. Let nmin and

nmax be two integers, where nmin < nmax. We first use a sliding-window of nmin` bits to scan the

compressed text (where every such window contains exactly nmin LZW-codewords), and obtain

candidate solutions for each window based on the validity of words (as in Example 8). We then

31

increase the size of the window to (nmin + 1)`, (nmin + 2)`, · · · , nmax`, and do decoding for each

size in the following way: consider a window of k` bits that contains k LZW-codewords C1, C2,

· · · , Ck. Let S1 ⊆ {0, 1}(k−1)` be the set of candidate solutions for the sub-window that contains

the LZW-codewords C1, C2, · · · , Ck−1; and let S2 ⊆ {0, 1}(k−1)` be the set of candidate solutions

for the sub-window that contains the LZW-codewords C2, C3, · · · , Ck. (Both S1 and S2 have been

obtained in the previous round of decoding.) We now obtain the set of candidate solutions for

the current window, which contains C1, C2, · · · , Ck, this way. A bit sequence (b1, b2, · · · , bk`) is

in S only if it satisfies two conditions: (1) its first (k − 1)` bits are a solution in S1, and its last

(k− 1)` bits are a solution in S2; (2) the decompressed text corresponding to it contains no invalid

words (except on the boundaries). This way, potential solutions filtered by smaller windows will

not enter solutions for larger windows, making decoding more efficient. As a final step, an erased

bit is decoded this way: if any of the windows of size nmax` containing it (note that there are up to

2nmax − 1 such windows) can recover its value (as we did in Example 8), decode it to that value;

otherwise it remains as an erasure.

To make the above decoding algorithm more efficient, we also use phrases (such as “informa-

tion theory”, “flash memory”) and features such as word/phrase lengths. If a solution for a window

contains a valid word or phrase that is particularly long, we may remove other candidate solutions

that contain only short words. That is because long words and phrases are very rare: their density

among bit sequences of the same length decreases exponentially fast as the length increases. So if

they appear, the chance that they are the correct solution is high based on Bayes’ rule. The thresh-

olds for such word/phrase lengths can be set sufficiently high such that the probability of making

a decoding error is sufficiently small.

We also enhance the decoding performance by using the co-location relationship. Co-location

means that certain pairs of words/phrases appear unusually frequently in the same context (because

they are closely associated), such as “dog” and “bark”, or “information theory” and “channel ca-

pacity”. If two words/phrases with the co-location relationship are detected among candidate so-

lutions for two windows close to each other, we may keep them as candidate solutions and remove

32

other less likely solutions. The reason for this approach is similar to that for long words/phrases.

The co-location relationship can appear in multiple places in a text, and therefore help decoding

in non-trivial ways. For example, for the text in Fig. 4.2 (a), the words/phrases that have the co-

location relationship with the phrase “flash memory” are shown in Fig. 4.2 (b). (All of them appear

in this text.) How to find words/phrases with the co-location relationship from a corpus of train-

ing texts is a well-known technique in Natural Language Processing (NLP) [127]. So we skip its

details here.

Figure 4.2: (a) A sample paragraph from Wikipedia (part of which was omitted to save space). (b)
Phrases in it that have the co-location relationship with “flash memory”.

4.4.2 NR-Decoding for Images

Consider the discovery of NR for images. General images can have global features, and using

such redundancy for error correction can be difficult. To gain more insight into the nature of NR

in images, we focus in particular on images of handwritten digits, as in Fig. 4.3 (a). They are from

the National Institute of Standards and Technology (NIST) database, which have 70, 000 images

as training or test data. We compress the bi-level images (of size 28×28 pixels) using run-length

coding, where the run-lengths of 0s and 1s are compressed by two optimized Huffman codes,

respectively. The rate is 0.27 bit/pixel.

33

Figure 4.3: (a) Examples of handwritten digits. (b) NR-decoder for images. (c) Performance of
NR-decoder. (d) A concatenated decoding scheme. (e) An iterative decoding scheme.

34

We now present an NR-decoder for images. It is illustrated in Fig. 4.3 (b). Assume that a

compressed image has λ erasures. Out of the 2λ possible candidate solutions, usually only a few

decompress successfully. (For example, to decompress successfully, the bit sequence needs to end

with a valid Huffman codeword. And errors may make it impossible.) To decode noisy images

among the successfully decompressed images, we have trained a convolutional neural network

for recognizing noisy images, and designed a specialized filter based on features of connected

components in decompressed images, as follows:

4.4.2.1 Convolutional Neural Network

The training and test data consist of noisy as well as clean images of handwritten digits. It

consists of one input layer, two hidden layers and a output layer. The input layer consists of a

28× 28 bilevel image, and the 2× 1 output layer classifies the input images as “clean" or “noisy".

The size of the convolution window is 5 × 5. The number of feature maps used in the first and

second hidden layers are 5 and 15 respectively.

4.4.2.2 Filter Based on Connected Components

We count the number of components in an image, but without counting those components that

have at most two pixels or components that are vertical lines (which may be caused by human or

scanning errors). The images that have the fewest components are accepted as candidate images

by this filter.

4.4.2.3 Joint Decoder

The final step of decoding is: if all candidate solutions agree on the value an erased bit, set the

bit to that value; otherwise, keep it as an erasure.

Example9. Suppose that the compressed image with erasures is 1??0?1· · · , where “?” is an era-

sure. Suppose that the NR-decoder finds 3 candidate solutions: 110001· · · , 110011· · · , 100011· · · .

Then it returns the solution 1?00?1· · · because the candidate solutions agree on the second era-

sure, but not the first or the third erasure. �

35

4.4.3 Decoding Performance of NR Decoders

The decoding performance for NR decoders can be measured as follows. Let ε ∈ [0, 1] be the

erasure probability before decoding. After the decoding by natural redundancy, let δ ∈ [0, 1] be

the probability that an originally erased bit remains as an erasure, and let ρ ∈ [0, 1 − δ] be the

probability that an originally erased bit is decoded to 0 or 1 incorrectly. The amount of noise

after NR-decoding can be measured by the entropy of the noise (erasures and errors) per bit:

ENR , ε(δ + (1 − δ)H(ρ
1−δ)), where H(p) = −p log p − (1 − p) log(1 − p) is the entropy

function.

We show ENR for the NR-decoder for images in Fig. 4.3 (c). The NR-decoder reduces noise

substantially: it removes noise effectively by over 75% for the compressed images (without any

help from ECC), for raw bit-erasure rate (RBER) from 0.5% to 6.5%.

The performance of the NR-decoder introduced above for LZW-compressed English texts,

experimented on a large corpus of Wikipedia articles, is shown in Table 4.1. It also reduces noise

effectively (between 88.0% and 91.6%) for raw bit-erasure rate from 5% to 30%.

ε 0.05 0.10 0.15
δ 8.22× 10−2 8.67× 10−2 9.19× 10−2

ρ 9.18× 10−5 1.83× 10−4 1.82× 10−4

ENR 4.18× 10−3 8.92× 10−3 1.42× 10−2

Noise 91.6% 91.1% 90.6%
reduction

ε 0.20 0.25 0.30
δ 9.76× 10−2 1.05× 10−1 1.12× 10−1

ρ 3.61× 10−4 4.48× 10−4 7.11× 10−4

ENR 2.04× 10−2 2.76× 10−2 3.60× 10−2

Noise 89.8% 89.0% 88.0%
reduction

Table 4.1: Performance of the NR-decoder introduced above for LZW-compressed English text.

36

4.5 Combine NR-decoding with LDPC Codes

This section discusses the combination of NR-decoders described in the previous section with

LDPC codes. We protect compressed data (languages or images) as information bits by a sys-

tematic LDPC code of rate R. The decoding process is a concatenation of two decoders: first,

the NR-decoder decodes the codeword (possibly only its information bits), and outputs a partially

corrected codeword with updated soft information; then, the LDPC decoder takes that as input,

and uses belief propagation (BP) for decoding. (See Fig. 4.3 (d) for an illustration.) We present a

theoretical analysis for the decoding performance, and show that the NR-decoder can substantially

improve the performance of LDPC codes.

Consider a binary-erasure channel (BEC) with erasure probability ε0. Let us call the non-erased

bits fixed bits. Assume that after NR-decoding, a non-fixed bit (i.e., erasure) remains as an erasure

with probability p0(ε0) ∈ [0, 1], becomes an error (0 or 1) with probability (1 − p0(ε0))γ0(ε0) ∈

[0, 1 − p0(ε0)], and is decoded correctly (as 0 or 1) with probability (1 − p0(ε0))(1 − γ0(ε0)).

(In general, p0(ε0) and γ0(ε0) may be functions of ε0. Note that if the NR-decoder decodes only

information bits, and an erasure in the information bits remains as an erasure with probability

p0(ε0)
′, then p0(ε0) = Rp0(ε0)

′ + (1 − R). Also note that the LDPC decoder needs to decode all

bits with both errors and erasures.)

4.5.1 Decoding Algorithm

We design the following iterative LDPC decoding algorithm, which generalizes both the peel-

ing decoder for BEC and the Gallager B decoder for BSC:

Algorithm10. Generalized LDPC decoding algorithm.

(1) Let π ∈ [1, dv − 1] and τ ∈ [1, dv − 1] be two integer parameters;

(2) In each iteration, for a variable node v that is an erasure, if π or more non-erased message

bits come from dv − 1 check nodes and they all have the same value, set v to that bit value;

(3) If v is not a fixed bit and not an erasure (but possibly an error) in this iteration, change v

to the opposite bit value if τ or more non-erased message bits come from dv − 1 check nodes and

37

they all have that opposite value. (The updated value of v will be sent to the remaining check node

in the next iteration.)

4.5.2 Density Evolution Analysis

We now analyze the density evolution for the decoding algorithm, for an infinitely long and

randomly constructed LDPC code of regular degrees.

For t = 0, 1, 2 · · · , let αt and βt be the fraction of codeword bits that are errors or erasures,

respectively, after t iterations of LDPC decoding. We have α0 = ε0(1 − p0(ε0))γ0(ε0) and β0 =

ε0p0(ε0). Let κ0 = ε0(1− p0(ε0))(1− γ0(ε0)).

Theorem 11. For a regular (dv, dc) LDPC code with variable-node degree dv and check-node

degree dc, we have αt+1 = α0Ct+κ0Dt+β0µt, where Ct = 1−(1−At)dv−1+
∑τ−1

i=0

(
dv−1
i

)
Bi
t(1−

At − Bt)
dv−i−1, Dt =

∑dv−1
j=τ

(
dv−1
j

)
Ajt(1 − At − Bt)

dv−1−j , µt =
∑dv−1

m=π

(
dv−1
m

)
Amt (1 − At −

Bt)
dv−1−m with At = (1−βt)dc−1−(1−βt−2αt)dc−1

2
and Bt = (1−βt)dc−1+(1−βt−2αt)dc−1

2
. And βt+1 =

β0(1− µt − νt), where νt =
∑dv−1

m=π

(
dv−1
m

)
Bm
t (1− At −Bt)

dv−1−m.

Proof. Consider the root variable node of a computation tree. After t iterations, let At denote the

probability that an incoming message to the root node from a neighboring check node is an error,

and let Bt denote the probability that the message is correct. Then 1 − At − Bt is the probability

that the message is an erasure. Let µt (respectively, νt) be the probability that among the dv − 1

incoming messages from neighboring check nodes to the root node, π or more messages are errors

(respectively, correct) and the remaining messages are all erasures.

In the (t+ 1)-th iteration, we can have an error in the root node in one of the following cases:

1. The root node was initially (namely, before decoding begins) an error (which has probability

α0), and either of the two disjoint events happens: 1) fewer than τ check-node messages

are correct and the remaining messages are all erasures, which happens with probability
τ−1∑
i=0

(
dv−1
i

)
Bi
t(1 − At − Bt)

dv−i−1; 2) at least one check-node message is an error, which

happens with probability 1 − (1 − At)
dv−1. The probability that either of the two events

occurs is Ct = 1− (1− At)dv−1 +
τ−1∑
i=0

(
dv−1
i

)
Bi
t(1− At −Bt)

dv−i−1.

38

2. The root node was initially correct (which has probability κ0), but τ or more check-node

messages are errors and the rest are all erasures (which happens with probability Dt =
dv−1∑
j=τ

(
dv−1
j

)
Ajt(1− At −Bt)

dv−1−j).

3. The root node was initially an erasure (which has probability β0), and π or more check-node

messages are errors and the rest are all erasures (which happens with probability µt).

Therefore the error rate after t+ 1 iterations will be αt+1 = α0Ct + κ0Dt + β0µt.

In the (t+1)-th iteration, we can correct an erasure at a root node correctly if the root node was

initially an erasure, and π or more check-node messages are correct and the rest are all erasures.

This happens with probability β0νt. The root node will remain as an erasure if it is neither corrected

mistakenly nor corrected correctly. So the erasure rate after t+ 1 iterations will be βt+1 = β0(1−

µt − νt).

Now we need to find the values of At, Bt, µt and νt. The incoming message from a check node

to the root node is correct if out of the dc− 1 non-root variable nodes connected to the check node,

an even number of nodes are errors and the rest are all correct (i.e., neither errors nor erasures).

That probability is Bt =
b dc−1

2
c∑

k=0

(
dc−1
2k

)
α2k
t (1 − αt − βt)

dc−1−2k = (1−βt)dc−1+(1−βt−2αt)dc−1

2
. The

incoming message from a check node to the root node is an error if out of the dc − 1 non-root

variable nodes connected to the check node, an odd number of nodes are errors and the rest are all

correct. That probability is At =
b dc

2
c∑

k=1

(
dc−1
2k−1

)
α2k−1
t (1 − αt − βt)dc−2k = (1−βt)dc−1−(1−βt−2αt)dc−1

2
.

The probability that π or more neighboring check-node messages are errors and the rest are all

erasures can be simplified as µt =
∑dv−1

m=π

(
dv−1
m

)
Amt (1−At−Bt)

dv−1−m. The probability that π or

more neighboring check-node messages are correct and the rest are all erasures can be simplified

as νt =
∑dv−1

m=π

(
dv−1
m

)
Bm
t (1− At −Bt)

dv−1−m. This completes the proof.

4.5.3 Erasure Threshold

Define erasure threshold ε∗ as the maximum erasure probability (for ε0) for which the LDPC

code can decode successfully (which means the error/erasure probabilities αt and βt both approach

0 as t → ∞). Let us show how the NR decoder can substantially improve ε∗. Consider a regular

39

LDPC code with dv = 5 and dc = 100, which has rate 0.95 (a typical code rate for storage

systems). Without NR-decoding, the erasure threshold is ε̃∗ = 0.036. Now let π = 1 and τ = 4.

For compressed images, when ε0 = 0.065, the NR-decoder gives p0 = 0.247 and γ0 = 0.0008,

for which the LDPC decoder has limt→∞ αt = 0 and limt→∞ βt = 0. (The same happens for

ε0 < 0.065.) So with NR-decoding, ε∗ ≥ 0.065, which means the improvement in erasure threshold

is more than 80.5%.

For LZW-compressed texts, when ε0 = 0.3, the NR-decoder gives p0 = 0.156 and γ0 = 0.0008,

for which the LDPC decoder has limt→∞ αt = 0 and limt→∞ βt = 0. (The same happens for

ε0 < 0.3.) So with NR-decoding, ε∗ ≥ 0.3, which means the improvement in erasure threshold is

more than 733.3%.

4.6 Iterative LDPC Decoding with NR

In this section, we study the decoding performance when we use iterative decoding between the

LDPC decoder and NR-decoder, as shown in Fig. 4.3 (e). (In last section’s study, the NR-decoder

is followed by the LDPC decoder, without iterations between them.) We focus on languages, and

present a theoretical model for compressed languages as follows.

4.6.1 NR Decoder For Compressed Languages

Let T = (b0, b1, b2, · · ·) be a compressed text. Partition T into segments S0, S1, S2 · · · , where

each segment Si = (bil, bil+1, · · · , bil+l−1) has l bits. Consider erasures. Let θ ∈ [0, 1], lθ , blθc

and p ∈ [0, 1] be parameters. We assume that when a segment Si has at most lθ erasures, the

NR-decoder can decode it by checking the validity of the up to 2lθ candidate solutions (based on

the validity of their corresponding words/phrases, grammar, etc.), and either determines (indepen-

dently) the correct solution with probability p or makes no decision with probability 1 − p. And

this NR-decoding operation can be performed only once for each segment.

Here lθ models the limit on time complexity (because the decoder needs to check 2lθ solutions),

and p models the probability of making an error-free decision. This is a simplification of the

practical NR-decoders shown in the last section that make very high-confidence, although not

40

totally error-free, decisions. The model is suitable for compression algorithms such as LZW coding

with a fixed dictionary, Huffman coding, etc., where each segment can be decompressed to a piece

of text. The greater l is, the better the model is.

4.6.2 Iteration with LDPC Decoder

The compressed text T is protected as information bits by a systematic LDPC code. The LDPC

code uses the peeling decoder for BEC (where dc − 1 incoming messages of known values at a

check node determine the value of the outgoing message on the remaining edge) to correct erasures.

See the decoding model in Fig. 4.3 (e). In each iteration, the LDPC decoder runs one iteration of

BP decoding, then the NR-decoder tries to correct those l-information-bit segments that contain at

most lθ erasures (if those segments were never decoded by the NR-decoder in any of the previous

iterations). Let ε0 < 1 be the BEC’s erasure rate. Let ε′t and εt be the LDPC codeword’s erasure rate

after the t-th iteration of the LDPC decoder and the NR-decoder, respectively. Next, we analyze

the density evolution for regular (dv, dc) LDPC codes of rate R = 1− dv
dc

.

Note that since the NR-decoder decodes only information bits, for the LDPC decoder, the infor-

mation bits and parity-check bits will have different erasure rates during decoding. Furthermore,

information bits consist of l-bit segments, while parity-check bits do not. For such an l-bit seg-

ment, if the NR-decoder can decode it successfully when it has no more than lθ erasures, let us

call the segment lucky; otherwise, call it unlucky. Lucky and unlucky segments will have different

erasure rates during decoding, too.

Every l-information-bit segment is lucky with probability p, and unlucky with probability 1−p.

A lucky segment is guaranteed to be decoded successfully by the NR-decoder once the number

of erasures in it becomes less than or equal to lθ; and an unlucky segment can be considered as

never to be decoded by the NR-decoder (because such decoding will not succeed). Since whether

a segment is lucky or not is independent of the party-check constraints and the LDPC-decoder, for

analysis we can consider it as an inherent property of the segment (which exists even before the

decoding begins).

41

4.6.3 Density Evolution Analysis

Define q0 = 1, qt , εt
ε′t

and dt ,
ε′t
εt−1

for t ≥ 1. Note that decoding will end after t iterations if

one of these conditions occurs: (1) ε′t = 0, because all erasures are corrected by the t-th iteration;

(2) dt = 1, because the LDPC decoder corrects no erasure in the t-th iteration, and nor will the

NR-decoder since the input codeword is identical to its previous output. We now study density

evolution before those boundary cases occur.

For t = 1, 2, 3 · · · and k = 0, 1, · · · , l, let fk(t) denote the probability that a lucky segment

contains k erasures after t iterations of decoding by the NR-decoder.

Lemma12.

fk(1) =

lθ∑
i=0

(
l
i

)
(ε′1)

i(1− ε′1)l−i if k = 0

0 if 1 ≤ k ≤ lθ(
l
k

)
(ε′1)

k(1− ε′1)l−k if lθ + 1 ≤ k ≤ l

Proof. Consider the LDPC-decoding and the NR-decoding in the first iteration. Since the initial

erasure rate is ε0, the erasure rate after LDPC decoding will now be ε′1 = q0ε0(1−(1−ε0)dc−1)dv−1

where q0 = 1 by definition. The probability that an l-information-bit segment contains exactly i

erasures is given by
(
l
i

)
(ε′1)

i(1 − ε′1)l−i, which is independent of whether the segment is lucky or

unlucky. Thus the probability that a lucky segment contains up to lθ erasures is given by
∑lθ

i=0(
l
i

)
(ε′1)

i(1 − ε′1)
l−i. All such segments are decoded by the NR-decoder successfully, while the

remaining segments are not. That leads to the conclusion.

Lemma13. The erasure rate after the first iteration of NR-decoding is

ε1 = ε0d1((1−R) +R(1− p)) + (
l∑

k=lθ+1

k

l
fk(1))Rp

Proof. After NR-decoding, the erasure rate of a lucky segment with k erasures is k
l
, and the era-

sure rate for unlucky segments and parity-check bits is still ε′1. We have d1 = ε′1/ε0. Hence the

overall erasure rate after the 1st iteration of NR-decoding is ε1 = ε0d1((1 − R) + R(1 − p)) +

42

(
∑l

k=lθ+1
k
l
fk(1))Rp. (See Fig. 4.4 (b) for an illustration of the computation tree for density evo-

lution. For comparison, we show the tree for classic BP decoding for BEC in Fig. 4.4 (a).)

VN

CN CN

VN

CN CN

VN

CN CN

(a) 1st
iteration

2nd
iteration

3rd
iteration

VN

CN CN

VN

CN CN

VN

CN CN

(b) 1st
iteration

2nd
iteration

3rd
iteration

Figure 4.4: (a) First three iterations of classic BP decoding (alone) for BEC. (b) First three itera-
tions of BP-decoding and NR decoding.

Lemma14. The erasure rate after the second iteration of LDPC-decoding is

ε′2 = q0q1ε0(1− (1− ε1)dc−1)dv−1

.

43

Proof. We have q1 = ε1
ε′1

. Since the NR-decoding of the 1st iteration reduces the overall erasure

probability by a factor of q1 (from ε′1 to ε1), and the root variable node of a computation tree is

chosen uniformly at random from the infinitely long and randomly constructed LDPC code, the

root node in the tree for the 2nd iteration of LDPC decoding now has the erasure probability q1ε0.

(See Fig. 4.4 (b).) Hence the equation for the LDPC-decoder for the 2nd iteration will be given

by ε′2 = q0q1ε0(1 − (1 − ε1)dc−1)dv−1. Note that LDPC decoding is independent of NR-decoding

because the parity-check constraints are independent of the bits being lucky-segment bits, unlucky-

segment bits or parity-check bits. And note that d2 =
ε′2
ε1

is the probability that an erasure remains

as an erasure after the LDPC decoding. If d2 = 1, no change was made by the LDPC-decoder; if

d2 = 0, all erasures have been corrected. In both cases, the decoding will end.

Lemma15. For t ≥ 2,

fk(t) =

fk(t− 1) +
l∑

i=lθ+1

lθ∑
j=0

fi(t− 1)
(
i
j

)
(dt)

j(1− dt)i−j

if k = 0

0 if 1 ≤ k ≤ lθ

l∑
i=k

fi(t− 1)
(
i
k

)
(dt)

k(1− dt)i−k if lθ + 1 ≤ k ≤ l

Proof. Now consider the second iteration of NR-decoding. We only consider the case when 0 <

d2 < 1. A lucky segment has zero errors after the second iteration if an only if either one of the

two cases happen : a) that the segment already has zero errors after the first iteration, or b) the

segment had lθ + 1 or more errors after the first iteration and it has at most lθ erasures after second

iteration of the LDPC-decoding. Thus if k = 0,

fk(2) = fk(1) +
l∑

i=lθ+1

lθ∑
j=0

fi(1)

(
i

j

)
(d2)

j(1− d2)i−j

A lucky segment cannot have k ≤ lθ erasures (with k ≥ 1) after the second iteration of NR-

44

decoding (because if so, it would have corrected those erasures). So we have fk(2) = 0 for that

case. Finally, a lucky segment has lθ + 1 ≤ k ≤ l erasures if and only if it had k or more

erasures after the first iteration of NR-decoding and it has k erasures after the second iteration of

LDPC-decoding. Thus

fk(2) =
l∑

i=k

fi(1)

(
i

k

)
(d2)

k(1− d2)i−k if lθ + 1 ≤ k ≤ l

The remaining cases can be analyzed similarly. That leads to the conclusion.

We now present the analytical formulas for the density evolution of the iterative LDPC-NR

decoding scheme. Its proof follows the previous lemmas.

Theorem16. For t ≥ 1,

εt = ((1−R) +R(1− p))ε0(
t∏
i=1

dt) +Rp
l∑

k=lθ+1

k

l
fk(t),

ε′t = (
t−1∏
m=0

qm)ε0(1− (1− εt−1)dc−1)dv−1.

Proof. The decoding performance for the 2nd iteration of the LDPC-decoding has been analyzed

in Lemma 14. The erasure rate in unlucky-segment bits and parity-check bits was decreased from

ε′1 to ε′1d2 = ε0d1d2 by the LDPC-decoding. Now the NR-decoder corrects those lucky segments

that had more than lθ erasures before the LDPC-decoding but now has at most lθ erasures after the

LDPC-decoding. So ε2 = ε0d1d2((1−R) +R(1− p)) + (
l∑

k=lθ+1

k
l
fk(2))Rp.

The analysis for the following iterations is similar to the 2nd iteration. In general, since in the

i-th iteration the NR-decoder reduces the overall erasure rate by a factor of qi, the root variable

node in the computation tree for the t-th iteration of LDPC decoding has the erasure probability

(
∏t−1

i=0 qi)ε0. That leads to the conclusion.

45

5. STOPPING SET ELIMINATION OF LDPC CODES BY LANGUAGE-BASED NATURAL

REDUNDANCY 1

5.1 Introduction

The amount of data stored in the Internet is growing exponentially fast. With this growth, how

to ensure long-term data reliability for all data also becomes more challenging. To assist error-

correcting codes (ECC), the redundancy in the content of data itself can be utilized. This type

of redundancy – such as features in languages, images and videos, structures in HTML files and

databases, etc. – is referred to as natural redundancy (NR), which supplements the more structured

redundancy added by error-correcting codes [1, 28]. NR exists in both uncompressed and imper-

fectly compressed data, which are abundant in storage systems. That makes NR a promising tool

to enhance data reliability.

In this work, we propose a relatively generic decoding model for collaborative ECC-Decoding

and NR-Decoding that is motivated by language-based NR. The model is shown in Fig. 5.1. The

(compressed or uncompressed) data, seen as information bits, are encoded into a systematic ECC

codeword. The NR-decoder uses a sliding window of L bits to check a segment of the data each

time, and uses its NR to correct errors/erasures in it. We bound the size of the window to L bits

because due to the lack of structures in NR, NR-decoding is often not as efficient as ECC-decoding

and its complexity grows with L, so a finite L bounds the acceptable complexity of NR-decoding.

The NR-Decoder works jointly with the ECC-Decoder to correct errors/erasures.

The above model can be applied to languages compressed by LZW codes or Huffman codes,

where some practical decoding algorithms have been presented [1, 28, 112, 113, 114, 126]. In this

work, we study a basic theoretical problem for LDPC codes: when the number of erasures in a

noisy LDPC codeword exceeds the decoding capability of the LDPC code’s ECC-Decoder, what is

the minimum number of erasures that an NR-Decoder needs to help correct so that the remaining

1 c©IEEE 2017. Parts of this section are reprinted, with permission, from A. A. Jiang, P. Upadhyaya, et al., “Stop-
ping set elimination for LDPC codes," 55th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), Monticello, IL, 2017

46

information bits (data with NR) parity-check bits

systematic ECC:

a sliding window of L bits for NR-decoding sliding window at a different position

Figure 5.1: A model for collaborative ECC-decoding and NR-decoding.

erasures are decodable by the ECC-Decoder?

Let us define the problem more specifically. Let the LDPC code’s ECC-Decoder be the fol-

lowing widely-used iterative belief-propagation (BP) algorithm: in each iteration, use every parity-

check equation involving exactly one erasure to decode that erasure; and repeat until every equation

involves zero or at least two erasures. If the ECC-Decoding fails, then we are left with a stopping

set, which is a set of erasures such that every parity-check equation involving any of them involves

at least two of them. If we represent the LDPC code by a bipartite Tanner graph, then a stopping

set is a subset of variable nodes (representing erasures) such that a check node adjacent to any of

them is adjacent to at least two of them.

We illustrate the average sizes of Stopping Sets for different raw bit-erasure rates (RBERs) in

Fig. 5.2. It is for an (8192,7561) LDPC code of rate 0.923 and regular degrees (dv = 3, dc = 39).

(For RBERs near the code’s decoding threshold, the uncorrectable bit-erasure rates (UBER) af-

ter BP decoding is shown in Fig. 5.2 (a).) For RBERs in the full range from 0 to 1, the aver-

age stopping-set sizes (namely, average number of un-decodable erasures after BP-decoding) are

shown in Fig. 5.2 (b). It can be seen that the average stopping-set size increases approximately

linearly (from 0 to 8192) as RBER increases from 0 to 1.

We now define the capability and limitations of the NR-Decoder. Suppose that for any sliding

window of L bits, the NR-Decoder can always correct its erasures if the number of erasures in

the window is at most α. Given a stopping set, the objective is to use the NR-Decoder to correct

sufficiently many erasures so that the remaining erasures are correctable by the ECC-Decoder.

However, notice that since NR-Decoding is typically less efficient than ECC-Decoding, there is an

47

0.054 0.056 0.058 0.06 0.062 0.064 0.066 0.068 0.07 0.072

Raw Bit Erasure Rate (RBER)

10-5

10-4

10-3

10-2

10-1

Un
co

rre
ct

ab
le

 B
it

Er
as

ur
e

Ra
te

 (U
BE

R)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Raw Bit Erasure Rate (RBER)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Av
er

ag
e

st
op

pi
ng

 s
et

 s
ize

(a) (b)

Figure 5.2: Statistics of an (8192,7561) LDPC code. (a) UBER for different RBERs near the
code’s decoding threshold. (b) Average stopping-set size for different RBERs.

associated cost. Let β denote the number of L-bit windows (at β different locations) used by NR-

Decoding. Whether the NR-decoding is implemented in hardware or software (where decoding

circuits or software can choose the location of each window), the overall circuit complexity and/or

time complexity is proportional to β. (For instance, if circuits are used to decode the windows in

parallel, then β circuits are needed for β windows.) Therefore, we need to minimize the number

of windows used by NR-decoding, and choose the locations of the windows carefully for that

purpose.

In this work, we will study a special case of the above problem by setting L = α = 1, and we

assume that the sliding windows can cover both information bits and parity-check bits. Although it

may seem too restrictive at first sight, there are several reasons that still make it quite meaningful.

First, storage systems often have low raw bit-error-rates (e.g., less than 0.5%), so for a relatively

short window (e.g, tens of bits), the number of erasures in it is often at most 1, which can usually

be corrected very effectively by NR-Decoding [28]. In such cases, having L ≥ 1, α = 1 is

similar to having L = α = 1. Second, ECCs in storage systems often have high rates (e.g., over

0.93), which can make the sliding window’s access to all codeword bits similar to accessing only

information bits (since information bits are the majority of bits). Third, understanding the basic

case of L = α = 1 will be the basis for understanding the more general case of L ≥ α ≥ 1. And

48

last but not least, the case L = α = 1 corresponds to a fundamental problem for LDPC codes:

assume there is a powerful and unrestricted Oracle decoder that can correct any erasure, but its

decoding comes at a high cost; then, how to minimize the number of erasures the Oracle decoder

needs to correct in order to make the remaining erasures decodable by the ECC-Decoder? We

believe the problem is theoretically important in its own right.

The problem to study can now be defined formally as follows. Let G = (V ∪ C,E) be a

bipartite graph, where V (representing erasures) is a subset of the variable nodes in an LDPC

code’s Tanner graph, C is a subset of the check nodes in the same Tanner graph such that every

node in C is adjacent to at least one node in V , and E is the set of edges in the Tanner graph with

one endpoint in V and another endpoint in C. If every node in C has degree two or more, then G is

called a Stopping Graph and V is called a Stopping Set. If an iterative BP algorithm (as introduced

earlier) that runs on G can decode all the variable nodes in V (where every variable node in V is an

erasure), then V is called a Decodable Set (or simply decodable); otherwise, it is a Non-Decodable

Set (or simply non-decodable). Note that a Stopping Set must be a Non-Decodable Set, but not

vice versa. The problem we study, called Stopping-Set Elimination (SSE) Problem, is as follows.

Definition17. Given a Stopping Graph G = (V ∪ C,E), how to remove the minimum number of

variable nodes from V such that the remaining variable nodes are decodable?

The removed variable nodes represent NR-decoded erasures. Clearly, after the removal, the

remaining nodes will no longer contain any Stopping Set.

5.2 Related Applications and Related Works

In this section, we first show two additional applications of the SSE Problem. We then present

a brief review of existing works that are related to error correction by NR.

5.2.1 Applications of SSE

In addition to decoding by NR, the SSE Problem also has two additional applications: dis-

tributed storage, and satellite-to-ground communication with feedback.

49

• Distributed Storage: Distributed file systems like HDFS have been widely used in big data

applications [128]. Typically, they store data in blocks, and ECCs are applied over the blocks

(where each block is seen as a codeword symbol of the ECC). Binary LDPC codes are nat-

urally an attractive candidate for distributed storage, as they have excellent code rates, good

locality (e.g., a missing block can be recovered by a local disk from a few neighboring

blocks), and excellent computational simplicity (only XOR is used for decoding, since when

each block has t bits, the decoding can be seen as t binary LDPC codes being decoded in par-

allel). Meanwhile, almost all big IT companies store multiple copies of their data at different

locations. So when one site loses some blocks in an LDPC code and cannot recover them

by itself, it needs to retrieve some lost blocks from other remote sites. Since communication

with remote sites is much more costly than accessing local disks, it is desirable to minimize

the number of blocks retrieved from remote sites as long as the remaining erasures become

decodable. And that is the SSE Problem.

• Satellite-to-Ground Communication with Feedback: Consider satellite-to-ground communi-

cation, where the data (e.g., big sensing images) are partitioned into packets (i.e., blocks),

and LDPC codes are applied over the packets (similar to the case for distributed storage) [129].

As the channel is noisy, some packets received by the ground may be un-decodable, and the

ground will request the satellite to retransmit some of those lost packets. Since the satellite-

to-ground communication can be quite costly, it is desirable to minimize the number of

retransmitted packets. That is also the SSE Problem.

5.2.2 Related Works

Error-correction with NR is related to joint source-channel coding and denoising. The idea of

using the inherent redundancy in a source – or the leftover redundancy at the output of a source

encoder – to enhance the performance of the ECC has been studied within the field of joint source-

channel coding. In [97], source-controlled channel coding using a soft-output Viterbi algorithm

is considered. In [94], a trellis based decoder is used as a source decoder in an iterative decoding

50

scheme. Joint decoding of Huffman and Turbo codes is proposed in [96]. In [98], joint decod-

ing of variable length codes (VLCs) and convolutional/Turbo codes is analyzed. Applications of

turbo codes to image/video transmission are shown in [95], [100] and [99]. Joint decoding us-

ing LDPC codes for VLCs and images are illustrated in [101] and [102], respectively. However,

not many works have considered JSCC specifically for language-based sources, and exploiting the

redundancy in the language structure via an efficient decoding algorithm remains as a significant

challenge. Related to joint source-channel coding, denoising is also an interesting and well studied

technique [103, 104, 105, 106, 107, 108, 109, 110, 111]. A denoiser can use the statistics and

features of input data to reduce its noise level for further processing. For discrete memoryless

channels with stationary input sequences, a universal algorithm that performs asymptotically as

well as optimal denoisers are given in [125]. The algorithm is also universal for a semi-stochastic

setting, where the channel input is an individual sequence and the randomness in the channel output

is solely due to the channel’s noise.

Spell-checking softwares are a typical example of using NR to correct errors in languages.

They are widely used in text editors. A spell-checking software usually works at the character

level (namely, it does not consider how characters or text strings are encoded by bits), is for un-

compressed texts, and uses the validity of words and the correctness of grammar to correct errors

that appear in the typing of texts.

Using NR to correct errors at the bit level in compressed texts has been studied in a number of

works. In [112], texts compressed by Huffman coding is considered, and a dynamic programming

algorithm is used to partition the noisy bit sequence into subsequences that represents words, and

to select likely solutions based on the frequencies of words and phrases. In [1], texts that are

compressed by Huffman coding and then protected by LDPC codes are studied. An efficient greedy

algorithm is used to decompress the noisy bit string, and partition it into stable and unstable regions

based on whether each region contains recognizable words and phrases. The stable and unstable

regions have polarized RBERs, which are provided as soft information to the LDPC code for better

decoding performance. The algorithm is enhanced in [113] by a machine learning method for

51

content recognition, and an iterative decoding algorithm between the NR-Decoder and the ECC-

Decoder is used to further improve performance. In [114], texts compressed by Huffman coding

and protected by Polar codes are studied. The validity of words is used to prune branches in a list

sequential decoding algorithm, and a trie data structure for words is used to make the algorithm

more efficient. A concatenated-code model that views the text with NR as the outer code and the

Polar code as the inner code is considered, and the rate improvement for the Polar code due to NR

is analyzed. That model is further studied in [126], where an optimal algorithm that maximizes the

code rate improvement by unfreezing some frozen bits to store information is presented. A model

that views NR as the output of a side information channel at the channel decoder is also studied,

where NR is shown to improve the random error exponent.

5.3 NP-Hardness of SSE Problem

In this section, we prove that the SSE Problem is NP-hard. The proof has two steps: first,

using the well-known Set Cover Problem, we prove that a related covering problem where nearly

all elements are covered – which we call the Pseudo Set Cover Problem – is NP-complete; then,

we reduce the latter problem to the SSE Problem.

5.3.1 NP-completeness of Pseudo Set Cover Problem

Consider the well-known Set Cover Problem. Let T = {t1, t2, · · · , tn} be a universe of n ele-

ments. Let S1, S2, · · · , Sm be m subsets of T such that T =
⋃m
i=1 Si. Let k ≤ m be a positive inte-

ger. The Set Cover Problem asks if there exist k subsets Si1 , Si2 , · · · , Sik such that T =
⋃k
j=1 Sij .

(Note that a subset Si is said to “cover” its elements. So the Set Cover Problem asks if there exist

k subsets that together cover all the elements of T .)

Let us now define a related problem called the Pseudo Set Cover Problem. It has the same

input as the Set Cover Problem, and differs only in its question: it asks if there exist k subsets

Si1 , Si2 , · · · , Sik such that |
⋃k
j=1 Sij | ≥ |T | − 1. (Instead of covering all the |T | elements, the

Pseudo Set Cover Problem aims at covering at least |T | − 1 elements.) We now prove that the

problem is NP-complete.

52

Theorem18. The Pseudo Set Cover Problem is NP-complete.

Proof. It is easy to see that the Pseudo Set Cover Problem is in NP. We now construct a polynomial-

time reduction from the Set Cover Problem to the Pseudo Set Cover Problem.

Let an instance of the Set Cover Problem have input parameters T = {t1, t2, · · · , tn}, S1, S2,

· · · , Sm and k ≤ m as introduced above. For the corresponding instance of the Pseudo Set Cover

Problem, let its universe of elements be

T ′ = {t1, t2, · · · , tn, tn+1},

where tn+1 is a new element, and let its subsets be

S1, S2, · · · , Sm, Sm+1,

where

Sm+1 = {tn+1}.

It is simple to see that the mapping between the two instances takes polynomial (in fact, linear)

time.

Let us now prove the following claim: the Set Cover Problem has k subsets covering all the

n elements in T if and only if the Pseudo Set Cover Problem has k subsets covering at least

|T ′| − 1 = n elements in T ′.

Consider one direction of the proof: suppose that the Set Cover Problem has k subsets covering

all elements of T . Then the same k subsets cover exactly n elements of T ′. (The only uncovered

element is tn+1.)

Now consider the other direction of the proof: suppose that the Pseudo Set Cover Problem has

k subsets

Si1 , Si2 , · · · , Sik

53

covering at least n elements in T ′. Without loss of generality (WLOG), assume that

i1 < i2 < · · · < ik.

There are three possible cases:

• Case 1: The k subsets cover all the n+1 elements of T ′. Then ik = m+1, and the remaining

k−1 subsets cover all the elements in T . By adding to the k−1 remaining subsets any other

subset in {S1, S2, · · · , Sm}, we get k subsets covering all elements of T for the Set Cover

Problem.

• Case 2: The k subsets cover n elements of T ′, including tn+1. Then ik = m + 1, and there

must be exactly one uncovered element in T . Say that uncovered element is ti, and let Sj

(where 1 ≤ j ≤ m) be any subset that contains tj . (Such a subset Sj must exist.) By

replacing Sik = Sm+1 by Sj , we get k subsets that cover all the elements of T .

• Case 3: The k subsets cover n elements of T ′, but not covering tn+1. Then the same k subsets

cover all the elements of T .

Therefore there is a polynomial-time reduction from the Set Cover Problem to the Pseudo

Set Cover Problem. Since the Set Cover Problem is known to be NP-complete, the conclusion

holds.

5.3.2 NP-hardness of Stopping Set Elimination Problem

We now prove the NP-hardness of the SSE Problem by using a reduction from the Pseudo Set

Cover Problem. Let us begin with some constructions.

Consider the bipartite graph shown in Fig. 5.3 (a). It consists of four variable nodes (si, tj , ui,j

and wi,j) and three check nodes (c1i,j , c
2
i,j and c3i,j). We denote it by Di,j to indicate that it connects

node si and node tj . We prove some basic property it has on iterative BP decoding.

54

u

1

(a) (b)s

t

i

j

i,j wi,j

c i,j
2c i,j

3c i,j

s i

t j

g i,j

Figure 5.3: (a) A bipartite graph Di,j that connects variable nodes si and tj . (b) A symbol for the
graph Di,j .

Lemma19. In the graph Di,j that contains the variable nodes si, tj , ui,j , wi,j as a Stopping Set,

if the value of the variable node si becomes known, the BP decoding algorithm will recover the

values of all the three remaining variable nodes.

On the other hand, if the value of the variable node tj becomes known, the BP decoding algo-

rithm will not recover the value of any of the other three variable nodes.

Proof. If the value of si becomes known, by using the check nodes c1i,j and c2i,j , the BP decoding

algorithm will recover the values of ui,j and wi,j , respectively. Then via the check node c3i,j , it will

recover the value of tj .

If the value of tj becomes known, since c3i,j has degree 3, the BP algorithm will not recover any

more values.

The graph Di,j will be viewed as a “gadget” that connects node si with node tj . To simplify

55

the presentation, in the following, we often represent it by the symbol shown in Fig. 5.3 (b), where

the “gate” gi,j represents the five nodes (c1i,j , c
2
i,j , c

3
i,j , ui,j , wi,j) and their incident edges. The

“direction” of the gate gi,j indicates the “directed” property shown in the above lemma: decoding

si leads to decoding tj , but not vice versa.

Consider the Pseudo Set Cover Problem with input parameters T = {t1, t2, · · · , tn}, S1, S2,

· · · , Sm and k ≤ m as introduced earlier. To reduce it to the SSE Problem, we will map every

instance of the Pseudo Set Cover Problem to some instance of the SSE Problem.

Let us start by building a graph GI . We start by assigning m + n nodes: for every subset Si

(for 1 ≤ i ≤ m) or element tj (for 1 ≤ j ≤ n) in the Pseudo Set Cover Problem, there is a

corresponding variable node si or tj in GI . Then, whenever the Pseudo Set Cover Problem has

tj ∈ Si,

we connect nodes si and tj by the bipartite graph Di,j . The graph obtained this way is GI . An

example is shown below.

Example 20. Let an instance of the Pseudo Set Cover Problem be T = {t1, t2, t3, t4, t5} and

S1 = {t1, t3, t4}, S2 = {t1, t3}, S3 = {t2, t4, t5}. The value of parameter k is irrelevant to the

mapping, so we do not specify it here. The instance is illustrated in Fig. 5.4 (a), where there is an

edge between Si and tj if and only if tj ∈ Si.

The corresponding graph GI is shown in both Fig. 5.4 (b) and (c), where the symbol for each

Di,j is used in Fig. 5.4 (b), and the full details of GI are shown in Fig. 5.4 (c). It is easy to see the

correspondence between GI and the Pseudo Set Cover Problem. �

It is clear that GI is a bipartite graph.

Let us now create a graph GII as follows. Given graph GI , we add m + 1 additional check

nodes

c0, c1, c2, · · · , cm.

For 0 ≤ i ≤ m and 1 ≤ j ≤ n, add an edge between the check node ci and the variable node

56

(a)

(b)

S1 S2 S3

t1 t 2 t3 t4 t5

s1 s2 s3

t1 t 2 t3 t4 t5

s1 s2 s3

t1 t 2 t3 t4 t5

u

1

1,1 w1,1

c1,1
2c1,1

3c1,1

u

1

2,1 w2,1

c2,1
2c2,1

3c2,1

u

1

1,3 w1,3

c1,3
2c1,3

3c1,3

u

1

1,4 w1,4

c1,4
2c1,4

3c1,4

u

1

2,3 w2,3

c2,3 2c2,3

3c2,3

u

1

3,2 w3,2

c3,2
2c3,2

3c3,2

u

1

3,4 w3,4

c3,4
2c3,4

3c3,4

u

1

3,5 w3,5

c3,5 2c3,5

3c3,5

(c)

(d)

s1 s2 s3

t1 t 2 t3 t4 t5

c1 c2 c3c0

Figure 5.4: (a) An instance of the Pseudo Set Cover Problem, where T = {t1, t2, t3, t4, t5} and
S1 = {t1, t3, t4}, S2 = {t1, t3}, S3 = {t2, t4, t5}. (b) The corresponding graph GI . (c) The
corresponding graph GI with full details. (d) The corresponding graph GII .

57

tj . For 1 ≤ i ≤ m, add an edge between the check node ci and the variable node si. The graph

obtained this way is GII . An example is shown below.

Example21. Following Example 20, the graph GII is shown in Fig. 5.4 (d). �

It is clear that GII is also a bipartite graph.

In the following, we consider only cases where n > 1. (The case n = 1 is trivial.) It is then

simple to see that in GII , the degree of every check node is at least two. So it is a Stopping Graph,

namely, an instance of the SSE Problem.

Lemma 22.. If for the Pseudo Set Cover Problem, there exist k subsets that cover at least n − 1

elements of T , then for the corresponding graph GII , k variable nodes can be removed so that the

remaining variable nodes form a Decodable Set.

Proof. Suppose that

Si1 , Si2 , · · · , Sik

are k chosen subsets that cover at least n − 1 elements of T . Let us remove the corresponding k

variable nodes

si1 , si2 , · · · , sik

from the graph GII . Since removing a variable node is equivalent to turning the node from an

erasure to a known value, by the “directed” property of Di,j proved earlier, we know that the BP

decoding algorithm will recover the values of at least n− 1 variable nodes among

t1, t2, · · · , tn.

That is because if an element tj is covered by some chosen subset Sir (where 1 ≤ r ≤ k), since

the value of the variable node sir is now known, via the “gadget” Dir,j , the BP decoding algorithm

can recover the value of tj .

We now show that the BP decoding algorithm can recover the values of all n variable nodes

t1, t2, · · · , tn. From the above discussion, we know that at most one of them – say tx – is not

58

decoded yet. So the BP algorithm can use the check node c0 (which has degree n) to recover the

value of tx as

tx = ⊕1≤i≤n,i 6=xti.

Since the values of t1, t2, · · · , tn are all known now, for i = 1, 2, · · · ,m, the BP decoding

algorithm can use the check node ci to recover the value of si (if its value is not already known).

So all the variable nodes can recover their values. Therefore, the remaining variable nodes form a

Decodable Set.

When a set of variable nodes S ⊆ V is removed from a Stopping Graph G = (V ∪ C,E), if

the remaining nodes of V become a Decodable Set, let us call S an Elimination Set of size |S|.

Lemma23. If GII has an Elimination Set of size k ≤ m, then GII has an Elimination Set of size

k that is also a subset of

{s1, s2, · · · , sm}.

.

Proof. Let

X = {x1, x2, · · · , xk}

be an Elimination Set of GII , where each xi is a variable node. Let us create a set

Y = {y1, y2, · · · , yk} ⊆ {s1, · · · , sm}

as follows. For i = 1, 2, · · · , k, do:

• If xi ∈ {s1, s2, · · · , sm}, let yi = xi.

• If xi is either ui′,j′ or wi′,j′ – namely, it is a variable node in the “gadget” Di′,j′ (more

specifically, gi′,j′) that connects si′ and tj′ – let yi = si′ if si′ is not in Y yet, and let yi be any

node in {s1, s2, · · · , sm} that is not yet in Y otherwise.

59

• If xi = tj for some 1 ≤ j ≤ n, let si′ be a node such that there is a “gadget” Di′,j connecting

si′ and tj . (Such a node si′ must exist because in the Pseudo Set Cover Problem, tj is covered

by at least one subset.) If si′ is not in Y yet, let yi = si′; otherwise, let yi be any node in

{s1, s2, · · · , sm} that is not yet in Y .

With the above construction, for any node xi in X , there exists a node si′ in Y such that either

si′ = xi, or si′ and xi exist in the same “gadget” Di′,j for some j. By the “directed” property of

gadgets Di′,j , we see that when the values of variable nodes in Y are known, the BP algorithm

can decode all the variable nodes in X; and since X is an Elimination Set, the BP algorithm can

consequently decode all the variable nodes in GII . So Y is an Elimination Set of size k that is a

subset of {s1, s2, · · · , sm}.

Lemma24. If GII has an Elimination Set of size k {si1 , si2 , · · · , sik} ⊆ {s1, s2, · · · , sm}, then for

the corresponding Pseudo Set Cover Problem, the k subsets

Si1 , Si2 , · · · , Sik

cover at least n− 1 elements of T .

Proof. The proof is by contradiction. Suppose that Si1 , Si2 , · · · , Sik cover at most n− 2 elements

of T . Then in GII , when the values of {si1 , si2 , · · · , sik} are known, the BP algorithm can use the

“gadgets” Di,j to decode at most n− 2 variable nodes among

t1, t2, · · · , tn.

Then the BP algorithm gets stuck because it cannot use any check node to decode any more variable

node:

• For any check node ci (where 0 ≤ i ≤ m), at least two adjacent nodes in {t1, t2, · · · , tn} are

not decoded yet. So the BP algorithm cannot use ci to decode more variable nodes.

60

• For any “gadget” Di,j that connects si and tj , if si /∈ {si1 , si2 , · · · , sik}, by the “directed”

property of the gadget, the BP algorithm cannot use it to decode si whether the node tj has

been decoded or not.

That means {si1 , si2 , · · · , sik} is not an Elimination Set, which is a contradiction. That leads

to the conclusion.

By combining the above two lemmas, we get:

Lemma25. If GII has an Elimination Set of size k ≤ m, then for the corresponding Pseudo Set

Cover Problem, there exist k subsets that cover at least n− 1 elements of T .

We now prove our main result here.

Theorem26. The SSE Problem is NP-hard.

Proof. The SSE Problem is an optimization problem. Let us consider its decision problem: given

a Stopping Graph G = (V ∪C,E) and a positive integer k, does it have an Elimination Set of size

k? Let us call this decision problem Psse. It is clear that Psse ∈ NP .

We have shown a mapping that maps every instance of the Pseudo Set Cover Problem to an

instance of Psse. The mapping takes polynomial time. By combining Lemma 22 and Lemma 25,

we see that the answer to the Pseudo Set Cover Problem is “yes” (namely, there exist k subsets that

cover at least n − 1 elements of T) if and only if the answer to Psse is “yes” (namely, GII has an

Elimination Set of size k). So the mapping is a polynomial-time reduction. By Theorem 18, the

Pseudo Set Cover Problem is NP-complete. So Psse is NP-complete, which leads to the conclusion.

5.4 SSE with Constraint on Belief-Propagation Iterations and Its NP-Hardness

In this section, we extend the SSE Problem by considering the time for BP decoding. After

the nodes in an Elimination Set are removed (namely, after NR-decoding corrects those erasures),

the remaining erasures are guaranteed to form a Decodable Set, and therefore the BP decoder

61

can correct them. However, there is no guarantee on how many iterations are needed by the BP

decoder to correct the remaining erasures. Here we assume a standard parallel-implementation

of BP decoding: in each iteration, first, all variable nodes transmit their values to neighboring

check nodes in parallel; then, all check nodes use incoming messages to correct erasures and send

the decoding results back to variable nodes, also in parallel. So the time for BP decoding can be

measured by the number of BP iterations.

It can be seen that for a Stopping Set of n variable nodes (namely, n erasures), after an Elim-

ination Set is removed, the BP decoder may still use as many as Θ(n) iterations to correct the

remaining erasures. The example below is an illustration.

Example27. A stopping set of n variable nodes and n check nodes are shown in Fig. 5.5 (a), where

all nodes have degree two and they together form a cycle. By eliminating one variable node v1,

the remaining variable nodes become decodable, as shown in Fig. 5.5 (b). Then the BP decoder

corrects two variable nodes in each iteration: in the 1st iteration, it corrects v2 and vn because they

both have a neighboring check node of degree one (as shown in Fig. 5.5 (c)); in the 2nd iteration, it

corrects v3 and vn−1 for the same reason (as shown in Fig. 5.5 (d)); and so on. So the BP decoder

will use dn−1
2
e = Θ(n) iterations to correct the remaining erasures. �

For BP decoding, its decoding time is an important measure of performance. So it is useful to

limit the number of iterations needed by BP decoding, which offers a performance guarantee. That

motivates us to study this extended SSE Problem.

Definition28. Given a Stopping Graph G = (V ∪C,E) and an integer k, how to remove the min-

imum number of variable nodes from V such that the remaining variable nodes can be corrected

by the BP decoder in no more than k iterations?

We call the above problem the SSEk Problem. In comparison, the SSE Problem studied earlier

has no constraint on k, so it can be seen as the SSE∞ Problem.

We have already proved that SSE∞ is NP-hard. The question now is: if k is a constant –

namely, we want the BP decoding to finish within a fixed number of iterations – does the SSEk

62

(a)

v1 v2 v3 v4 v5 vn-2 vn-1 vn

c1 c2 c3 c4 c5 cn-2 cn-1 cn

(b)

v2 v3 v4 v5 vn-2 vn-1 vn

c1 c2 c3 c4 c5 cn-2 cn-1 cn

(c)

v3 v4 v5 vn-2 vn-1

c2 c3 c4 c5 cn-2 cn-1

(d)

v4 v5 vn-2

c3 c4 c5 cn-2

Figure 5.5: (a) A Stopping Set of n variable nodes and n check nodes. (b) After removing a variable
node v1, the remaining nodes become decodable. (c) After the 1st iteration of BP decoding, v2 and
vn are corrected. (d) After the 2nd iteration of BP decoding, v3 and vn−1 are corrected.

63

problem become polynomial-time solvable? A positive answer seems possible at first sight, be-

cause having a small k puts more constraints on solutions and limits its search space. For example,

if k = 1, to correct all remaining erasures in just one iteration, in the subgraph induced by the

remaining variable nodes and their adjacent check nodes, every variable node needs to be adjacent

to at least one check node of degree one. That is a very local property for the bipartite graph and

can possibly make the problem simpler. However, our study below will give a negative answer.

We will prove that even the

SSE1

Problem is NP-hard.

There have been a number of works on the node-deletion problem (also called the maximum

subgraph problem) [130, 131, 132, 133], which can be generally stated as follows: find the min-

imum number of vertices to delete from a given graph so that the remaining subgraph satisfies

a property π. The node-deletion problem includes many well-known problems as special cases.

Some examples are:

• Max Clique Problem: the property π is that the remaining subgraph is a complete graph.

• Feedback Vertex Set Problem: the property π is that the remaining subgraph has no cycles.

• Vertex Cover Problem: the property π is that the remaining subgraph contains only isolated

nodes, without edges.

Some node-deletion problems are NP-complete on both general graphs and bipartite graphs,

such as the feedback vertex set problem. However, some are NP-complete on general graphs but

polynomial-time solvable on bipartite graphs, such as the vertex cover problem.

The SSEk Problem is different from the previously studied problems in several ways. First,

its property π is for the remaining subgraph to be decodable within k iterations, which is different

from the property π in other problems. Second, the previous works focus on properties π that are

hereditary on induced subgraphs, namely, whenever a graph G satisfies π, by deleting nodes from

64

G, the remaining subgraphs also satisfies π [130, 131, 132, 133]. (For example, the property π for

the max clique problem is hereditary because when nodes are removed from a complete graph, the

remaining subgraph is also a complete graph. The same holds for the feedback vertex set problem

and the vertex cover problem.) However, for the SSEk Problem, the property π is not hereditary,

because when a check node is removed, it may turn a Decodable Set into a Non-decodable Set. An

example is shown below.

Example29. A Decodable Set is shown in Fig. 5.6 (a), which satisfies the property π of the SSEk

problem. As shown in Fig. 5.6 (b), after the check nodes c1 and c3 are removed, the remaining

subgraph becomes non-decodable, which violates the property π. So for the SSEk Problem, the

property π is not hereditary. �

(a)

v1 v2

c1 c2 c3 (b)

v1 v2

c2

Figure 5.6: (a) A graph with a Decodable Set. (b) After check nodes c1 and c3 are removed, the
remaining variable nodes form a Non-decodable Set.

We now prove the NP-hardness of the SSE1 Problem. We use a reduction from the NP-

complete Not-all-equal SAT Problem [134], similar to a proof technique used in [133]. However,

due to the differences between the SSEk problem and the previously studied node-deletion prob-

lems (as mentioned above), the two proofs also have significant differences: they use different

65

mappings from the Not-all-equal SAT Problem to the target problem, which also lead to some

substantially different properties in the mapped structures.

We first define the Not-all-equal SAT Problem [134]: Let x1, x2, · · · , xn be n Boolean vari-

ables. A literal is either xi or x̄i (namely, the NOT of xi) for some i ∈ {1, 2, · · · , n}. Let a clause

be a set of three literals. Let

S = {C1, C2, · · · , Ck}

be a set of k clauses. The question is: Is there a truth assignment to the n Boolean variables such

that for every clause in S, the three literals in the clause are neither all true nor all false (namely,

every clause has at least one true literal and also at least one false literal)? (If the answer is “yes”,

the problem is called “satisfiable”.)

By convention, “true” is also represented by 1, and “false” is also represented by 0. We give an

example of the Not-all-equal SAT Problem.

Example 30. Consider the following instance of the Not-all-equal SAT Problem. Let n = 4 and

k = 5. Let the Boolean variables be x1, x2, x3, x4, and let the set of clauses be C1 = (x1, x̄2, x3),

C2 = (x̄1, x̄2, x4), C3 = (x2, x3, x4), C4 = (x1, x̄3, x̄4), C5 = (x̄1, x2, x3).

The above instance is satisfiable because we can let the truth assignment be

x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1.

Correspondingly, the clauses become C1 = (1, 0, 0), C2 = (0, 0, 1), C3 = (1, 0, 1), C4 = (1, 1, 0),

C5 = (0, 1, 0). None of the clauses is (1, 1, 1) (namely, all true) or (0, 0, 0) (namely, all false). �

We now construct a mapping from the Not-all-equal SAT Problem to the SSE1 Problem. And

afterwards, we will analyze its properties.

5.4.1 Reducing Not-all-equal SAT Problem to SSE1 Problem

In this subsection, we construct a reduction that maps every instance of the Not-all-equal SAT

Problem to an instance of the SSE1 Problem.

66

For every Boolean variable xi of the Not-all-equal SAT Problem (for 1 ≤ i ≤ n), we create a

graph as shown in Fig. 5.7 (a), which will be called the “gadget Vi”. It is a bipartite graph of three

variable nodes and three check nodes. (Here nodes X1
i and X0

i represent the true and false values

of xi, respectively.)

For every clause Cj of the Not-all-equal Problem (for 1 ≤ j ≤ k), we create two graphs as

shown in Fig. 5.7 (b), which will be called gadgets U1
j and U2

j , respectively. (Here for t = 1, 2, 3,

nodes Atj and Bt
j represent the true and false values of the t-th literal in clause Cj , respectively.)

We then connect them into one larger gadget Wj as shown in Fig. 5.7 (c), where for t = 1, 2, 3,

two paths are used to connect the nodes Atj and Bt
j . (For example, the two paths between A1

j and

B1
j have nodes d1j , d

2
j and the four check nodes by them.)

In the final graph corresponding to the instance, the gadget Vi will be connected to the rest of

the graph only through nodes X1
i and X2

i . So to simplify the presentation, we sometimes represent

Vi by the symbol in Fig. 5.7 (d), where the two “interface nodes” X1
i , X2

i are shown and the

remaining details are hidden. Also in the final graph, the gadget Wj will be connected to the rest of

the graph only through nodes A1
j , A

2
j , A

3
j , B

1
j , B2

j , B3
j ; so we sometimes represent it by the symbol

in Fig. 5.7 (e).

We now connect the gadgets for clauses to the gadgets for Boolean variables. Consider a clause

Cj , and assume its literals are

Cj = (l1, l2, l3).

For t = 1, 2, 3, if lt = xi for some 1 ≤ i ≤ n, we connect Atj to X1
i and connect Bt

j to X0
i (through

some intermediate nodes) as shown in Fig. 5.7 (f). Otherwise lt = x̄i for some 1 ≤ i ≤ n, and we

connect Atj to X0
i and connect Bt

j to X1
i as shown in Fig. 5.7 (g).

Example31. Assume that a clause is Cj = (l1, l2, l3) = (x1, x3, x̄4). Its gadget Wj is connected to

the gadgets V1, V3, V4 as in Fig. 5.7 (h).

To simplify the presentation of the graph, we represent the connection between a node Atj (or

Bt
j) and a node x1i (or x0i) by a rectangle that is generally denoted by the “H bar”. Then the graph

67

(a)

X i
1

X i
0

yi

gadget V i (b)

A j
1 A j

2 A j
3

a j

B j
3 B j

2 B j
1

b j

gadget U j
1 gadget U j

2

(c)

A j
1 A j

2 A j
3

a j

B j
3 B j

2 B j
1

b j

gadget Wj

d j
1

d j
2

d j
3

d j
4

d j
5

d j
6

(d) gadget V i

X i
1

X i
0

V i
A j

1 A j
2 A j

3 B j
3 B j

2 B j
1

W j

(e) gadget Wj

(f)

A j
t B j

t
W j

X i
1

X i
0

V i

p
j
t q

j
t

(g)

A j
t B j

t
W j

X i
1

X i
0

V i

p
j
t q

j
t

(h)

A j
1 A j

2 A j
3 B j

3 B j
2 B j

1
W j

X 1
1

X 1
0

V 1

X 3
1

X 3
0

V 3

X 4
1

X 4
0

V 4

(i)

A j
1 A j

2 A j
3 B j

3 B j
2 B j

1
W j

X 1
1

X 1
0

V 1

X 3
1

X 3
0

V 3

X 4
1

X 4
0

V 4

H

an
"H"
bar

H H H H H

Figure 5.7: (a) The gadget corresponding to a Boolean variable xi, for i = 1, 2, · · · , n. (b) Two
gadgets corresponding to a clause Cj , for j = 1, 2, · · · , k. (c) The connected gadget correspond-
ing to a clause Cj , for j = 1, 2, · · · , k. (d) Symbol for Vi. (e) Symbol for Wj . (f) Connect clause
gadget to Boolean variable gadget: case one. (g) Connect clause gadget to Boolean variable gad-
get: case two. (h) An example of connecting a clause gadget to variable gadgets. (i) Simplified
representation of the graph in (h).

68

in Fig. 5.7 (h) is simplified as the presentation in Fig. 5.7 (i), which shows the connections more

clearly. However, it should be noted that each Atj , B
t
j , x

1
i or x0i is connected to an H bar via two

edges, not one. �

By now, we have constructed the whole graph that corresponds to an instance of the Not-all-

equal Problem. The graph will be denoted by

Gsse.

Let us see an example.

Example32. For the Not-all-equal Problem, let n = 4 and k = 2. Let the two clauses be

C1 = (x1, x3, x̄4),

C2 = (x1, x̄2, x̄3).

Then the corresponding graph Gsse is shown in Fig. 5.8 (a), where its gadgets are represented by

symbols for clarity, and also in Fig. 5.8 (b), where its full details are presented. �

It is easy to see that Gsse is a bipartite graph, where every check node has degree more than

one. (Specifically, every check node has degree two.) So Gsse is a Stopping Graph.

The subsequent analysis will prove that the Not-all-equal SAT Problem is satisfiable if and only

if Gsse has an Elimination Set of size

n+ 3k

such that after its nodes are removed, the BP algorithm can decode the remaining variable nodes

in just one iteration.

5.4.2 Properties of Reduction

In the previous subsection, the mapping from any instance of the Not-all-equal SAT Problem

to a graph Gsse is shown. We now analyze its properties.

69

(a)

A 1
1 A 1

2 A 1
3 B1

3 B1
2 B1

1
W1

X 1
1

X 1
0

V 1

X 3
1

X 3
0

V 3

X 4
1

X 4
0

V 4

H H H H H H

X 2
1

X 2
0

V 2

H H

A 2
1 A 2

2 A 2
3 B2

3 B2
2 B2

1
W2

A 1
1 A 1

2 A 1
3 B1

3 B1
2 B1

1 A 2
1 A 2

2 A 2
3 B2

3 B2
2 B2

1

H H H H

X 1
1

X 1
0 X 2

1
X 2
0

X 3
1

X 3
0

X 4
1

X 4
0

(b)

Figure 5.8: (a) The graph Gsse corresponding to the Not-all-equal Problem where n = 4, k = 2,
C1 = (x1, x3, x̄4), C2 = (x1, x̄2, x̄3), where gadgets are represented by symbols. (b) The same
graph Gsse in full detail.

70

We first show a general property for the SSE1 Problem.

Lemma33. Given a bipartite graph G (including the graph Gsse), where variable nodes represent

erasures, the BP algorithm can decode all erasures in just one iteration if and only if for every

variable node in G, it has at least one neighboring check node whose degree is 1.

Proof. In each iteration of BP decoding, a check node c can recover the value of a neighboring

variable node v if and only if v is its only neighboring erasure.

Note that it is unnecessary for all neighboring check nodes to have degree 1. For example, the

graph in Fig. 5.6 can be decoded in one iteration, although both v1 and v2 have a neighboring check

node c2 that has degree two. In one iteration of BP decoding, the check node c1 (which has degree

1) is sufficient for decoding v1, and the check node c3 (which also has degree 1) is sufficient for

decoding v2.

Let the bipartite graph Gsse be

Gsse = (Vsse ∪ Csse, Esse),

where Vsse is the set of variable nodes, Csse is the set of check nodes, and Esse is the set of edges.

We now define the concepts of Interface Nodes, One-Iteration Elimination Set and Canonical

Elimination Set.

Definition34. Let

Isse , {Xj
i | 1 ≤ i ≤ n, 0 ≤ j ≤ 1}∪

{Aji | 1 ≤ i ≤ k, 1 ≤ j ≤ 3}∪

{Bj
i | 1 ≤ i ≤ k, 1 ≤ j ≤ 3}

be a subset of variable nodes in Gsse. Every node in Isse is called an “Interface Node.”

As an example, the interface nodes are shown as circles in Fig. 5.8 (a).

Definition 35. Let T ⊆ Vsse be a set of variable nodes in Gsse. If after removing T from Gsse,

the BP algorithm can decode the remaining variable nodes in one iteration, then T is called a

71

“One-Iteration Elimination Set.”

If T is a one-iteration elimination set and

T ⊆ Isse,

then T is called a “Canonical Elimination Set.”

Lemma36. IfGsse has a One-Iteration Elimination Set of α nodes, thenGsse also has a Canonical

Elimination Set of at most α nodes.

Proof. Let F ⊆ Vsse be a One-Iteration Elimination Set of α nodes. We will prove the existence

of a Canonical Elimination Set F̂ ⊆ Isse with |F̂ | ≤ α nodes. Note that the nodes in Gsse are in

three kinds of gadgets: gadget Vi, gadget Wj , or H bar. (See Fig. 5.8 (a) for an illustration.) The

main idea of the proof is to transform F into F̂ by switching nodes of F to interface nodes.

First, consider a gadget Vi (for 1 ≤ i ≤ n). (See Fig. 5.7 (a) for an illustration.) Note that X1
i

and X0
i are its only two nodes connecting to nodes outside Vi in Gsse. (That is why X1

i and X0
i are

called Interface Nodes.) If yi ∈ F (note that yi is the other variable node in the gadget Vi), then

consider three cases:

1. X1
i ∈ F and X0

i ∈ F . In this case, we can delete yi from F and still get a one-iteration

elimination set, because yi’s two neighboring check nodes already have degree 1 after X1
i

and X0
i are removed from Gsse.

2. X1
i ∈ F or X0

i ∈ F . Without loss of generality (WLOG), say X1
i ∈ F and X0

i /∈ F . In this

case, we can replace yi by X0
i in F and still get a one-iteration elimination set, because the

replacement will only remove more edges from the part of the graph Gsse that is outside Vi,

and yi’s two neighboring check nodes will have degree 1 after X1
i and X0

i are removed from

Gsse.

3. X1
i /∈ F and X0

i /∈ F . In this case, we can replace yi by X1
i and still get a one-iteration elim-

ination set, because after X1
i is removed from Gsse, both X0

i and yi will have a neighboring

72

check of degree 1, and more edges will be removed the part of the graph Gsse that is outside

Vi.

So we can obtain a new one-iteration elimination set F1 of at most α nodes, where

F1 ∩ {yi | 1 ≤ i ≤ n} = ∅.

Next, consider an H bar. WLOG, suppose the H bar is between the two nodes Atj and X1
i .

(Such an H bar is illustrated in Fig. 5.7 (f).) Note that when the H bar is combined with the nodes

Atj and X1
i (and the edges between them), we get a cycle that has the same structure as the gadget

Vi (which is discussed above). So by the same argument that has been used for Vi, from F1, we can

obtain a new one-iteration elimination set F2 of at most α nodes, where

F2 ∩ {yi | 1 ≤ i ≤ n} = ∅,

F2 ∩ {ptj | 1 ≤ j ≤ k, 1 ≤ t ≤ 3} = ∅,

and

F2 ∩ {qtj | 1 ≤ j ≤ k, 1 ≤ t ≤ 3} = ∅.

Now consider a gadget Wj (for 1 ≤ j ≤ k), which is shown in Fig. 5.7 (c). First, consider the

two nodes d1j and d2j , which are on two paths connectingA1
j andB1

j . Those two paths together form

a cycle of 4 variable nodes and 4 check nodes, with A1
j and B1

j as “interface nodes” connecting to

the rest of the graph. (This cycle is quite similar to the cycle in gadget Vi.) With a similar analysis

as the one for Vi, we can always turn F2 into a new one-iteration elimination set by replacing d1j

and/or d2j by A1
j and/or B1

j . (The only slightly different case to note is when A1
j /∈ F2 and B1

j /∈ F2.

In this case, we have d1j ∈ F2 and d2j ∈ F2, and we can replace them byA1
j andB1

j in F2.) The same

analysis applies to d3j , d
4
j , d

5
j and d6j . So from F2, we can obtain a new one-iteration elimination set

F3 of at most α nodes, where

F3 ∩ {yi | 1 ≤ i ≤ n} = ∅,

73

F3 ∩ {ptj | 1 ≤ j ≤ k, 1 ≤ t ≤ 3} = ∅,

F3 ∩ {qtj | 1 ≤ j ≤ k, 1 ≤ t ≤ 3} = ∅

and

F3 ∩ {dtj | 1 ≤ j ≤ k, 1 ≤ t ≤ 6} = ∅.

Now consider the two component gadgets in Wj: U1
j and U2

j , which are shown in Fig. 5.7 (b).

WLOG, we just need to consider U1
j . Suppose aj ∈ F3, and consider two cases:

1. A1
j ∈ F3, A2

j ∈ F3, or A3
j ∈ F3. WLOG, suppose A1

j ∈ F3. In this case, we can delete aj

from F3 and still get a one-iteration elimination set, because after A1
j is removed from Gsse,

A2
j , A

3
j and aj already have neighboring check nodes of degree 1.

2. A1
j /∈ F3, A2

j /∈ F3, and A3
j /∈ F3. In this case, we can replace aj by A1

j in F3, and still get

a one-iteration elimination set, for the same reason as the above case (and the fact that more

edges outside U1
j will be removed by this replacement because A1

j is an “interface node” and

aj is not).

So from F3, we can obtain a new one-iteration elimination set F4 of at most α nodes, where

F4 ∩ {yi | 1 ≤ i ≤ n} = ∅,

F4 ∩ {ptj | 1 ≤ j ≤ k, 1 ≤ t ≤ 3} = ∅,

F4 ∩ {qtj | 1 ≤ j ≤ k, 1 ≤ t ≤ 3} = ∅

F4 ∩ {dtj | 1 ≤ j ≤ k, 1 ≤ t ≤ 6} = ∅,

F4 ∩ {aj | 1 ≤ j ≤ k} = ∅,

and

F4 ∩ {bj | 1 ≤ j ≤ k} = ∅.

74

Let F̂ = F4. Clearly, F̂ ⊆ Isse. That concludes the proof.

Some properties of Canonical Elimination Sets are shown in the next lemma. We first define

“endpoints of an H bar.”

Definition37. Let u be any node in

{Atj | 1 ≤ j ≤ k, 1 ≤ t ≤ 3} ∪ {Bt
j | 1 ≤ j ≤ k, 1 ≤ t ≤ 3},

and let v be any node in

{X1
i | 1 ≤ i ≤ n} ∪ {X0

i | 1 ≤ i ≤ n}.

If u and v are connected by an H bar, then they are called the two endpoints of that H bar.

Example38. In Fig. 5.7 (f), the endpoints of H bars are (Atj, X
1
i) and (Bt

j, X
0
i). In In Fig. 5.7 (g),

such endpoint pairs are (Atj, X
0
i) and (Bt

j, X
1
i). �

Lemma39. For the graph Gsse, a Canonical Elimination Set F has the following properties:

• Property 1: For i = 1, 2, · · · , n, either

X1
i ∈ F

or

X0
i ∈ F.

• Property 2: For j = 1, 2, · · · , k and t = 1, 2, 3, either

Atj ∈ F

or

Bt
j ∈ F.

75

• Property 3: For j = 1, 2, · · · , k,

|F ∩ {A1
j , A

2
j , A

3
j}| ≥ 1

and

|F ∩ {B1
j , B

2
j , B

3
j }| ≥ 1.

• Property 4: If u and v are the two endpoints of an H bar, then either

u ∈ F

or

v ∈ F.

Proof. For the gadget Vi (see Fig. 5.7 (a)), if neither X1
i nor X0

i is in F , then the BP algorithm

cannot decode yi in one iteration since both of yi’s neighboring check nodes will have degree 2.

So Property 1 is true.

For the gadget Wj (see Fig. 5.7 (c)), for the pair (A1
j , B

1
j), if neither A1

j nor B1
j is in F , then

the BP algorithm cannot decode d1j in one iteration since both of d1j ’s neighboring check nodes will

have degree 2. The similar analysis holds for the pairs (A2
j , B

2
j) and (A3

j , B
3
j). So Property 2 is

true.

For the gadget U1
j (see Fig. 5.7 (b)), if none of A1

j , A
2
j , A

3
j is in F , then the BP algorithm cannot

decode aj in one iteration since all of d1j ’s three neighboring check nodes will have degree 2. The

same analysis holds for U2
j . So Property 3 is true.

For the H bar (see Fig. 5.7 (f) and (g)) between u and v, if neither u nor v is in F , then the

variable node in theH bar – which is labelled as ptj or qtj in Fig. 5.7 (f) and (g) – cannot be decoded

by the BP algorithm in one iteration because both of its neighboring check node will have degree

2. So Property 4 is true.

76

Corollary40. If F is a One-Iteration Elimination Set of Gsse, then

|F | ≥ n+ 3k.

Proof. If F is a Canonical Elimination Set, by Property 1 and Property 2 in Lemma 39, we get

|F | ≥ n + 3k. Then by Lemma 36, the same conclusion holds for any One-Iteration Elimination

Set.

Definition41. Let F be a Canonical Elimination Set of Gsse. If

|F | = n+ 3k,

then F is called an “Ideal Elimination Set” of Gsse.

Here “Ideal” means “of minimum possible size.” Note that an Ideal Eliminate Set may or may

not exist for Gsse.

Lemma42. An Ideal Elimination Set F of Gsse has these properties:

• Property 1: For i = 1, 2, · · · , n, either X1
i or X0

i is in F , but not both.

• Property 2: For j = 1, 2, · · · , k and t = 1, 2, 3, either Atj or Bt
j is in F , but not both.

• Property 3: For j = 1, 2, · · · , k, in the set {A1
j , A

2
j , A

3
j}, at least one node is in F , and at

least one node is not in F . The same is true for the set {B1
j , B

2
j , B

3
j }.

• Property 4: If u and v are the two endpoints of an H bar, then either u or v is in F , but not

both.

Proof. Given that |F | = n+ 3k, Properties 1, 2 and 3 here follow directly from Properties 1, 2 and

3 in Lemma 39.

Now consider Property 4 here. WLOG, suppose that u = Atj and v = X1
i for some i, j, t. (The

other cases can be analyzed similarly because of symmetry.) Consider two cases:

77

1. u ∈ F . In this case, by Property 2, Bt
j /∈ F . By the construction of Gsse, Bt

j and X0
i are

the two endpoints of another H bar. So by Property 4 in Lemma 39, since Bt
j /∈ F , we get

X0
i ∈ F . Then by Property 1, we have v = X1

i /∈ F .

2. u /∈ F . In this case, by Property 4 in Lemma 39, we have v = X1
i ∈ F .

Therefore u ∈ F if and only if v /∈ F . So Property 4 is true.

Given an Ideal Elimination Set of Gsse, we can construct a solution to the Not-all-equal SAT

Problem as follows.

Definition43. Let F be an Ideal Elimination Set of Gsse. A corresponding solution Sol(F) for the

Not-all-equal SAT Problem is constructed as follows: ∀1 ≤ i ≤ n, the Boolean variable xi = 1

(namely, xi is true) if and only if X1
i ∈ F .

Clearly, in the above solution Sol(F), a Boolean variable xi = 0 (namely, xi is false) if and

only if X0
i ∈ F .

Lemma44. Let F be an Ideal Elimination Set ofGsse, and let Sol(F) be its corresponding solution

to the Not-all-equal SAT Problem. Then for 1 ≤ j ≤ k and 1 ≤ t ≤ 3, the t-th literal in the clause

Cj is

true

if and only if

Atj /∈ F.

Proof. Let ltj denote the t-th literal in the clause Cj . Consider two cases:

• Case 1: ltj is xi for some 1 ≤ i ≤ n. In this case, by the construction ofGsse, Atj is connected

to X1
i by an H bar. ltj is true if and only if X1

i ∈ F , which – by Property 4 of Lemma 42 –

happens if and only if Atj /∈ F .

78

• Case 2: ltj is x̄i for some 1 ≤ i ≤ n. In this case, by the construction ofGsse, Atj is connected

to X0
i by an H bar. ltj is true if and only if xi is false, which happens if and only if X0

i ∈ F ,

which – by Property 4 of Lemma 42 – happens if and only if Atj /∈ F .

So in both cases, the conclusion holds.

Lemma 45. If F is an Ideal Elimination Set of Gsse, then Sol(F) is a satisfying solution to the

Not-all-equal SAT Problem.

Proof. For 1 ≤ j ≤ k, let At1j ∈ F and At2j /∈ F . By Property 3 of Lemma 42, such two integers

t1, t2 ∈ {1, 2, 3} exist. Consider the clause Cj . By Lemma 44, the t1-th literal of Cj is false, and

t2-th literal of Cj is true. So for the Not-all-equal SAT Problem, every clause has at least one true

literal and at least one false literal. So Sol(F) is a satisfying solution to the Not-all-equal SAT

Problem.

The above lemma is useful for the scenario where Gsse has a One-Iteration Elimination Set

of n + 3k nodes. We now consider another possible scenario: the Not-all-equal SAT Problem is

satisfiable.

Given a satisfying solution to the Not-all-equal SAT Problem, we can construct an Ideal Elim-

ination Set of Gsse. We first define the corresponding set.

Definition 46. Let π be a satisfying solution to the Not-all-equal SAT Problem; that is, with the

solution π, every clause has at least one true literal and at least one false literal. A corresponding

set of nodes, F(π), in Gsse is constructed as follows:

• For i = 1, 2, · · · , n, if xi = 1 in the solution π, then X1
i ∈ F(π) and X0

i /∈ F(π); otherwise,

X1
i /∈ F(π) and X0

i ∈ F(π).

• For j = 1, 2, · · · , k and t = 1, 2, 3, if the t-th literal of clause Cj is true given the solution

π, then Atj /∈ F(π) and Bt
j ∈ F(π); otherwise, Atj ∈ F(π) and Bt

j /∈ F(π).

Lemma47. Let π be a satisfying solution to the Not-all-equal SAT Problem. ThenF(π) is an Ideal

Elimination Set of Gsse.

79

Proof. Let us first show that F(π) is an One-Iteration Elimination Set of Gsse. Consider nodes in

the following gadgets of Gsse:

• Consider the gadget Vi, for 1 ≤ i ≤ n. (See Fig. 5.7 (a).) By the construction of F(π), either

X1
i or X0

i is in F(π). Either way, after the node in F(π) is removed, the other two variable

nodes in Vi will have neighboring check nodes of degree 1.

• Consider the gadget Wj , for 1 ≤ j ≤ k. (See Fig. 5.7 (c).) Since the clause Cj has at

least one true literal and at least one false literal, WLOG, let us suppose that its 1st and 2nd

literals are true, and its 3rd literal is false. (There are totally 6 cases. And the other 5 cases

can be proved similarly by symmetry.) By the construction of F(π), we have A1
j /∈ F(π),

B1
j ∈ F(π), A2

j /∈ F(π), B2
j ∈ F(π), A3

j ∈ F(π), B3
j /∈ F(π). It is not hard to see that after

B1
j , B2

j and B3
j are removed, the remaining variable nodes in Wj will all have neighboring

check nodes of degree 1: removing A3
j will cause that effect for nodes in U1

j , removing B1
j

(andB2
j) will cause that effect for nodes in U2

j , and removing all those three nodes will cause

that effect for d1j , d
2
j , · · · , d6j .

• Consider an H bar. (See Fig. 5.7 (f) and (g).) Let u and v be the two endpoints of the H bar,

where u is Atj or Bt
j , and v is X1

i or X0
i (for some parameters i, j, t). There are four possible

cases:

– Case 1: u is Atj and v is X1
i . In this case, by the construction of Gsse, the t-the literal

of clause Cj is xi. By the construction of F(π), if xi = 1, then X1
i ∈ F(π) and

Atj /∈ F(π); otherwise, X1
i /∈ F(π) and Atj ∈ F(π).

– Case 2: u is Atj and v is X0
i . In this case, by the construction of Gsse, the t-the literal

of clause Cj is x̄i. By the construction of F(π), if xi = 1, then X0
i /∈ F(π) and

Atj ∈ F(π); otherwise, X0
i ∈ F(π) and Atj /∈ F(π).

– Case 3: u is Bt
j and v is X1

i . In this case, by the construction of Gsse, the t-the literal

of clause Cj is x̄i. By the construction of F(π), if xi = 1, then X1
i ∈ F(π) and

Bt
j /∈ F(π); otherwise, X1

i /∈ F(π) and Bt
j ∈ F(π).

80

– Case 4: u is Bt
j and v is X0

i . In this case, by the construction of Gsse, the t-the literal

of clause Cj is xi. By the construction of F(π), if xi = 1, then X0
i /∈ F(π) and

Bt
j ∈ F(π); otherwise, X0

i ∈ F(π) and Bt
j /∈ F(π).

So in all four cases, either u or v is in F(π). If u ∈ F(π), then after u is removed from Gsse,

both v and the variable node in the H bar (ptj or qtj) will have a neighboring check node of

degree 1; and the same holds if v ∈ F(π).

So after nodes in F(π) are removed, the remaining variable nodes in Gsse will all have neigh-

boring check nodes of degree 1. So F(π) is an One-Iteration Elimination Set of Gsse. Then it can

be seen that all the nodes in F(π) are Interface Nodes (namely, F(π) ⊂ Isse) and |F(π)| = n+3k.

So F(π) is an Ideal Elimination Set of Gsse.

We now prove the NP-hardness of the SSE1 Problem.

Theorem48. The SSE1 Problem is NP-hard.

Proof. The SSE1 Problem is an optimization Problem. Consider its decision problem: “Given

a Stopping Graph G and an integer t, is it possible to remove t variable nodes from G so that

the BP algorithm can decode the remaining variable nodes in one iteration?” Let it be called the

“SSEdecision
1 Problem.” Clearly, the problem is in NP. We will show now that there is a polynomial-

time reduction from the NP-complete Not-all-equal SAT Problem to the SSEdecision
1 Problem.

Corresponding to the Not-all-equal SAT Problem, it has been introduced how to construct a

bipartite graph Gsse. Let G be Gsse, and let t be n + 3k. Then we have a mapping from the Not-

all-equal SAT Problem to the SSEdecision
1 Problem. It is not difficult to see that the mapping tokes

polynomial time. We now need to prove that the Not-all-equal SAT Problem is satisfied if and only

if the corresponding SSEdecision
1 Problem has a positive answer:

1. If the Not-all-equal SAT Problem is satisfiable, let π be such a satisfying solution. By

Lemma 47, F(π) is an Ideal Elimination Set of Gsse, which has size n + 3k. So the

SSEdecision
1 Problem has a positive answer.

81

2. If the SSEdecision
1 Problem has a positive answer, thenGsse has an One-Iteration Elimination

Set of size n+ 3k. By Lemma 36 and Corollary 40, Gsse has a Canonical Elimination Set F

of size n+3k, which, by Definition 41, is also an Ideal Elimination Set. Then by Lemma 45,

the Not-all-equal SAT Problem is satisfiable.

So there is a polynomial-time reduction from the Not-all-equal SAT Problem to the SSEdecision
1

Problem. So the SSEdecision
1 Problem is NP-complete, and the SSE1 Problem is NP-hard.

5.5 Approximation Algorithm for SSE1 Problem

In this section, we present an approximation algorithm for the SSE1 problem, for Stopping

Graphs whose degrees of variable nodes and check nodes are upper bounded by dv and dc, respec-

tively. Its approximation ratio is

dv(dc − 1).

(Clearly, the same result also applies to regular (dv, dc) LDPC codes and irregular codes with the

same constraint on maximum degrees.) Note that the optimization objective is to minimize the

size of the elimination set (namely, the number of removed variable nodes). So the approximation

ratio means the maximum ratio of the size of an elimination set produced by the approximation

algorithm to the size of an optimal (i.e., minimum) elimination set.

Definition 49. In the Stopping Graph G = (V ∪ C,E), ∀ v ∈ V , define its “variable-node

neighborhood” as Λ(v) ,

{u ∈ V − {v} | ∃ c ∈ C such that (u, c) ∈ E and (v, c) ∈ E}.

That is, every variable node in Λ(v) shares a common neighboring check node with v.

Example 50. For the Stopping Graph in Fig. 5.9, we have Λ(v1) = {v4, v6}, Λ(v2) = {v3, v8},

Λ(v3) = {v2, v5, v8}, and so on. �

We now introduce an approximation algorithm. The algorithm will assign three colors to vari-

able nodes:

82

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5 c6 c7

Figure 5.9: A Stopping Graph G = (V ∪ C, E).

• Initially, every variable node is of the color white. It means that this variable node cannot be

decoded by one iteration of BP-decoding yet.

• As the algorithm proceeds, if a variable node’ color turns black, it means the algorithm has

included it in the Elimination Set (namely, the algorithm has removed it).

• As the algorithm proceeds, if a variable node’s color turns gray, it means the variable node

is not yet removed, but it will be decodable after one iteration of BP decoding.

When the algorithm ends, every variable node’s color will be either black or gray.

The algorithm works as follows. It takes a greedy approach, and updates the colors of variable

nodes iteratively. In each iteration, it identifies an arbitrary white variable node (say it is node v),

and does the following:

1. Step One: Let Uv denote the set of variable nodes in Λ(v) that are currently white or gray.

Turn the colors of the nodes in Uv to black, and turn the color of v to gray.

2. Step Two: For every check node c that is connected to at least one variable node in Uv, check

if exactly one of c’s neighboring variable node is white and all c’s other neighboring variable

nodes are black. If so, turn that neighboring variable node’s color from white to gray.

83

The algorithm keeps iterating as above until all variable nodes are either black or gray. Then

it returns the set of black variable nodes as the Elimination Set. It is not difficult to see that the

remaining variable nodes are decodable by BP in one iteration: by the algorithm, every time a

variable node is turned from white to gray, it has at least one neighboring check node c such that

c’ other neighboring variable nodes are all black (namely, removed), and an BP iteration using the

check node c will help decode that gray variable node.

The algorithm is formally presented below. Note that it uses two sets, Swhite and Sblack, to keep

track of the white and black nodes, respectively.

Algorithm51. Approximation Algorithm for SSE1

Input: Stopping Graph G = (V ∪ C,E).

Output: A one-iteration elimination set.

Algorithm:

1. Swhite ← V , Sblack ← ∅.

2. for v ∈ V

3. color(v)← white.

4. while Swhite 6= ∅

5. {

6. Pick an arbitrary node v from Swhite.

7. Uv ← ∅.

8. for u ∈ Λ(v)

9. {

10. if color(u) = white

84

11. {

12. Uv ← Uv ∪ {u}.

13. color(u)← black.

14. Sblack ← Sblack ∪ {u}.

15. Swhite ← Swhite − {u}.

16. }

17. else if color(u) = gray

18. {

19. Uv ← Uv ∪ {u}.

20. color(u)← black.

21. Sblack ← Sblack ∪ {u}.

22. }

23. }

24. Swhite ← Swhite − {v}, color(v)← gray.

25. for u ∈ Uv

26. for every check node c adjacent to u

27. if exactly one of c’s neighboring nodes is white

and all c’s other neighboring nodes are black

28. {

29. Let w be that white neighboring node.

85

30. Swhite ← Swhite − {w}, color(w)← gray.

31. }

32. }

33. return Sblack.

We show an example of the above algorithm.

Example52. Let the graph G be as shown in Fig. 5.10 (a). The algorithm first identifies a white

node v1, turns nodes in Uv1 = {v2, v3} black, then turns v1 and v4 gray (see Fig. 5.10 (b)). Next,

it identifies a white node v5, turns nodes in Uv5 = {v6, v7} black, then turns v5 gray (see Fig. 5.10

(c)). Next, it identifies a white node v8, turns the nodes in Uv8 = {v9} black, then turns v8 gray

(see Fig. 5.10 (d)). So the Elimination Set is S = {v2, v3, v6, v7, v9}. If we delete nodes in S from

G, we get the subgraph in Fig. 5.10 (e), where we can see that all the remaining nodes are gray

and can be decoded by one BP iteration.

It is not hard to verify that every one-iteration elimination set for G has size no less than 5.

Since |S| = 5, the output of the algorithm is actually optimal in this example. �

We analyze the time complexity of the above algorithm. Let dv and dc denote the maximum

degrees of variable nodes and check nodes in the Stopping Graph G, respectively. The algorithm

has time complexity O(d2vd
2
c |V |) because it identifies up to O(|V |) white variable nodes and for

each such node v, it checks its neighboring check nodes and nodes in Λ(v), check nodes adjacent

to nodes in Λ(v), and variable nodes that share common neighboring check nodes with any node

in Λ(v); and there are O(d2vd
2
c) such nodes for each v.

We now analyze the approximation ratio of the algorithm. We first introduce a few lemmas.

Lemma53. Let G1 = (V1∪C1, E1) and G2 = (V2∪C2, E2) be two Stopping Graphs. Let s1 and

s2 denote the size of the minimum one-iteration elimination set in G1 and G2, respectively. If G2

can be obtained from G1 by removing some variable nodes and their incident edges, then

s2 ≤ s1.

86

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(a)

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(b)

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(c)

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(d)

v1 v4 v5 v8

c1 c2 c3 c4 c5(e)

Figure 5.10: An example of the approximation algorithm for SSE1.

87

Proof. Removing variable nodes is the same as knowing the values of those erased codeword bits,

which only helps BP decoding.

Say that the algorithm identifies a sequence of white variable nodes

v̂1, v̂2, · · · , v̂t

in the Stopping Graph G = (V ∪ C,E), and turns the variable nodes in

Uv̂1 , Uv̂2 , · · · , Uv̂t

black. Let us define a sequence of subgraphs

G0, G1, · · · , Gt

accordingly.

Definition 54.. Let G0 = G. For i = 1, 2, · · · , t, let Gi be obtained from Gi−1 by removing the

nodes in

Uv̂i ∪ {v̂i} ∪ {check nodes adjacent to v̂i}

and their incident edges.

Note that for i = 1, 2, · · · , t, in the i-th iteration, the algorithm removes only the variable nodes

in Uv̂i (namely, turning them black) from the subgraph Gi−1, not v̂i or its adjacent check nodes. (It

turns v̂i to gray.) However, once Uv̂i is removed, all the nodes in Λ(v̂i) are removed, so v̂i and its

adjacent check nodes become disconnected from the rest of the graph (which is Gi). Therefore it

becomes sufficient to consider the SSE1 Problem for Gi in the next iteration, and it can be seen

that

v̂i+1, Uv̂i+1
, {check nodes adjacent to v̂i+1},

v̂i+2, Uv̂i+2
, {check nodes adjacent to v̂i+2},

88

· · · ,

v̂t, Uv̂t , {check nodes adjacent to v̂t}

are all nodes (or sets of nodes) in Gi.

Lemma55. For i = 0, 1, · · · , t−1, every one-iteration elimination set for Gi contains at least one

variable node in

Uv̂i+1
∪ {v̂i+1}.

Proof. Consider the graph Gi and its variable node v̂i+1. To make the remaining variable nodes

decodable by one iteration of BP decoding after some variable nodes are removed, it is necessary

(although not sufficient) that v̂i+1 is either removed, or decodable after one such iteration of BP

decoding; and that requires one of these two conditions to be true:

1. v̂i+1 is removed.

2. v̂i+1 is not removed, but it has a neighboring check node c such that all c’s other neighboring

variable nodes in Gi are removed. (The check node c will help decode v̂i+1 in one iteration

of BP decoding. And note that those “other neighboring variable nodes” of c are all nodes

in Uv̂i+1
. Also note that since vi+1 is turned from white to gray in the (i + 1)-th iteration of

the algorithm, at the beginning of the (i + 1)-th iteration, every check node adjacent to vi+1

must have degree at least two in Gi. So the set of those “other neighboring variable nodes”

of c cannot be empty.)

So it is necessary that at least one variable node in Uv̂i+1
∪ {v̂i+1} is removed.

Lemma56. For i = 0, 1, · · · , t, let αi denote the minimum size of a one-iteration elimination set

for Gi. Then

αi ≥ t− i.

Proof. The proof is by induction, but in the reverse order for i (i.e, from i = t, t − 1 · · · down to

89

0). When i = t, clearly αi ≥ t − i = 0, so the conclusion holds for the base case. Now assume

that the conclusion holds for αt, αt−1, · · · , αi+1, and consider the case for αi.

Consider an optimal (i.e., minimum-sized) one-iteration elimination set S for Gi. Define Y ,

S ∩ (Uv̂i+1
∪ {v̂i+1}). By Lemma 55, S removes at least one variable node in Uv̂i+1

∪ {v̂i+1}, so

|Y | ≥ 1. Let G̃ be the bipartite graph obtained by removing the variable nodes in Y from Gi (and

their incident edges), and let α̃ denote the minimum size of a one-iteration elimination set for G̃.

Then αi = |S| = |Y |+ α̃ ≥ α̃ + 1.

Gi+1 is obtained from Gi by removing the variable nodes in Uv̂i+1
∪{v̂i+1}, which is a superset

of Y . SoGi+1 can also be obtained from G̃ by removing the variable nodes in (Uv̂i+1
∪{v̂i+1})−Y .

So by Lemma 53, αi+1 ≤ α̃. By the induction assumption, we get αi+1 ≥ t−(i+1). By combining

the above results, we get αi ≥ α̃ + 1 ≥ αi+1 + 1 ≥ t− (i+ 1) + 1 = t− i.

Theorem 57. Let dv and dc denote the maximum degrees of variable nodes and check nodes, re-

spectively, in the Stopping GraphG = (V ∪C,E). Then the above algorithm has an approximation

ratio of

dv(dc − 1).

Proof. By setting i = 0 in Lemma 56, we get α0 ≥ t, namely, any one-iteration elimination set for

G removes at least t variable nodes. The algorithm removes the nodes in

Uv̂1 ∪ Uv̂2 ∪ · · · ∪ Uv̂t ,

whose size is

|
t⋃
i=1

Uv̂i | =
t∑
i=1

|Uv̂i | ≤
t∑
i=1

|Λ(v̂i)| ≤ t · dv(dc − 1).

So the approximation ratio is at most dv(dc − 1).

5.6 Analysis and Algorithms for SSEk Problems

In this section, we present more analysis and algorithms for SSEk Problems, including k =∞.

We first analyze how an important factor, RBER (raw bit-erasure rate), affects the performance of

90

approximation algorithms, and show that for high-rate codes with high actual erasure rates, all

algorithms have good approximation ratios. We then present exact algorithms for SSE∞ and

SSEk Problems when the Stopping Graph is a tree (or a forest). The algorithms output optimal

solutions and have linear time complexity.

5.6.1 Effect of RBER for Approximation Algorithms

We first analyze the effect of RBER for approximation algorithms. Consider an (N,K) LDPC

code withN codeword bits andK information bits (whereK < N), whose code rate isR , K/N .

Let G = (V ∪ C,E) be its Stopping Graph, where V is the Stopping Set. As shown in Fig. 5.2

(b), the higher RBER is, the greater |V | becomes on average. Let ε , |V |/N be called the actual

erasure rate relative to stopping set V .

Lemma58. Let S ⊆ V be any solution (i.e., an Elimination Set) to the SSEk Problem. If |V | ≥

N −K, then

|S| ≥ |V | −N +K.

Proof. The proof is by contradiction. If |S| < |V | − N + K, then after the erased bits in the

Elimination Set are decoded by the NR-Decoder, the total number of codeword bits with known

values is (N − |V |) + |S| < (N − |V |) + (|V | −N + K) = K. Then the ECC-Decoder will not

be able to recover the K bits of information in the codeword.

Theorem59. For the SSEk Problem, if ε > 1−R, then the approximation ratio of any algorithm

is at most
ε

ε− (1−R)
.

Proof. Let S∗ and S be an optimal solution and the solution of an arbitrary algorithm, respectively,

to the SSEk Problem. If ε > 1 − R, then |V | = εN > (1 −K/N)N = N −K. By Lemma 58,

|S∗| ≥ |V | −N +K. Since S ⊆ V , we get |S||S∗| ≤
|V |

|V |−N+K
= ε

ε−1+R .

So for high rate codes (where R approaches 1), if the RBER is high (which approaches 1), then

with high probability, ε also approaches 1. In this case, ε
ε−(1−R)

approaches 1, so all algorithms

91

have good approximation ratios.

5.6.2 Exact Algorithm for SSE∞ Problem with Stopping Tree

The Stopping Graph G = (V ∪ C,E) can be a tree, especially when the RBER is low. In this

case, we call G a Stopping Tree. Note that if G is a forest, the SSEk Problem can be solved for

each of its tree components independently.

In this subsection, we present an efficient and exact algorithm for the SSE∞ Problem. The

algorithm will be extended to the SSEk Problem for general k subsequently.

Given a Stopping Tree G = (V ∪ C,E), we can pick an arbitrary variable node v ∈ V as the

root, run Breadth-First Search (BFS) on G starting with v, and label the nodes of G by v1, v2, · · · ,

v|V |+|C| based on their order of discovery in the BFS. (Note that the root node v is labelled by v1,

and siblings nodes in the BFS tree always have consecutive labels.) We denote the resulting BFS

tree by GBFS .

The algorithm for SSE∞ is as follows.

Algorithm60. Exact Algorithm for SSE∞

Input: Stopping Tree G = (V ∪ C,E).

Output: An Elimination Set of minimum size in G.

Algorithm:

1. Generate GBFS by running BFS on G.

2. Let S be an empty set.

3. i← |V |+ |C|.

4. while i ≥ 1

5. {

6. if i > 1 and vi ∈ V

7. {

92

8. Let j be the minimum index such that vj is a sibling

9. of vi in the BFS tree GBFS rooted at v1.

10. if j < i

11. Add vj, vj+1, · · · , vi−1 to set S.

12. i← j − 1.

13. }

14. else if i = 1

15. {

16. Add v1 to set S.

17. i = 0.

18. }

19. else

20. i← i− 1.

21. }

22. Return S.

The algorithm first runs BFS to generate GBFS . It then processes the nodes in the reverse order

of their labels (from v|V |+|C| to v1). Every time it comes to a node vi, if vi is a variable node and

has siblings (of smaller labels), its siblings are included in the Elimination Set. The root v1 is also

included in the Elimination Set. The following is an example of the algorithm.

93

Example 61. A Stopping Tree and its BFS tree are shown in Fig. 5.11 (a) and (b), respectively.

(Note that the node labels v1, v2, · · · , v17 in Fig. 5.11 (a) are not known a priori; instead, they are

obtained after we run BFS on the graph with v1 as its root.) Then algorithm then processes the

nodes in the reverse order of their labels. (Note that when it comes to a check node, no action is

taken.) It first comes to v17, and includes its sibling v16 in the Elimination Set. (See Fig. 5.11 (c).)

It then comes to v15, and includes its siblings v14 and v13 in the Elimination Set. (See Fig. 5.11 (d).)

It then comes to v12, and takes no action since v12 has no sibling. (See Fig. 5.11 (e).) It then comes

to v11, v10 and v9 sequentially and takes no action since they are check nodes. It then comes to v8,

and includes its sibling v7 in the Elimination Set. (See Fig. 5.11 (f).) It then comes to v6, v5, · · · ,

v2 sequentially and takes no action since they either have no sibling or are check nodes. Finally, it

comes to the root v1 and includes it in the Elimination Set. (See Fig. 5.11 (i).) The Elimination Set

returned by the algorithm is {v1, v7, v13, v14, v16}. �

We now show that the algorithm returns an optimal (i.e., minimum-sized) Elimination Set. We

suppose |V | ≥ 2. (The case of |V | = 1 is trivial.)

Lemma62. In GBFS , let B denote the set of sibling nodes of v|V |+|C|. (B could be empty.) Then

any Elimination Set for GBFS contains at least |B| nodes in B ∪ {v|V |+|C|}.

Proof. If B is an empty set, the conclusion is clearly true. So now assume B is not empty. Let c

be the parent of v|V |+|C| (and also all the nodes in B) in GBFS , which is a check node. Let w be

the parent of c, which is a variable node. We can see that c is adjacent to |B|+ 2 variable nodes in

total.

Since v|V |+|C| has the greatest label among all nodes, by the property of BFS, it has the greatest

distance to the root among all nodes; and so do its siblings. So all nodes in B ∪ {v|V |+|C|} are

leaves in GBFS .

We now prove the lemma by contradiction. If fewer than |B| nodes in B ∪ {v|V |+|C|} are

included in an Elimination Set, then at least two leaves inB∪{v|V |+|C|} – say vi and vj – are not in

the Elimination Set. Since c is the only check node adjacent to them, even if other nodes of the tree

94

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13v14v15 v16 v17

(a)

(b) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(c)

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(d) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(e)

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(f) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(g)

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(h) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(i)

Figure 5.11: Algorithm for SSE∞ on a Stopping Tree. (a) A Stopping Tree G = (V ∪ C, E). (b)
Its BFS (Breadth-First Search) tree GBFS . (c) Process v17. (d) Process v15. (e) Process v12. (f)
Process v8. (g) Process v6. (h) Process v5. (i) Process v1.

95

are all in the Elimination Set, vi and vj still cannot be decoded. And that contradicts the definition

of Elimination Set. So the conclusion is true.

For any non-root node v in GBFS , let π(v) denote its parent. Let

Gsub

denote the subtree of GBFS obtained this way: if we remove the subtree rooted at π(v|V |+|C|)

from GBFS , the remaining subgraph is Gsub. (For instance, in Fig. 5.11, we have v|V |+|C| = v17,

π(v17) = v11, and Gsub is the subtree in the dashed circle in Fig. 5.11 (c).)

Lemma63. Let S∗ be a minimum-sized Elimination Set of Gsub, and let B denote the set of sibling

nodes of v|V |+|C|. Then S∗ ∪B is a minimum-sized Elimination Set of GBFS .

Proof. Let us call an Elimination Set normalized if it includes all the nodes in B but does not

include v|V |+|C|. By Lemma 62, an Elimination Set ofGBFS contains either |B| or |B|+1 nodes of

B ∪ {v|V |+|C|}. If it is the latter case, by replacing {v|V |+|C|} by π(π(v|V |+|C|)) in the Elimination

Set (which makes all the variable nodes adjacent to π(v|V |+|C|) except v|V |+|C| included in the

Elimination Set), we can get another Elimination Set of no greater size. Therefore, there exists a

minimum-sized Elimination Set that is normalized.

Consider a normalized Elimination Set S̃ ⊆ V . Since B ⊆ S̃ and v|V |+|C| /∈ S̃, S̃ −B must be

an Elimination Set ofGsub. On the other hand, given an Elimination Set Ŝ ofGsub, Ŝ∪B must be a

normalized Elimination Set ofGBFS . (The BP decoding algorithm will first decode all the variable

nodes inGsub, then use the check node π(v|V |+|C|) to decode v|V |+|C|.) Since S∗ is a minimum-sized

Elimination Set of Gsub, S∗ ∪ B, as a normalized Elimination Set for GBFS , is minimum-sized.

Since there exists a minimum-sized Elimination Set that is normalized, S∗ ∪ B, as an Elimination

Set for GBFS (without the restriction of being normalized), is also minimum-sized.

Theorem64. Algorithm 60 returns an optimal (i.e., minimum-sized) Elimination Set of G = (V ∪

C,E).

96

Proof. By Lemma 63, the problem of finding an optimal Elimination Set for GBFS (which is the

same as G) can be reduced to the problem of finding an optimal Elimination Set for its subtree

Gsub. Algorithm 60 uses that technique repeatedly to reduce the problem to smaller and smaller

subtrees, until it comes to the final case where the subtree contains only the root node v1 (whose

optimal Elimination Set is simply {v1}). (In Fig. 5.11, such a sequence of shrinking subtrees are

shown in dashed circles from (c) to (h).) That leads to the conclusion.

Therefore Algorithm 60 is an exact algorithm for the SSE∞ Problem. Its time complexity is

O(|V |+ |C|).

5.6.3 Exact Algorithm for SSEk Problem with Stopping Tree

We now extend the previous analysis, and design an exact algorithm for the SSEk Problem of

linear time complexity.

The algorithm first runs BFS onG to get the treeGBFS that labels nodes by v1, v2, · · · , v|V |+|C|,

where v1 is the root. Then (similar to the algorithm for SSE∞), it processes the nodes in the reverse

order of their labels, and keeps reducing the SSEk Problem – actually, a more general form of the

SSEk Problem, which shall be called the gSSEk Problem – to smaller and smaller subtrees. Let

us now define this gSSEk Problem.

Definition 65 (gSSEk Problem). Let G = (V ∪ C,E) be a Stopping Graph. and let k be a

non-negative integer. Every variable node v ∈ V is associated with two parameters

δ(v) ∈ {1, 2, · · · , k,∞}

and

ω(v) ∈ {0, 1, · · · , k,∞}

satisfying the condition that either δ(v) = ∞ or ω(v) = ∞, but not both; and when the BP

decoder runs on G, v’s value can be recovered (namely, v can become a non-erasure) by the end

of the δ(v)-th iteration automatically (namely, without any help from neighboring check nodes).

97

Then, how to remove the minimum number of variable nodes from V such that for every remaining

variable node v with ω(v) ≤ k, it can be corrected by the BP decoder in no more than ω(v)

iterations? (By default, if ω(v) = 0, v has to be removed from V because the BP decoder starts

with the 1st iteration.)

A solution to the gSSEk Problem (namely, the set of removed nodes) is called a g-Elimination

Set. We see that if δ(v) =∞ and ω(v) = k for every v ∈ V , then the gSSEk Problem is identical

to the SSEk Problem.

In GBFS , let τ ∈ {1, 2, · · · , |V | + |C|} denote the minimum integer such that vτ either is a

sibling of v|V |+|C| or is v|V |+|C| itself. (So vτ , vτ+1, · · · , v|V |+|C| are siblings.) Define

P , {i | τ ≤ i ≤ |V |+ |C|, ω(vi) ≤ k}

and

Q , {i | τ ≤ i ≤ |V |+ |C|, δ(vi) ≤ k}.

Since ∀ v ∈ V , either δ(v) or ω(v) is ∞ but not both, P and Q form a partition of the set

{τ, τ + 1, · · · , |V |+ |C|}.

By convention, for the empty set ∅, we say maxi∈∅ δ(vi) = maxi∈∅ ω(vi) = 0. We first make

some observations.

Lemma66. Suppose maxi∈P ω(vi) > maxi∈Q δ(vi). Let i∗ be an integer in P such that ω(vi∗) =

maxi∈P ω(vi). Then there exists a minimum-sized g-Elimination Set for GBFS that includes the

nodes in {vi|i ∈ P , i 6= i∗} but not vi∗ .

Proof. Any g-Elimination Set for GBFS has to include at least |P| − 1 nodes in {vi|i ∈ P}

because otherwise the un-included nodes in {vi|i ∈ P} will never be corrected. It is an optimal

strategy to include the |P| − 1 nodes in {vi|i ∈ P , i 6= i∗} in the g-Elimination Set because their

ω(vi) values impose more restrictive requirements than ω(vi∗) does. Now let T be a g-Elimination

Set for GBFS that includes all the nodes in {vi|i ∈ P , i 6= i∗}. If vi∗ ∈ T , we can replace it

98

by π(π(v|V |+|C|)) in T and get another g-Elimination Set T ′ for GBFS , with |T ′| ≤ |T | (since

π(π(v|V |+|C|)) may already be in T). (Note that with T ′, since maxi∈P ω(vi) > maxi∈Q δ(vi), the

check node π(v|V |+|C|) can help correct vi∗ by iteration maxi∈Q δ(vi)+1 ≤ maxi∈P ω(vi) = ω(vi∗);

and since π(π(v|V |+|C|)) ∈ T ′, the BP decoding in Gsub becomes independent of the subtree rooted

at π(v|V |+|C|).) So there exists a minimum-sized g-Elimination Set for GBFS that includes the

nodes in {vi|i ∈ P , i 6= i∗} but not vi∗ .

Lemma67. Suppose maxi∈P ω(vi) ≤ maxi∈Q δ(vi). Then there exists a minimum-sized g-Elimination

Set for GBFS that contains all the nodes in {vi|i ∈ P}.

Proof. If P = ∅, the conclusion automatically holds. If P 6= ∅ and maxi∈P ω(vi) = 0, any

g-Elimination Set for GBFS has to include {vi|i ∈ P}, so the conclusion also holds.

Now consider the case where maxi∈P ω(vi) > 0. Let T be a minimum-sized g-Elimination Set

for GBFS . T has to include at least |P|− 1 nodes in {vi|i ∈ P} because otherwise the un-included

nodes in {vi|i ∈ P} cannot be corrected (using the check node π(v|V |+|C|)). If |T | = |P| − 1, the

let j ∈ P be an integer such that vj /∈ T . If T ∩ {vi|i ∈ Q} = ∅, then vj cannot be corrected

by iteration ω(vj) ≤ maxi∈P ω(vi) ≤ maxi∈Q δ(vi) because not all nodes in {vi|i ∈ Q} will be

corrected by iteration ω(vj)− 1, so this is an impossible case. So T ∩ {vi|i ∈ Q} 6= ∅. Let m ∈ Q

be an integer such that vm ∈ T ; then we can replace vm by vj in T and get another g-Elimination

Set T ′ for GBFS because vm helps decoding more than vj: vm can be corrected automatically.

Since |T ′| = |T | and {vi|i ∈ P} ⊆ T ′, the conclusion holds.

The next two lemmas show how to reduce the gSSE Problem from GBFS to its subtree

Gsub. In some cases, in the derived gSSE Problem for Gsub, the values of δ(π(π(v|V |+|C|))) and

ω(π(π(v|V |+|C|))) in Gsub may be different from their original values in GBFS; and in such cases,

to avoid confusion, we will denote the tree Gsub by Ĝsub.

Lemma68. Suppose maxi∈P ω(vi) ≤ maxi∈Q δ(vi). Consider five cases:

1. Case 1: If |Q| > 0 and maxi∈Q δ(vi) = k, let S be a minimum-sized g-Elimination Set for

Gsub.

99

2. Case 2: If |Q| > 0, maxi∈Q δ(vi) < k and δ(π(π(v|V |+|C|))) ≤ k, let S be a minimum-sized

g-Elimination Set for Ĝsub where δ(π(π(v|V |+|C|))) is changed to

min{δ(π(π(v|V |+|C|))),max
i∈Q

δ(vi) + 1}.

3. Case 3: If |Q| > 0 and ω(π(π(v|V |+|C|))) ≤ maxi∈Q δ(vi) < k, let S be a minimum-sized

g-Elimination Set for Gsub.

4. Case 4: If |Q| > 0 and maxi∈Q δ(vi) < ω(π(π(v|V |+|C|))) ≤ k, let S be a minimum-sized

g-Elimination Set for Ĝsub where δ(π(π(v|V |+|C|))) is changed to

max
i∈Q

δ(vi) + 1

and ω(π(π(v|V |+|C|))) is changed to

∞.

5. Case 5: If |Q| = 0, there are two sub-cases: (1) if ω(π(π(v|V |+|C|))) = 0, let S be

a minimum-sized g-Elimination Set for Gsub; (2) otherwise, let S be a minimum-sized g-

Elimination Set for Ĝsub where δ(π(π(v|V |+|C|))) is changed to 1 and ω(π(π(v|V |+|C|))) is

changed to∞.

Then S ∪ {vi|i ∈ P} is a minimum-sized g-Elimination Set for GBFS .

Proof. By Lemma 67, there exists a minimum-sized g-Elimination Set for GBFS that contains all

the nodes in {vi|i ∈ P}. Now consider only minimum-sized g-Elimination Sets for GBFS that

contain all the nodes in {vi|i ∈ P}. See the nodes in {vi|i ∈ P} as removed (because nodes in an

Elimination Set are removed before decoding begins); then to prove the conclusion, we just need

to prove this assertion: when P = ∅, S is a minimum-sized g-Elimination Set for GBFS .

For Case 1, since maxi∈Q δ(vi) = k, the subtree rooted at π(v|V |+|C|) cannot help correct the

node π(π(v|V |+|C|)) in the first k iterations. Every node v with ω(v) 6= ∞ is in Gsub and has

100

ω(v) ≤ k. So finding a minimum-sized g-Elimination Set for GBFS is equivalent to finding such

as set for Gsub. So the assertion holds.

For Case 2, if we compare Gsub and Ĝsub, we see that they differ only in their values of

δ(π(π(v|V |+|C|))). (For Ĝsub, that value is min{δ(π(π(v|V |+|C|))),maxi∈Q δ(vi) + 1}.) Now ob-

serve the check node π(v|V |+|C|) and its neighboring variable nodes: when BP decoder runs on

GBFS , all the nodes in {vi|i ∈ Q} can be corrected automatically by iteration maxi∈Q δ(vi) < k;

so by using the check node π(v|V |+|C|), the node π(π(v|V |+|C|)) can be corrected by iteration

maxi∈Q δ(vi) + 1 ≤ k. That is equivalent to turning δ(π(π(v|V |+|C|))) into

min{δ(π(π(v|V |+|C|))),max
i∈Q

δ(vi) + 1}

and turning Gsub into Ĝsub when it comes to BP decoding. That leads to the assertion.

For Case 3, the node π(π(v|V |+|C|)) needs to be corrected by iteration ω(π(π(v|V |+|C|))). But

since the nodes in {vi|i ∈ Q} will not all be corrected automatically until iteration maxi∈Q δ(vi),

and it takes one more iteration for the check node π(v|V |+|C|) to propagate information to node

π(π(v|V |+|C|)), they cannot help decode π(π(v|V |+|C|)). So forGsub, it makes no difference whether

the subtree rooted at π(v|V |+|C|) is there or not when it comes to BP decoding. That leads to the

assertion.

For Case 4, if we compare Gsub and Ĝsub, we see that they differ only in their values of

δ(π(π(v|V |+|C|))) and ω(π(π(v|V |+|C|))). Now observe the check node π(v|V |+|C|) and its neighbor-

ing variable nodes: when BP decoder runs on GBFS , all the nodes in {vi|i ∈ Q} can be corrected

automatically by iteration maxi∈Q δ(vi); so the check node π(v|V |+|C|) can help correct the node

π(π(v|V |+|C|)) by iteration maxi∈Q δ(vi) + 1 ≤ ω(π(π(v|V |+|C|))). That is equivalent to turning

δ(π(π(v|V |+|C|))) into maxi∈Q δ(vi)+1, turning ω(π(π(v|V |+|C|))) to∞ and turningGsub into Ĝsub

when it comes to BP decoding. That leads to the conclusion.

For Case 5, since Q = ∅, the check node π(v|V |+|C|) can help correct the node π(π(v|V |+|C|))

in the 1st iteration. With an analysis similar to the above ones, we see that the assertion holds for

101

both sub-cases.

Lemma69. Suppose maxi∈P ω(vi) > maxi∈Q δ(vi). Let i∗ be an integer in P such that ω(vi∗) =

maxi∈P ω(vi). Consider two cases:

1. Case 1: If maxi∈P ω(vi) > δ(π(π(v|V |+|C|))), let S be any minimum-sized g-Elimination Set

for Gsub.

2. Case 2: If maxi∈P ω(vi) ≤ δ(π(π(v|V |+|C|))), let S be any minimum-sized g-Elimination Set

for Ĝsub where δ(π(π(v|V |+|C|))) is changed to

∞

and ω(π(π(v|V |+|C|))) is changed to

min{ω(π(π(v|V |+|C|))),max
i∈P

ω(vi)− 1}.

Then S ∪ {vi|i ∈ P , i 6= i∗} is a minimum-sized g-Elimination Set for GBFS .

Proof. By Lemma 66, there exists a minimum-sized g-Elimination Set for GBFS that includes the

nodes in {vi|i ∈ P , i 6= i∗} but not vi∗ . Let T ∗ be such a minimum-sized g-Elimination Set for

GBFS .

For Case 1, when the g-Elimination Set for GBFS is T ∗, the subtree rooted at the check node

π(v|V |+|C|) cannot help correct the node π(π(v|V |+|C|)). Instead, those nodes of T ∗ that are in

Gsub will be a g-Elimination Set for Gsub, and the BP decoder will correct the un-removed nodes

in Gsub (within each of their required number of iterations ω(v)). If π(π(v|V |+|C|)) ∈ T ∗, the

check node π(v|V |+|C|) will correct vi∗ in the 1st iteration; otherwise, the BP decoder will correct

π(π(v|V |+|C|)) in at most δ(π(π(v|V |+|C|))) iterations, so π(v|V |+|C|) will correct vi∗ in at most

δ(π(π(v|V |+|C|))) + 1 ≤ ω(vi∗) iterations. Since T ∗’s size is minimized, the number of nodes of

T ∗ that are in Gsub is also minimized. That leads to the conclusion.

102

For Case 2, when the g-Elimination Set for GBFS is T ∗, the BP decoder needs to correct the

node π(π(v|V |+|C|)) by iteration maxi∈P ω(vi) − 1 < δ(π(π(v|V |+|C|))) because only then will

the check node π(v|V |+|C|) help correct the node vi∗ by iteration maxi∈P ω(vi) = ω(vi∗). That is

equivalent to turning ω(π(π(v|V |+|C|))) into min{ω(π(π(v|V |+|C|))),maxi∈P ω(vi) − 1}, turning

δ(π(π(v|V |+|C|))) into∞ and turning Gsub into Ĝsub when it comes to BP decoding. That leads to

the conclusion.

By using the above two lemmas repeatedly, we can reduce the gSSE Problem from GBFS

to smaller and smaller subtrees, until the subtree contains only the root node v1 (and v1 will be

included in the g-Elimination Set if and only if ω(v1) ≤ k at that moment). An algorithm based on

the above idea is presented below.

Algorithm70. Exact Algorithm for SSEk

Input: Stopping Tree G = (V ∪ C,E), integer k > 0.

Output: A k-iteration Elimination Set of minimum size in G.

Algorithm:

1. Generate GBFS by running BFS on G.

2. for i = 1 to |V |+ |C|

3. {

4. if vi ∈ V

5. δ(vi)←∞, ω(vi)← k.

6. }

7. Let S be an empty set.

8. i← |V |+ |C|.

9. while i ≥ 1

103

10. {

11. if i > 1 and vi ∈ V

12. {

13. Let τ be the minimum integer such that vτ either is a

sibling of vi or is vi itself.

14. P ← {y|τ ≤ y ≤ i, ω(vy) ≤ k}.

15. Q ← {y|τ ≤ y ≤ i, δ(vy) ≤ k}.

16. if maxj∈P ω(vj) ≤ maxj∈Q δ(vj)

17. {

18. if |Q| > 0, maxj∈Q δ(vj) < k and

δ(π(π(v|V |+|C|))) ≤ k

19. {

20. δ(π(π(v|V |+|C|)))←

min{δ(π(π(v|V |+|C|))),maxj∈Q δ(vj) + 1}.

21. }

22. else if |Q| > 0 and maxj∈Q δ(vj) <

ω(π(π(v|V |+|C|))) ≤ k

23. {

24. δ(π(π(v|V |+|C|)))← maxj∈Q δ(vj) + 1.

25. ω(π(π(v|V |+|C|)))←∞.

104

26. }

27. else if |Q| = 0 and ω(π(π(v|V |+|C|))) > 0

28. {

29. δ(π(π(v|V |+|C|)))← 1.

30. ω(π(π(v|V |+|C|)))←∞.

31. }

32. S ← S ∪ {vj|j ∈ P}

33. }

34. else

35. {

36. Let i∗ be an integer in P such that ω(vi∗) =

maxj∈P ω(vj).

37. if maxj∈P ω(vj) ≤ δ(π(π(v|V |+|C|)))

38. {

39. δ(π(π(v|V |+|C|)))←∞.

40. ω(π(π(v|V |+|C|)))←

min{ω(π(π(v|V |+|C|))),maxj∈P ω(vj)− 1}.

41. }

42. S ← S ∪ {vj|j ∈ P , j 6= i∗}.

43. }

105

44. i← τ − 1.

45. }

46. else if i = 1

47. {

48. if ω(v1) ≤ k

49. S ← S ∪ {v1}.

50. i = 0.

51. }

52. else

53. i← i− 1.

54. }

55. Return S.

Based on the previous analysis, we get the correctness of the algorithm.

Theorem71. Algorithm 70 returns an optimal (i.e., minimum-sized) k-iteration Elimination Set of

G = (V ∪ C,E).

The algorithm has time complexity O(|V |+ |C|).

106

6. DEEP LEARNING FOR REPRESENTATION-OBLIVIOUS ERROR CORRECTION

BY NATURAL REDUNDANCY 1

6.1 Introduction

The amount of data in storage systems is increasing at an accelerating speed in the big data era.

Storage systems have a strong need for substantially improving their error correction capabilities,

especially for long-term storage where the accumulating errors can exceed the decoding threshold

of error-correcting codes (ECCs) [135]. Memory scrubbing alone is not a sufficient solution: even

for nonvolatile memory systems such as SSDs (solid-state drives) that have fast read/write speeds,

scrubbing all data periodically is still too costly due to the volume of the data. Therefore it is highly

necessary to find new techniques to assist ECCs and substantially enhance their error correction

performance.

One promising technique is to use the internal redundancy in data for error correction, and

combine it with ECC’s decoding algorithm. This type of redundancy, called natural redundnacy,

has been explored in recent works [30, 112, 113, 114]. In practical storage systems, many files

are either uncompressed or compressed imperfectly, especially for languages and images because

their highly complex data models make perfect compression infeasible due to prohibitively high

computational complexities. The residual redundancy (i.e., natural redundancy) in data can then

be combined with the redundancy artificially added by ECCs (i.e., parity-check bits) for joint er-

ror correction. There is often plenty of natural redundancy in data. For instance, for the English

language, state-of-the-art compression algorithms (e.g., syllable-based Burrows-Wheeler Trans-

form) can compress it to 2 bits/character [124], which is still far from Shannon’s estimation of

1.34 bits/character as the entropy of printed English [8]. For images, their true entropy remains

unknown. But recent progress in deep learning, such as the inpainting techniques for completing

images [136], suggests that the natural redundancy in even compressed images is still substantial.

1 c©IEEE 2019. Reprinted, with permission, from P. Upadhyaya and A. A. Jiang, ”Representation-Oblivious Er-
ror Correction by Natural Redundancy," 2019 IEEE International Conference on Communications (ICC), Shanghai,
China, 2019

107

In [30, 114], natural redundancy has been used to help ECCs – including LDPC codes and polar

codes – correct errors and achieved significant performance improvement. Those works have ad-

dressed both languages and images, but mainly for texts in English compressed by Huffman codes

or fixed-codebook LZW codes [1].

In this work, we study how to use natural redundancy for error correction in a more practi-

cal setting. We consider noisy file segments from files of different types (e.g., HTML, LaTeX,

PDF and JPEG), and correct errors in them even when their bit error rates (BERs) have signif-

icantly exceeded the decoding threshold of the ECC. The scheme is representation-oblivious: it

requires no prior knowledge on how data are represented in those different file types, e.g., how

symbols/characters are mapped to bits, how/whether data are compressed, and how meta data are

used in those files. This approach makes the solution more convenient to use for storage systems.

It is different from the previous works (e.g., [1, 30]), where the data (e.g., texts) are compressed

by known compression algorithms (e.g., Huffman or LZW code) and without any additional data

formatting (e.g., meta data or file formats) that brings more complexity. (In those works, the code-

book of Huffman or LZW code is used for decoding. In this work we do not use any codebook.)

We take this representation-oblivious approach because in storage systems (such as SSDs), many

file types have proprietary compression algorithms or file formats that are often unrevealed to the

public, including to storage device manufacturers. Also, since error correction is a low-layer func-

tion in the storage architecture, the controllers of storage devices do not necessarily have access to

file systems to get information on file types, data formats or compression algorithms. By taking

the representation-oblivious approach, we can explore error correction schemes based on natural

redundancy that are more widely usable in storage systems.

The coding scheme of this paper is illustrated in Fig. 6.1. When files are stored, each file is

partitioned into segments of k bits, and each file segment is encoded by a systematic (n, k) ECC

into a codeword of n bits. Then each ECC codeword passes through a noisy channel, which models

the errors in a storage device. During decoding, first, a deep neural network (DNN) uses the k noisy

information bits to recognize the file type (e.g. HTML, LaTeX, PDF or JPEG) of the file segment.

108

Figure 6.1: Encoding and decoding scheme for a noisy file segment of an initially unknown file
type. The k-bit file segment is encoded by a systematic (n, k) ECC into an n-bit codeword. The
codeword is transmitted through a channel to get a noisy codeword. Two neural networks use
natural redundancy to decode the k noisy information bits: the first network determines the file
type of the file segment, and then a corresponding neural network for that file type performs soft
decoding for the k noisy information bits. The soft decoding result and the noisy codeword are
both given to the ECC decoder for further error correction.

Then, a second DNN for that file type performs soft decoding on the k noisy information bits

based on natural redundancy, and outputs k probabilities, where for i = 1, 2, · · · , k, the i-th output

is the probability for the i-th information bit to be 1. The k probabilities are given as additional

information to the ECC’s decoder. The ECC decoder then performs its decoding and outputs the

final result. (In our experiments, the ECC is a systematic LDPC code, and the k probabilities are

combined with the initial LLRs (log-likelihood ratios) for information bits to obtain their updated

LLRs. The LDPC code then runs its belief-propagation (BP) decoding algorithm.)

The above scheme can be extended to the case where the two decoders – the decoder based

on natural redundancy (NR decoder) and the ECC decoder – perform iterative decoding between

them. That is, each decoder’s output is given to the other decoder as input, and the decoding

process iterates between the two decoders. Iterative decoding of this type for the English language

compressed by known compression algorithms has been studied in [30, 113]. The scheme can also

be extended to the case where an ECC codeword may contain multiple file segments of multiple

file types. For simplicity, such extensions are not explored here.

109

This work has several contributions. First, it designs a deep neural network that recognizes file

types with high accuracy from noisy bits. For error correction, this DNN helps recognize the type

of natural redundancy in the noisy data.

Second, it designs deep neural networks for decoding data with natural redundancy, where

the data have errors from the binary-symmetric channel (BSC). The DNNs perform soft decoding

instead of hard-decision decoding, which can be more useful for ECCs such as LDPC codes. Since

the data used to train the DNNs do not contain soft decoding results, we design a new portfolio

theory-based approach to train the DNNs. The results show that the DNNs can learn soft decoding

with high accuracy, even though the training data are extremely sparse compared to possible data

patterns.

Third, the paper presents a scheme that combines the natural redundancy based decoding,

which applies deep learning to noisy file segments of different file types, with ECC decoding.

The experimental results confirm that the scheme substantially improves the reliability of different

types of files.

There have been numerous recent works on using deep learning for information theory [137,

138], especially for wireless and optical communications. They mainly focus on using deep

learning to model complex channels, design codes, and approximate or improve decoding algo-

rithms [139, 140]. In contrast to those works, this work focuses on using deep learning for data

with complex structures, and explore error correction for such complex data. These different di-

rections can complement each other in a communication or storage system with both complex data

and complex channels.

6.2 File Type Recognition Using Deep Learning

In this section, we present a Deep Neural Network (DNN) for file type recognition. The DNN

takes a noisy file segment of k bits, (y1, y2, · · · , yk), as input, and outputs one of T file types

(e.g., HTML, LaTeX, PDF or JPEG). The errors in the file segment come from a binary-symmetric

channel (BSC) of bit-error rate (BER) p. We first introduce the architecture of the DNN and

its training method. We then present the experimental results, which show that it achieves high

110

accuracy for file type recognition.

6.2.1 DNN Architecture and Training

Our DNN architecture is shown in Fig. 6.2. It is a Convolutional Neural Network (CNN) that

takes the k bits of a noisy file segment as input. In our experiments, we let k = 4095. (The LDPC

code we use is a (4376, 4095) code designed by MacKay [115], which can tolerate BER of 0.2%.

Both the code length and the BER are in the typical range of parameters for storage systems.)

The CNN has T outputs that correspond to the T possible file types, namely, the T classification

results. The output with the highest value leads to the selection of the corresponding file type. In

our experiments, we consider four file types: HTML, LaTeX, PDF and JPEG. So T = 4. Note that

HTML and LaTeX files are both text sequences but have different file structures; PDF files contain

both texts and images; and JPEG files are images. In the following, we will present DNNs and

experiments using those parameters for the convenience of presentation. Note that the designs can

be extended to other file-segment lengths and more file types.

In Fig. 6.2, there are L = 9 convolution layers {C1, C2, ...CL} where each layer Cd (for d =

1, 2, · · · , L) is followed by a max pooling layer Md. The last max pooling layer ML is followed by

a dense layer D. For d = 1, 2, · · · , L, let nd denote the number of feature maps of the convolution

layer Cd. (In Fig. 6.2, n1 = 32 and n2 = n3 = · · · = n9 = 64.) Those feature maps are obtained

by taking convolution on the output of the previous layer using nd filters of size ld = 3. In its

subsequent max pooling layer Md, pooling windows of size 2 are applied to each feature map of

Cd with a stride of two. Let Kd denote the length of each feature map (in the dimension of the

CNN’s input) of the layer Cd. Then K1 = k − ld + 1, and Kd = bKd−1

2
c − ld + 1 for 2 ≤ d ≤ L.

The CNN uses ReLU and sigmoid as the activation function of its convolutional layers and

output layer, respectively. It uses cross entropy as its loss function. (Let (z1, z2, z3, z4) ∈ {0, 1}4

denote the desired output; where zi = 1, if the correct file type is type i, and zj = 0 for any

j 6= i. Let (z′1, z
′
2, z
′
3, z
′
4) be the actual output of the network. Then cross entropy is defined

as −
T∑
i=1

zilogz
′
i.) Its optimizer is chosen to be an Ada Delta Optimizer, whose parameters are:

learning rate = 1.0, ρ = 0.95, ε = none and decay = 0. During training, each mini-batch has 100

111

Figure 6.2: Architecture of the CNN (convolutional neural network) for File Type Recognition.
Its input is a noisy file segment of 4095 bits, and its output corresponds to 4 candidate file types
(HTML, LaTex, PDF and JPEG). The numbers beside each layer (namely, 4095×1, 4093×32, · · · ,
4 × 1) are the dimension sizes of the layer’s output data. The numbers inside each layer (namely,
3× 1 or 2× 1) are the dimension sizes of the corresponding feature-map filter or pooling window.

training samples, where each training sample consists of a noisy file segment and its file-type label

(i.e., one of the T file types).

A large dataset has been used to train and test the CNN. For each of the T = 4 file types,

24,000 noiseless file segments are used for training data, 4,000 noiseless file segments are used

for validation data, and 4,800 noiseless file segments are used for test data. During training and

testing, random errors of BER p are added to each file segment, where each file segment uses an

independently generated error pattern.

6.2.2 Experimental Performance

The (4376, 4095) LDPC code used in our experiments can correct errors of BER up to 0.2% by

itself. (That is, when it is used in the conventional way without the extra help of natural redundancy,

it has a decoding threshold of 0.2%.) Our goal is to use the natural redundancy in file segments to

correct errors of substantially higher BERs. So we have selected the target BER pwith substantially

112

Bit Error Overall HTML JPEG PDF LaTeX
Rate Test Test Test Test Test
(BER) Accuracy Accuracy Accuracy Accuracy Accuracy
0.2% 99.61% 99.98% 99.52% 99.17% 99.77%
0.4% 99.69% 99.96% 99.60% 99.25% 99.96%
0.6% 99.60% 99.94% 99.48% 99.06% 99.90%
0.8% 99.69% 99.98% 99.50% 99.35% 99.92%
1.2% 99.66% 99.96% 99.23% 99.48% 99.96%
1.6% 99.58% 99.96% 99.60% 98.83% 99.92%

Table 6.1: Bit error rate (BER) vs Test Accuracy for File Type Recognition (FTR). Here the “over-
all test accuracy" is for all 4 types of files together. The last four columns show the test accuracy
for each individual type of files. (Their average value is the overall test accuracy.)

higher values, ranging from 0.2% to 1.6%. We then train the CNN with the given target BER p.

We measure the performance of the CNN by the accuracy of file type recognition (FTR), which

is defined as the fraction of file segments whose file types are recognized correctly. The CNN is

trained using the training and validation data. Its final performance is measured using the test data,

where file segments of the T = 4 file types are randomly mixed. The test performance is shown in

Table 6.1. It can be seen that file types can be recognized by the CNN with high accuracy: for all

BERs, the accuracy is close to 1.

We can also examine the accuracy for recognizing each file type, and see if there is variance

in performance from file type to file type. The results are shown in the last four columns of Table

6.1. It can be seen that overall, the accuracy is constantly high for all file types.

The CNN’s performance compares favorably with existing results on FTR, which has been

studied previously for applications such as disk recovery. The work [141] considered a classi-

fication method for a pair of file types using Fisher’s linear discriminant and longest common

subsequence methods. The accuracy ranges between 87% and 99% depending on which pair of

file types are considered. The work [142] introduced an NLP (natural language processing) based

method, where unigram and bigram counts of bytes and other statistics are used to generate fea-

ture representation, which is then followed by support vector machine (SVM) for classification of

113

various file types. The classification accuracy varies from 17.4% for JPEG files, 62.5% for PDF

files to 94.8% for HTML files. The work [143] used PCA (principal component analysis) and a

feed-forward auto-associative unsupervised neural network for feature extraction, and a three layer

multi-layer perceptron network for classification. The classification accuracy is 98.33% for six

file types while considering entire files instead of file segments. Our deep-learning based method

can be seen to achieve high performance, without the need to train separate modules for feature

extraction and classification.

The CNN has robust performance because it works well not only for the BER it is trained for,

but also for other BERs in the considered range. (For example, a CNN trained for BER = 1.2%

also works well for other BERs in the range [0.2%, 2.0%].) For succinctness we skip the details.

The robustness of the overall error correction performance for different BERs will be presented in

Section IV.

6.3 Soft Decoding by Deep Neural Networks

In this section, we study how to design DNNs that can perform soft decoding on noisy file

segments. For each of the T file types, we will design and train a different DNN, because different

types of files have different types of natural redundancy. Given a file type, we will design a DNN

whose input is a noisy file segment of k bits Y = (y1, y2, · · · , yk). As before, the errors in the noisy

file segment come from a binary-symmetric channel (BSC) of bit-error rate (BER) p. The output

of the DNN is a vector Q = (q1, q2, · · · , qk), where for i = 1, 2, · · · , k, the real-valued output

qi ∈ [0, 1] represents the DNN’s belief that for the i-th bit in the file segment, the probability that

its correct value should be 1 is qi. In other words, if we use X = (x1, x2, · · · , xk) to denote an

error-free file segment, and let it pass through a BSC of BER p to obtain a noisy file segment

Y = (y1, y2, · · · , yk), then qi is the DNN’s estimation for Pr{xi = 1 | Y, p}. Note that the k bits

are not independent of each other because of the natural redundancy in them. So Pr{xi = 1 | Y, p}

depends on not only yi and p, but also the overall value of Y . The goal of the DNN is to learn the

natural redundancy in file segments, and use it to make the probability estimation qi be as close to

the true probability Pr{xi = 1 | Y, p} as possible, for each i and for each possible value Y of the

114

noisy file segment.

We treat this problem as a regression problem. Note that since errors are random without an

upper bound to it’s Hamming weight, given a noisy codeword the corresponding correct codeword

is not unique in principle. So, the soft decoding result for each codeword bit should really be a

probability (instead of a 0-or-1 label). However, the training data only have binary codewords, so

only 0-or-1 labels are available for training.

In the following, we present a new approach based on portfolio theory that teaches a DNN

soft decoding. We first present the idea, and verify its performance for data with small samples

spaces. We then extend it to file segments, which have complex natural redundancy and a very

large sample space.

6.3.1 Portfolio Theory-based Soft Decoding

Consider a channel, whose input is a variable X ∈ {ai | 1 ≤ i ≤ K}, and whose output is a

single bit b ∈ {0, 1}. For i = 1, 2, · · · , K, let pi , Pr{b = 1 | X = ai} be the probability that the

channel’s output is 1 given that its input is ai. Consider a sequence of N such input-output pairs

of the channel

(X1, b1), (X2, b2), · · · , (XN , bN)

where for j = 1, 2, · · · , N , Xj and bj are the input and output of the channel, respectively, for the

j-th use of the channel. Now assume that we do not know the channel’s transition probabilities

p1, p2, · · · , pK . Instead, we have the sequence of N input-output pairs, and want to use them to

estimate those transition probabilities. (We would like to achieve this goal without counting how

many times the channel output is 1 for every given channel input value, because when this method

is applied to file segments later, the channel will haveK = 2k = 24095 possible input values, which

is too large for counting to work due to the sparsity of training data and the memory constraint.)

Now suppose that we have derived a policy, which estimates the probability Pr{b = 1 | X =

ai} as qi (when its true value should be pi). Consider the following game on horse race, which is

between two horses – a white horse and a black horse – and takes X as its environment parameter

115

(e.g., the wind speed, temperature, etc. at the race). Let pi (respectively, 1 − pi) denote the

probability that the white (respectively, black) horse wins when X = ai. We bet on a sequence of

N races. For j = 1, 2, · · · , N , for the j-th race, if its environment parameter X = ai (for some

i ∈ {1, 2, · · · , K}), we bet a fraction of qi of our money on the white horse, and bet the remaining

1 − qi of our money on the black horse. If the white (respectively, black) horse wins in that race

– which corresponds to the channel output b = 1 (respectively, b = 0) – the money we get is the

amount of money we bet on the white (respectively, black) horse times some constant c. Now let

us define a variable Sj for the j-th race: if the white horse wins, we let Sj = qi; otherwise, we let

Sj = 1− qi.

Suppose that we started with 1 dollar. After the N races, the money we have is cN
N∏
j=1

Sj .

Define the doubling rate as R =
log2(

N∏
j=1

Sj)

N
= 1

N

N∑
j=1

log(Sj).

Example 72. Let K = 4, and N = 5. Assume that we get the following sequence: (X1, b1) =

(a2, 0), (X2, b2) = (a1, 1), (X3, b3) = (a3, 1), (X4, b4) = (a3, 0), (X5, b5) = (a4, 0). Then the

doubling rate is R = 1
5
[log2(1− q2) + log2(q1) + log2(q3) + log2(1− q3) + log2(1− q4)].

By portfolio theory [144], when N →∞, the doubling rate R is maximized only if qi = pi for

i = 1, 2, · · · , K. Therefore, to learn the transition probabilities p1, p2, · · · , pK , we can design a

neural network (NN) that takes the sequence of N channel input-output pairs

(X1, b1), (X2, b2), · · · , (XN , bN)

as training data, and define the loss function of the NN as −R namely, the negative doubling rate.

(It is interesting to see that the loss function is in fact the cross entropy between the codeword bits

of the training data and the output probabilities here, which means the problem can also be treated

as a classification problem.) For j = 1, 2, · · · , N , each Xj is an input to the NN, and – assuming

Xj = ai for some i – the NN’s output is considered to be qi; and based on whether bj is 1 or 0,

an additive term of log2 qi or log2(1− qi) is included in the loss function. As the NN is trained, it

116

Figure 6.3: Neural networks for K = 2 (left) and K = 200 (right).

minimizes the loss function, which is equivalent to learning the correct transition probabilities and

maximizing the doubling rate R.

In practice, the NN needs to gradually train its weights as it gets more and more training data,

and N cannot be infinite. So we need to partition the channel input-output pairs into batches, and

let the NN use every batch to compute its loss functions and adjust its weights. To verify if the

NN can learn the true transition probabilities effectively using batches of small sizes, we use the

following experiments.

For K ≥ 2, we design a NN as follows. We take N = K × 50000 channel input-output

pairs in total. (Here we select each transition probability pi uniformly randomly from the range

(0, 1). Then, given p1, p2, · · · , pK , we generate the N channel input-output samples following

those transition probabilities.) Let the batch size be K × 50. Let the NN have three layers: an

input layer, a hidden layer, and an output layer. The input layer uses one-hot encoding for the K

possible values for X; so the size of the input layer is K × 1. The size of the hidden layer is set

to K × 1 and is fully connected to the input layer. The size of the output layer is 1 × 1 (namely,

just one number). (For illustration, the architectures of the NNs for K = 2 and K = 200 are

shown in Fig. 6.3.) After the NN is trained, for each input X = ai, it can output the corresponding

probability estimation qi (for i = 1, 2, · · · , K).

We measure the distance between the true channel transition probabilities and the NN’s esti-

mation by their average Kullback-Liebler (KL) divergence

∆K =
1

K

K∑
i=1

D(pi || qi),

117

K 2 4 10 100 200
∆K 0.000069 0.000022 0.00015 0.00023 0.00021

Table 6.2: Average KL Divergence between true and learned transition probabilities.

where D(pi || qi) = pilog2
pi
qi

+ (1 − pi)log2 1−pi1−qi . The average KL divergence for different values

of K are shown in Table 6.2. It can be seen that the KL divergence is very small, which means that

the NN has learned the true transition probabilities well.

6.3.2 Soft Decoding for Noisy File Segments

In the previous subsection, we have shown that the portfolio theory-based approach, which

sets the NN’s loss function as the negative doubling rate, works well for relatively simple channel

models. However, when we apply this approach to file segments, several challenges appear. First,

the output is no longer the probability for only one bit b; instead, it consists of k probabilities

q1, q2, · · · , qk for the k bits in the file segment. Our DNN needs to estimate them jointly using one

network architecture. Second, in the experiments of the last subsection, the K transition probabil-

ities p1, p2, · · · , pK are chosen independently and therefore have a simple structure; however, for

file segments, the natural redundancy can be very complex, which can make the channel’s tran-

sition probabilities be highly correlated and exhibit complex structures. Third, for file segments,

the DNN’s input can theoretically take K = 2k = 24095 possible values, which is a huge number

and makes the training data very sparse. So it is not simple to see whether the DNN can learn the

transition probabilities well given the sparsity of training data.

In this subsection, we design DNNs for the soft decoding of noisy file segments. Our DNN

architecture is related to auto-encoders. It consists of convolution layers followed by deconvolution

layers. (Deconvolution layers may be seen as reverse operations of convolution layers. Interested

readers can refer to [47] for more details.) Auto-encoders are good choices for various applications

related to denoising [145, 146].

We illustrate our DNN architecture through some examples. Let p be the BER of the binary-

symmetric channel that adds errors to file segments. Consider p = 0.8%, 1.2%, 1.6%. The DNN

118

architecture for HTML (respectively, LaTeX) files, for all the above values of p, is shown in Fig. 6.4

(a) (respectively, in Fig. 6.4 (b)). When p = 0.8%, the DNN architecture for both PDF and JPEG

files is shown in Fig. 6.4 (c). When p = 1.2%, 1.6%, the DNN architecture for PDF (respectively,

JPEG) files is shown in Fig. 6.4 (d) (respectively, in Fig. 6.4 (e).

Since the transition probabilities corresponding to file segments are unknown, we cannot mea-

sure the performance of the DNN directly using the KL divergence. However, the experiments for

error correction, which are to be presented in the next section, will confirm that the soft decoding

result from the DNN is very useful for error correction.

6.4 Error Correction for Noisy File Segments

In this section, we combine the soft decoding output of the DNN – which was presented in

the previous section – with an LDPC code for enhanced error correction performance. We adopt

a robust scheme here: the DNNs for file-type recognition and for soft decoding have been trained

with a constant BER pDNN , but they are used for a wide range of BERs p for the BSC channel.

(For example, the DNNs may be trained just for pDNN = 1.2%, but are used for any BER p

from 0.2% to 1.6% in experiments here.) We choose this robust scheme because when DNNs are

designed, the future BER in data can be highly unpredictable. That is exactly why errors may

exceed ECC’s thresholds for long-term storage, and why natural redundancy can become useful

for error correction.

Given a noisy systematic LDPC codeword, we first use a DNN to recognize its file type based

on its k noisy information bits. Then a second DNN for that file type is used to do soft decoding

for the k noisy information bits, and output k probabilities: for i = 1, 2, · · · , k, the i-th output

pi represents the estimated probability for the i-th information bit to be 1. Those k probabilities

can be readily turned into LLRs (log-likelihood ratios) for the information bits using the formula

LLRDNN
i = log(1−pi

pi
). For i = 1, 2, · · · , n, let LLRchannel

i be the LLR for the i-th codeword bit

(with 1 ≤ i ≤ k for information bits, and k + 1 ≤ i ≤ n for parity-check bits) derived for the

binary-symmetric channel, which is either log(1−p
p

) (if the received codeword bit is 0) or log(p
1−p)

119

(a) (b)

(c)
(d)

(e)

Figure 6.4: Architectures of deep neural networks (DNNs) for soft decoding of noisy file segments.
(a) DNN architecture for HTML files for p = 0.8%, 1.2%, 1.6%, (b) DNN architecture for LaTex
files for p = 0.8%, 1.2%, 1.6%, (c) DNN architecture for PDF and JPEG files when p = 0.8%, (d)
DNN architecture for PDF files when p = 1.2%, 1.6%, (e) DNN architecture for JPEG files when
p = 1.2%, 1.6%.

a)

b)

c)

d)

Figure 6.5: Decoding success rate vs bit error rate for (a) pDNN = 1.0% , (b) pDNN = 1.2%, (c)
pDNN = 1.4%, (d) pDNN = 1.6%.

120

(if the received codeword bit is 1). Then we let the initial LLR for the i-th codeword bit be

LLRint
i = LLRchannel

i + LLRDNN
i

for 1 ≤ i ≤ k, and LLRint
i = LLRchannel

i for k + 1 ≤ i ≤ n. We then do belief-propagation (BP)

decoding using the initial LLRs, and get the final result.

Note that there is a positive – although very small – chance that the file type will be recognized

incorrectly. In that case, the incorrect soft-decoding DNN will be used. And that is accounted for in

the overall decoding performance. We measure the performance of the error correction scheme by

the percentage of codewords that are decoded correctly, which we call Decoding Success Rate. (Let

us call the scheme the NR-LDPC decoder, since it combines decoding based on natural redundancy

and the LDPC code.) We focus on BERs that are beyond the decoding threshold of the LDPC code,

because natural redundancy becomes helpful in such cases. Note that the (4376, 4095) LDPC code

used in our experiments has a decoding threshold of BER = 0.2%. In our experiments, we focus

on BERs p that are not only beyond the decoding threshold, but also can be significantly larger:

p ∈ [0.2%, 1.6%].

The experimental results for pDNN = 1.0% is presented in Fig. 6.5 (a). Here the x-axis is

the channel error probability p, and the y-axis is the decoding success rate. (For each p, 1000

file segments with independent random error patterns have been used in experiments.) The curve

for “ldpc” is the performance of the LDPC decoder alone, and the curve for “nr-lpdc” is for the

NR-LDPC decoder. It can be seen that the NR-LDPC decoder achieves significantly higher per-

formance. For example, as p = 0.6%, the decoding success rate of the NR-LDPC decoder is

approximately 4 times as high as the LDPC decoder.

The figure also shows the performance for each of the 4 file types. (The 4 curves are labelled by

html, latex, pdf, jpeg, respectively. Their average value becomes the curve for “nr–ldpc”.) It shows

that the error correction performance for HTML and LaTex files are significantly better than for

PDF and JPEG files. It is probably because the former two mainly consist of languages, for which

121

the soft-decoding DNNs are better at finding their patterns and mining their natural redundancy,

while PDF is a mixture of languages and images and JPEG is image only. It is interesting to notice

that even for JPEG files, when p > 0.6%, the NR-LDPC decoder again performs better than the

LDPC decoder, which means the DNNs can extract natural redundancy from images, too. Fig. 6.5

(b) to Fig. 6.5 (d) show the performance for pDNN = 1.2%, 1.4% and 1.6%, respectively. The NR-

LDPC decoder performs equally well in those cases, which proves the value of natural redundancy

for decoding.

6.5 Conclusion

This section presents a new scheme that combines natural redundancy with LDPC codes for

error correction. It is applied to noisy file segments of initially unknown file types, – which is the

first of its kind to the best of our knowledge, — and shows substantial performance improvement

compared to the original LDPC decoding scheme. The study can be extended to more types of

natural redundancy in various types of files, more DNN architectures, and more ways to combine

the NR decoder and ECC decoder, such as through iterative decoding between the two. When

perfect error correction is not necessary (e.g., for images), non-binary LDPC codes and neural

networks can also be combined naturally[147]. Those remain as our future research directions.

122

7. EXTERNALLY CODED NEURAL NETWORKS

7.1 Introduction

Deep Learning, as an important tool in AI, has found many applications in computer vision,

speech recognition, robotics etc. This has led to increasing interest in the hardware implemen-

tion of Deep Neural Networks (DNNs) and embedded neuromorphic systems. Neural networks

in hardware enjoy advantages in faster speed, low power consumption and easy integration with

embedded systems [13, 148]. However, they suffer from noise that accumulates over time. A

typical DNN consists of millions or more weights, where every weight is usually a real number.

A natural approach is to store these real-valued weights as analog numbers in NVM cells. For

example, memristors have been shown to be suitable for implementing synaptic weights of neural

networks [149, 150]. Such an implementation can make the hardware highly compact. However,

it is known that NVM cells usually suffer from various types of noise [3, 22]. The accumulating

noise in NVM cells will make the DNN weights less accurate, and degrade the DNN’s perfor-

mance. Therefore, a better balance between the storage redundancy for weights and the overall

DNN performance needs to be achieved.

In this work, we explore a natural solution, which uses linear analog error correcting codes to

protect the analog weights. We start by exploring the performance of DNNs under different levels

of noise. We then study systematic linear analog codes. Linear analog codes map real or complex

valued source data to real or complex valued codewords. Our work is an extension of the study of

non-systematic linear analog codes in [151, 152], which analyzes the theoretical performance of

linear analog codes and derives lower bounds for minimum squared error (MSE) under maximum

likelihood (ML) decoding. We present a systematic linear code design, whose code rate is at

most 1/2. We then show that although the analog ECC does not fully correct noise, the DNN’s

performance can be improved substantially. Other alternative approaches are to use a systematic

non-linear analog code and digital error correcting codes for binarized neural networks for error

123

correction, which has also been explored in [33].

7.2 Deterioration of DNN Performance with Noise

In this section, we study the performance of DNNs when the real-valued weights are susceptible

to noise from the Additive White Gaussian Noise (AWGN) channel. In classification problems, the

perfomance of the DNN is measured by their accuracy, i.e. the fraction of outputs that they classify

correctly. We first explain the different datasets used in our experiments [47], and then show results

for the effect of noise on DNNs’ performance.

7.2.1 Datasets

We use the following datasets in our experiments :

1) MNIST: MNIST is a widely used dataset of 60000 images that has handwritten digits as

input and the actual digit as the label. We use a trained convolutional neural network (CNN) with

1.2 million weights for the MNIST dataset.

2) CIFAR-10: CIFAR-10 is a dataset used for classification of an image into one of the ten

classes (e.g. cats, dogs, airplanes etc.). We also use another trained CNN with around 1.2 million

weights for the CIFAR-10 dataset.

3) IMDB: IMDB is a collection of 50000 short (text) movie reviews, where each one is labeled

as positive or negative. We use a trained Long Short Term Memory (LSTM) network for the IMDB

dataset, which has around 2.7 million weights.

The above datasets and DNNs are representative of a large class of deep learning applications.

7.2.2 Results

When larger and larger AWGN noise is added to the weights of a DNN, its performance (i.e. the

classification accuracy for classification tasks) degrades. The experimental performance of DNNs

with noise is shown in Fig. 7.1, Fig. 7.2 and Fig. 7.3. In those figures, the accuracy of DNNs is

represented by the black curves (the other curves represent the performance of DNNs after error

correction, which will be discussed later). (In the figures, the x-axis is the signal to noise ratio

(SNR) in dB, defined as 10 log10
σs
σn

, where σs is the variance of the weights, and σn is the variance

124

Figure 7.1: Classification accuracy (fraction of correct classification) vs Signal to Noise Ratio
(SNR) in dB (high to low) for noisy weights (black lines) and weights corrected by linear analog
codes (green lines) for MNIST dataset.

Figure 7.2: Accuracy vs SNR in dB(high to low) for noisy weights (black lines) and weights
corrected by linear analog codes (green lines) for CIFAR-10 dataset.

Figure 7.3: Accuracy vs SNR in dB(high to low) for noisy weights (black lines) and weights
corrected by linear analog codes (green lines) for IMDB dataset.

125

of the noise. The y-axis is the classification accuracy)

It can be observed that when noise is quite small, DNNs have some natural tolerance for

noise (namely, their performance degrades gracefully). However, when the noise exceeds a certain

threshold the DNN’s performance starts to drop sharply until it converges to some known value.

7.3 Analog Codes for Noisy DNN

In typical DNNs, the weights are real (i.e. analog) numbers. Each analog code converts a

vector of analog symbols to a longer codeword for error correction. We use a systematic linear

analog code in our experiments. In such systematic codes, the information symbols are still stored

as before as network weights. The additional symbols (i.e. redundant symbols generated by the

analog code) are stored in additional NVM cells. The hardware system can use either hardware or

software to perform encoding and decoding.

7.3.1 Linear Analog Codes

In this subsection, we study an existing non-systematic linear analog code, and transform it

into systematic form. We first present a brief overview of linear analog codes explored in [151]. A

linear analog code converts a real vector of messages u ∈ RK×1 to codeword vector v ∈ RN×1,

by the following transformation

v = GTu

Each coordinate ui in u has mean 0 and variance Du. G is called a K ×N generator matrix. The

codeword v passes through a channel, characterized by the noise vector n ∈ RN×1, where each

i.i.d. coordinate ni ∼ N(0, σ2
n). The received signal is given by

r = v + n

The decoder takes the noisy message r to produce û, which is an estimate of u by the following

equation

û = Ar

126

where A is called the decoding matrix. For a ML decoder,

A = (GGT)−1G

G is designed to ensure that the energy per information symbol of the signal v is Eb. Also, for an

ML decoder A, the optimal G to reduce the mean squared error is given by

GGT = diag{Eb
Du

,
Eb
Du

,,
Eb
Du

}

G can be formed by deleting (N −K) rows of an orthogonal matrix, and scaling it appropriately

by a factor
√

Eb
Du

.

We now transform the non-systematic analog code to a systematic form. Let us assume we

have a vector w of K weights in a DNN, where weights wi come from some distribution with

mean µ and variance Du. We first convert the vector w to the message vector u where

ui = wi − µ

for 1 ≤ i ≤ K. To obtain a systematic code, we would like G to be of the form (IK | P) where P

is a K ×N −K matrix and IK is a (K ×K) identity matrix. The matrix P can be constructed as

follows. P can be constructed by by deleting K rows of an (N −K ×N −K) orthogonal matrix,

and scaling it appropriately by a factor
√

Eb
Du
− 1, for K ≤ N −K and Eb ≥ Du. The following

theorem can be proved:

Theorem73. A matrix G = (IK | P) constructed above satisfies the condition

GGT = diag{Eb
Du

,
Eb
Du

,,
Eb
Du

}

Proof.

GGT = (IK | P)(IK | P)T

127

= (IK | P)(
IK
PT

) = IK + PPT = IK + (
Eb
Du

− 1)IK =
Eb
Du

IK

The matrix G in the above theorem can be used as a generating matrix to construct a systematic

analog code. The matrix G satisfies the constraints on equation (13) of [151]. Consequently, it

satisfies the optimality condition as well as the bound on performance in that paper.

7.3.2 Experimental Performance of Linear Analog Codes in DNNs

In this subsection, we show how analog codes can substantially improve the performance of

DNNs. We measure the performance of these networks in terms of the classification accuracy.

The x-axis denotes the signal to noise ratio (SNR) in dB, defined as 10 log10
σs
σn

, where σs is the

variance of the codeword signal, and σn is the variance of the noise. The y-axis is the classification

accuracy.

We first show the improvement in performance of different networks when when the weights

are protected by linear analog codes. The experimental results are shown in Fig. 7.1, Fig. 7.2 and

Fig. 7.3 as green curves. It can be seen that when SNR is high (namely, when noise is low) the

accuracy of the networks degrades slowly, which implies that they have some inherent tolerance

to noise. However, as the noise level exceeds a certain level, the accuracy of the networks begin

to degrade substantially. Error correcting codes can be used to improve the overall performance

effectively in this region. It can be seen from the figures that the linear analog codes used here (of

rate 1/2) can improve the performance of the DNNs up to 5 dB (e.g. CNN for IMDB).

7.4 Conclusion

This section studies the performance of DNNs under noise. Systematic linear analog error

correction codes are used to protect the analog weights of DNNs and improve the overall perfor-

mance. The results in the paper can be deepened by exploring algorithms for optimal rate allocation

of ECCs, the fundamental trade-off between a DNN’s performance and the extra redundancy added

to protect it, as well as the implementation of the schemes in hardware systems.

128

8. INTERNALLY CODED NEURAL NETWORKS

8.1 Introduction

Deep Neural Networks (DNNs) have become a dominating force in Artificial Intelligence (AI),

bringing revolutions in science and technology. A massive amount of academic and industrial

research is being devoted to implementing DNNs in hardware [12]. Hardware-implemented DNNs

are appearing in phones, sensors, healthcare devices, and more, which will revolutionize every

sector of society [20], and make AI systems increasingly energy-efficient and ubiquitous.

In parallel, DNNs are known to be highly susceptible to adversarial interventions. In a recent

line of works which followed [153], it was shown that by adding a small (and often indistinguish-

able to humans) amount of noise to the inputs of a DNN, one can cause it to reach nonsensical

conclusions. More recently, it was shown [154] that in some DNN architectures one can attain

similar effects by changing as little as one or two entries of the input. This reveals an orthogo-

nal concern of a similar nature from the adversarial machine learning perspective: performance

degradation due to malicious attacks.

There exists a rich body of research which studies how to make DNNs robust to noise. This

includes noise that is injected into the neurons/synapses, or into the inputs. Even though compu-

tation under noise has been studied since the 1950’s [155], solutions have been almost exclusively

heuristic.

To combat adversarial attacks to the inputs, much focus was given on adjusting the training

process to produce more robust DNNs, e.g., by adjusting the regularization expression [156], or

the loss function [157]. These approaches usually involve intractable optimization problems, and

succeed insofar as the underlying optimization succeeds.

Combating noise in neurons/synapses has also enjoyed a recent surge of interest [158], which

builds upon the previous wave of interest in DNNs in the early 1990’s [159]. Most of this line of

research focuses on replication methods (called augmentation), retraining, and providing statistical

129

frameworks for testing fault tolerance of DNNs (e.g., training a DNN to remember a coded version

of all possible outputs [160]). It is also worth mentioning that to a certain degree, DNNs tend to

present some natural fault-tolerance without any intervention. This phenomenon is conjectured to

be connected to over-provisioning [161], i.e., the fact that in most cases one uses more neurons

than necessary, but rigorous guarantees remain elusive.

In this work, we present a new scheme for robust DNNs called Coded Deep Neural Network

(CodNN). It transforms the internal structure of DNNs by adding redundant neurons and edges to

increase its reliability. The added redundancy can be seen as a new type of error-correcting codes

customized for machine learning.

8.2 Construction of Coded Neural Networks

Consider a DNN, which usually has many layers of neurons. Consider two groups of neu-

rons in two adjacent layers, as shown in Fig. 8.1a. The outputs of the n neurons in the (` − 1)-

th layer v`−1,1, v`−1,2, · · · , v`−1,n are transmitted via the edges to the k neurons in the `-th layer

v`,1, v`,2, · · · , v`,k (multiplied by the edge weights in the process), where they are summed and

passed through activation function σ(·) to become the k outputs.

When errors/erasures appear in the edge weights (e.g., because of errors/erasures in the mem-

ory cells that store the weights, or due to circuit faults), the values passed to the k neurons

v`,1, v`,2, · · · , v`,k will be erroneous and their k outputs can be wrong. To make the DNN more

fault tolerant, we transform the architecture to a new form, as shown in Fig. 8.1b, where a new

middle layer is added. The middle layer has m neurons, whose m outputs are a coded version of

the n inputs from the previous layer. One important way to use this new architecture is to make the

m outputs a codeword of the n inputs with redundancy for fault tolerance; then the m outputs are

transmitted to the next layer of k neurons.

The fault-tolerance performance of the architecture in Fig. 8.1a and 8.1b can be defined as

follows. Assume that the k neurons v`,1, v`,2, · · · , v`,k perform a classification task, and each of

their outputs z1, z2, · · · , zk takes its value in the set {−1, 1}. Let X denote the set of values that

the inputs x = (x1, x2, · · · , xn) can take with positive probability (the definitions here can be

130

x1

x2

xn

z1

z2

zk

σ

σ

σ

Layer
`− 1

W

Layer
`

v`−1,1

v`−1,2

v`−1,n

v`,1

v`,2

v`,k

(a)

x1

x2

xn

y1

y2

ym

z1

z2

zk

σ

σ

σ

Layer
`− 1

Coded Layer
`− 1

(Middle Layer) Layer
`

v`−1,1

v`−1,2

v`−1,n

c`−1,1

c`−1,2

c`−1,m

v`,1

v`,2

v`,k

(b)

(c) (d)

Figure 8.1: (a)-(b) An illustration of the Coded Deep Neural Network (CodNN) scheme, where
(a) shows neurons in two adjacent layers, and (b) shows a CodNN scheme that adds a new middle
layer (which is a coded version of its previous layer). (c)-(d) Improvement in average accuracy
and worst-case accuracy by using CodNN schemes. Here the input layer has n = 10 neurons, the
middle layer has m = 20 neurons, and the output layer has k neurons (for k = 8, 10, 20). The
solid curves (denoted by “coded") are for CodNN, and the dashed curves (denoted by “uncoded")
are for the original neural network component.

extended from discrete cases to continuous cases).

Let E denote the set of error patterns for the edge weights. Let f(x) denote the correct outputs

of the neurons vl,1, · · · , v`,k when the edge weights have no errors; and let f̄(x, e) denote their

outputs when the edge weights have the error pattern e ∈ E . Let 1(a, b) be the indicator function,

which equals 1 if a = b and 0 otherwise. We define two metrics for fault-tolerance performance as

follows:

131

(1) Define the average accuracy as

Ex∈X ,e∈E
[
1(f(x), f̄(x, e))

]
,

where E(·) denotes the expectation of a random variable.

(2) Define the worst-case accuracy as

min
e∈E

{
Ex∈X

[
1(f(x), f̄(x, e))

]}
.

We present designs and analysis for CodNN next.

8.3 Coded Neural Network Construction By Analog Codes

In this section, we present a construction for CodNN based on analog error-correcting codes [136].

Let W = (wij)n×k be the weight matrix for Fig. 8.1a, whose elements are the n × k edge

weights. Let G = (gij)n×m be a matrix constructed as follows: from a randomized m × m

orthogonal matrix, delete any m − n rows, then multiply the matrix by a scaling factor
√

2.

Let A = (aij)n×m = (GGT)−1G. Then, in the fault-tolerant architecture in Fig. 8.1b, we

let (y1, y2, · · · , ym) = (x1, x2, · · · , xn)G, and let (z1, z2, · · · , zk) = σ((y1, y2, · · · , ym)ATW),

where σ(·) is the activation function.

The coded layer (y1, y2, · · · , ym) is an analog error correcting code of (x1, x2, · · · , xn), which

contains redundancy and can help correct errors/erasures. As an important case, consider erasures

for edge weights, which can be caused by stuck-at errors in memories, by circuit disconnections

or signal delay, etc. An edge-weight erasure can be seen as changing the edge weight to 0, thus

removing the edge from computation.

Let the error model be i.i.d. edge-weight erasures, with erasure probability p ∈ [0, 1]. Let the

activation functions of the k output neurons be sign(·). We study how the accuracies of the network

in Fig. 8.1a and 8.1b change with the erasure probability p. Assume that the n inputs x1, x2, · · · , xn

132

are real values with a uniform distribution in the range [−1, 1]. The results (based on extensive

experiments) are shown in Fig. 8.1c and 8.1d . It can be seen that for a wide range of p, for

both average and worst-case accuracies, the CodNN construction outperforms the original neural

network significantly.

8.4 Related Work

In addition to these results, work by Raviv et al. [34] has looked into this problem in a more

fundamental way for binarized inputs and real-valued weights. In this work, a tight connection

between `1 metric and binary classification is studied. This paper also explores solutions based on

Fourier analysis and replication. The most interesting result is the proof that a well-known parity

code can guarantee successful classification under noise. These results are applicable to a large

family of DNNs. The work in this section and the above paper are an extension of works on coded

computation (typically with applications to distribution systems) to neural computation.

8.5 Conclusion

In this section, we studied a novel approach for combating noise in DNNs with error correcting

codes using analog error correction codes, and shown that coding can improve both the average

and worst case performance. In addition to the fundamental work as shown in the paper [34],

extension of those results to more generic activation functions, and construction of coded neural

networks using finite frame theory need to be studied more deeply.

133

9. CONCLUSION AND FUTURE WORK

This dissertation looks at some practical applications in the area of error correction for data

storage and uses ideas at the intersection of information theory and machine learning to suggest

effective solutions. Machine learning techniques, which can supplement existing techniques that

use error-correcting codes, have been used for enhanced error correction. On the other hand, we

use ideas from information theory and error-correcting codes to design robust neural networks,

which perform reliable computation in the presence of noise.

A lot of other interesting areas exist at the intersection of machine learning and information

theory. Existing results, including our own, seem like the tip of the iceberg. In the future, some

interesting problems in the broader intersection of machine learning and information theory are

discussed below :

• Robust Neural Network Design: Hardware implementation of neural networks is a key re-

search area. However, hardware systems inevitably suffer from reliability issues. The de-

vices which store weights and activations of neural networks are susceptible to various kinds

of noise and faults. In addition, there might be adversarial attacks, in which minor pertur-

bations on the input or the model of neural networks make them yield absurd results. These

attacks have been studied extensively, but there is still a need to understand these phenom-

ena theoretically and come up with better strategies to mitigate such adversarial noise. For

example, different weights of a neural network have a disproportionate effect on its per-

formance [162]. Ideas from information theory can be useful in studying this asymmetric

behavior and use it to design more robust neural networks. Furthermore, areas such as robust

training of neural networks also require further research.

• Optimal Neural Network Design:One useful follow-up to designing robust neural networks

would be to design networks and training algorithms which satisfy multiple constraints such

as robustness to random and adversarial noise, reduced storage space, the ability to learn

134

new tasks in the future, etc without significant reduction in performance. These methods

are similar in the sense that information-theoretic methods can be used to find the asym-

metric importance of various weights with respect to different optimization goals, and the

neural network design can be optimized accordingly. For example, model compression and

robustness are can be seen as complementary approaches. Model compression might lead

to smaller DNN models, but such networks are also less tolerant of noise as compared to

over-provisioned networks. Therefore, there is a need to protect the most important weights

while doing away with less-important weights. Thus, after compression, some redundancy

has to be added in a systematic manner to improve the performance of DNNs in the presence

of noise.

• Learning from Small Data: One disadvantage of deep neural networks is that they usually

require large amounts of data to train. However, in many critical applications, such data is

not available. In areas such as healthcare, there are a lot of records that might not be volu-

minous but carry very useful information. Many useful problems in day-to-day life can be

learned using less number of data samples. It also helps in cases where the neural network

is not expected to have critically high levels of precision. Moreover, in many applications,

generating labels might not be easy, or labels might be missing. Ideas such as few-shot (in-

cluding one-shot and zero-shot) learning, representation learning, etc. have been proposed.

However, there is a need to look into this problem with an information-theoretic lens. Novel

methods, which look into the derivation of approximate sufficient statistics from data, can

be explored.

135

REFERENCES

[1] A. Jiang, Y. Li, and J. Bruck, “Error correction through language processing,” in Proc. IEEE

Information Theory Workshop (ITW), 2015.

[2] K. Fukuda, Y. Shimizu, K. Amemiya, M. Kamoshida, and C. Hu, “Random telegraph noise

in flash memories-model and technology scaling,” in Proc. IEEE International Electron

Devices Meeting, pp. 169–172, IEEE, 2007.

[3] Q. Li, A. Jiang, and E. F. Haratsch, “Noise modeling and capacity analysis for NAND flash

memories,” in Proc. IEEE International Symposium on Information Theory (ISIT), 2014.

[4] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mossé, “Increasing

PCM main memory lifetime,” in Proc. Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 914–919, IEEE, 2010.

[5] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” in Proc. IEEE International

Symposium on Information Theory, pp. 1741–1745, IEEE, 2008.

[6] A. Jiang and J. Bruck, “Information representation and coding for flash memories,” in

Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Process-

ing, pp. 920–925, IEEE, 2009.

[7] S. Vembu, S. Verdu, and Y. Steinberg, “The source-channel separation theorem revisited,”

IEEE Transactions on Information Theory, vol. 41, no. 1, pp. 44–54, 1995.

[8] C. E. Shannon, “Prediction and entropy of printed English,” Bell System Technical Journal,

vol. 30, no. 1, pp. 50–64, 1951.

[9] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional networks for

content-weighted image compression,” in Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3214–3223, 2018.

[10] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer, “Semantic perceptual image

compression using deep convolution networks,” in Proc. Data Compression Conference

(DCC), pp. 250–259, IEEE, 2017.

136

[11] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A hardware accelerator for

combinatorial optimization and deep learning,” in Proc. IEEE International Symposium on

High Performance Computer Architecture (HPCA), pp. 1–13, IEEE, 2016.

[12] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie, and H. Yang, “Software-hardware codesign for

efficient neural network acceleration,” IEEE Micro, vol. 37, no. 2, pp. 18–25, 2017.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding,” in Proc. International Conference

on Learning Representations, 2016.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 MB model size,”

arXiv preprint arXiv:1602.07360, 2016.

[15] Y. Lin and J. R. Cavallaro, “Energy-efficient convolutional neural networks via statistical

error compensated near threshold computing,” in Proc. IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2018.

[16] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural networks via random

self-ensemble,” in Proc. European Conference on Computer Vision (ECCV), pp. 369–385,

2018.

[17] Y. Wang, J. Shen, T.-K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang, and Y. Lin, “Dual dy-

namic inference: Enabling more efficient, adaptive and controllable deep inference,” arXiv

preprint arXiv:1907.04523, 2019.

[18] Y. Zhang, X. Wang, and E. G. Friedman, “Memristor-based circuit design for multilayer

neural networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,

no. 2, pp. 677–686, 2017.

[19] M. Chincoli and A. Liotta, “Self-learning power control in wireless sensor networks,” Sen-

sors, vol. 18, no. 2, p. 375, 2018.

[20] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learning for IoT big data

and streaming analytics: A survey,” IEEE Communications Surveys & Tutorials, vol. 20,

137

no. 4, pp. 2923–2960, 2018.

[21] B. Feinberg, S. Wang, and E. Ipek, “Making memristive neural network accelerators reli-

able,” in Proc. IEEE International Symposium on High Performance Computer Architecture

(HPCA), pp. 52–65, IEEE, 2018.

[22] P. S. Georgiou, I. Köymen, and E. M. Drakakis, “Noise properties of ideal memristors,”

in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1146–1149,

IEEE, 2015.

[23] P. Pouyan, E. Amat, and A. Rubio, “Reliability challenges in design of memristive memo-

ries,” in Proc. 5th European Workshop on CMOS Variability (VARI), pp. 1–6, IEEE, 2014.

[24] I. Vourkas, D. Stathis, G. C. Sirakoulis, and S. Hamdioui, “Alternative architectures toward

reliable memristive crossbar memories,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 24, no. 1, pp. 206–217, 2015.

[25] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints in memristor crossbar

arrays,” in Proc. IEEE International Symposium on Information Theory, pp. 156–160, IEEE,

2013.

[26] M. Stanisavljevic, A. Athmanathan, N. Papandreou, H. Pozidis, and E. Eleftheriou, “Phase-

change memory: Feasibility of reliable multilevel-cell storage and retention at elevated tem-

peratures,” in Proc. IEEE International Reliability Physics Symposium, pp. 5B–6, IEEE,

2015.

[27] D. B. Strukov and R. S. Williams, “Exponential ionic drift: fast switching and low volatility

ofáthin-film memristors,” Applied Physics A, vol. 94, no. 3, pp. 515–519, 2009.

[28] A. Jiang, P. Upadhyaya, E. F. Haratsch, and J. Bruck, “Error correction by natural redun-

dancy for long term storage,” in Proc. Non-Volatile Memories Workshop (NVMW), 2017.

[29] A. Jiang, P. Upadhyaya, E. F. Haratsch, and J. Bruck, “Correcting errors by natural re-

dundancy,” in Proc. Information Theory and Applications Workshop (ITA), pp. 1–8, IEEE,

2017.

[30] P. Upadhyaya and A. Jiang, “On LDPC decoding with natural redundancy,” in Proc. 55th

138

Allerton Conference on Communication, Control and Computing, pp. 680–687, 2017.

[31] A. A. Jiang, P. Upadhyaya, Y. Wang, K. R. Narayanan, H. Zhou, J. Sima, and J. Bruck,

“Stopping set elimination for LDPC codes,” in Proc. 55th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pp. 700–707, IEEE, 2017.

[32] P. Upadhyaya and A. A. Jiang, “Representation-oblivious error correction by natural redun-

dancy,” in Proc. IEEE International Conference on Communications (ICC), pp. 1–7, IEEE,

2019.

[33] P. Upadhyaya, X. Yu, J. Mink, J. Cordero, P. Parmar, and A. Jiang, “Error correction for

noisy neural networks,” in Proc. Information Theory and Applications Workshop (ITA),

2019.

[34] N. Raviv, S. Jain, P. Upadhyaya, J. Bruck, and A. A. Jiang, “Codnn–robust neural networks

from coded classification,” in Proc. International Symposium on Information Theory (ISIT),

IEEE, 2020.

[35] N. Raviv, P. Upadhyaya, S. Jain, J. Bruck, and A. A. Jiang, “Coded deep neural networks

for robust neural computation,” in Proc. Non Volatile Memories Workshop (NVMW), 2020.

[36] D. MacKay, Information theory, Inference and Learning Algorithms. Cambridge University

Press, Cambridge, UK, 2003.

[37] C. E. Shannon, “Xxii. programming a computer for playing chess,” The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 314, pp. 256–275,

1950.

[38] N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine.

MIT press, Cambridge, MA, USA, 1948.

[39] J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials over

the binary n-cube,” IEEE Transactions on Information Theory, vol. 35, no. 5, pp. 976–987,

1989.

[40] J. Bruck and J. W. Goodman, “A generalized convergence theorem for neural networks,”

IEEE Transactions on Information Theory, vol. 34, no. 5, pp. 1089–1092, 1988.

139

[41] S. S. Venkatesh and D. Psaltis, “Linear and logarithmic capacities in associative neural

networks,” IEEE Transactions on Information Theory, vol. 35, no. 3, pp. 558–568, 1989.

[42] M. Bichsel and P. Seitz, “Minimum class entropy: A maximum information approach to

layered networks,” Neural Networks, vol. 2, no. 2, pp. 133–141, 1989.

[43] N. Murata, S. Yoshizawa, and S. I. Amari, “Network information criterion-determining the

number of hidden units for an artificial neural network model,” IEEE Transactions on Neural

Networks, vol. 5, no. 6, pp. 865–872, 1994.

[44] I. Kanter, “Information theory of a multilayer neural network with discrete weights,” EPL

(Europhysics Letters), vol. 17, no. 2, p. 181, 1992.

[45] A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nature Neuro-

science, vol. 2, no. 11, pp. 947–957, 1999.

[46] A. G. Hoffmann, “General limitations on machine learning.,” in Proc. European Conference

on Artificial Intelligence (ECAI), pp. 345–347, 1990.

[47] F. Chollet, Deep Learning with Python. Manning Publications Co, Shelter Island, NY, USA,

2017.

[48] P. A. Estevez, M. Tesmer, C. A. Perez, and J. M. Zurada, “Normalized mutual information

feature selection,” IEEE Transactions on Neural Networks, vol. 20, no. 2, pp. 189–201,

2009.

[49] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908, 2016.

[50] W. Xu, X. Tan, Y. Lin, X. You, C. Zhang, and Y. Be’ery, “On the efficient design of neu-

ral networks in communication systems,” in Proc. 53rd Asilomar Conference on Signals,

Systems, and Computers, pp. 522–526, IEEE, 2019.

[51] S. Zheng, S. Chen, and X. Yang, “Deepreceiver: A deep learning-based intelligent receiver

for wireless communications in the physical layer,” arXiv preprint arXiv:2003.14124, 2020.

[52] M. van Lier, A. Balatsoukas-Stimming, H. Corporaaal, and Z. Zivkovic, “Optcom-

net: Optimized neural networks for low-complexity channel estimation,” arXiv preprint

arXiv:2002.10493, 2020.

140

[53] S. Park, O. Simeone, and J. Kang, “End-to-end fast training of communication links without

a channel model via online meta-learning,” arXiv preprint arXiv:2003.01479, 2020.

[54] S. Dörner, M. Henninger, S. Cammerer, and S. t. Brink, “WGAN-based autoencoder training

over-the-air,” arXiv preprint arXiv:2003.02744, 2020.

[55] C. T. Leung, R. V. Bhat, and M. Motani, “Low-latency neural decoders for linear and non-

linear block codes,” in Proc. IEEE Global Communications Conference (GLOBECOM),

pp. 1–6, IEEE, 2019.

[56] W. Zhang, S. Zhou, and Y. Liu, “Iterative soft decoding of reed-solomon codes based on

deep learning,” IEEE Communications Letters (Early Access), pp. 1–1, 2020.

[57] Y. Wei, M.-M. Zhao, M.-J. Zhao, and M. Lei, “ADMM-based decoder for binary linear

codes aided by deep learning,” IEEE Communications Letters, 2020.

[58] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet iterative decoders of

ldpc codes via recurrent quantized neural networks,” IEEE Transactions on Communica-

tions, 2020.

[59] L. Li, G. Yu, J. Xu, and L. Li, “Channel decoding based on complex-valued convolutional

neural networks,” in Proc. 2nd 6G Wireless Summit (6G SUMMIT), pp. 1–5, IEEE, 2020.

[60] M. Lian, F. Carpi, C. Häger, and H. D. Pfister, “Reinforcement learning for channel coding,”

in Proc. International Zurich Seminar on Information and Communication (IZS), p. 89, ETH

Zurich, 2020.

[61] A. Dhok and S. Bhole, “ATRNN: Using seq2seq approach for decoding polar codes,” in

Proc. International Conference on COMmunication Systems & NETworkS (COMSNETS),

pp. 662–665, IEEE, 2020.

[62] Y. Qin and F. Liu, “Convolutional neural network-based polar decoding,” in Proc. 2nd World

Symposium on Communication Engineering (WSCE), pp. 189–194, IEEE, 2019.

[63] M. Benammar and P. Piantanida, “On robust deep neural decoders,” in Proc. 53rd Asilomar

Conference on Signals, Systems, and Computers, pp. 527–531, IEEE, 2019.

[64] C. Teng and Y. Chen, “Syndrome enabled unsupervised learning for neural network based

141

polar decoder and jointly optimized blind equalizer,” Journal on Emerging and Selected

Topics in Circuits and Systems, pp. 1–1, 2020.

[65] H. Lee, E. Y. Seo, H. Ju, and S.-H. Kim, “On training neural network decoders of rate

compatible polar codes via transfer learning,” Entropy, vol. 22, no. 5, p. 496, 2020.

[66] E. Balevi and J. G. Andrews, “Deep learning-based encoder for one-bit quantization,” in

2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2019.

[67] Y. Jiang, H. Kim, H. Asnani, S. Oh, S. Kannan, and P. Viswanath, “Feedback turbo autoen-

coder,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 8559–8563, IEEE, 2020.

[68] K. Vedula, R. Paffenroth, and D. R. Brown, “Joint coding and modulation in the ultra-

short blocklength regime for Bernoulli-Gaussian impulsive noise channels using autoen-

coders,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pp. 5065–5069, IEEE, 2020.

[69] Z. Zhang, D. Yao, L. Xiong, B. Ai, and S. Guo, “A convolutional neural network decoder

for convolutional codes,” in Proc. International Conference on Communications and Net-

working in China, pp. 113–125, Springer, 2019.

[70] N. Farsad, N. Shlezinger, A. J. Goldsmith, and Y. C. Eldar, “Data-driven symbol detection

via model-based machine learning,” arXiv preprint arXiv:2002.07806, 2020.

[71] N. Katz, “Communet: U-net decoder for convolutional codes in communication,” arXiv

preprint arXiv:2004.10057, 2020.

[72] J. Shen, A. Aboutaleb, K. Sivakumar, B. J. Belzer, K. S. Chan, and A. James, “Deep neural

network a posteriori probability detector for two-dimensional magnetic recording,” IEEE

Transactions on Magnetics, vol. 56, no. 6, pp. 1–12, 2020.

[73] P. Henarejos and M. Ángel Vázquez, “Decoding 5G-NR communications via deep learn-

ing,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 3782–3786, 2020.

[74] M. E. Morocho-Cayamcela, J. N. Njoku, J. Park, and W. Lim, “Learning to communicate

142

with autoencoders: Rethinking wireless systems with deep learning,” in Proc. International

Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 308–

311, IEEE, 2020.

[75] D. Burth Kurka and D. Gündüz, “Joint source-channel coding of images with (not very)

deep learning,” in Proc. International Zurich Seminar on Information and Communication

(IZS 2020), pp. 90–94, ETH Zurich, 2020.

[76] K. Ullrich, F. Viola, and D. J. Rezende, “Neural communication systems with bandwidth-

limited channel,” arXiv preprint arXiv:2003.13367, 2020.

[77] F. A. Aoudia and J. Hoydis, “Joint learning of probabilistic and geometric shaping for coded

modulation systems,” arXiv preprint arXiv:2004.05062, 2020.

[78] D. Mu, W. Meng, S. Zhao, and X. Wang, “UAV intelligent optical communication based

on conditional generation against network,” IOP Conference Series: Materials Science and

Engineering, vol. 768, p. 072022, mar 2020.

[79] D.-D. Le, D.-P. Nguyen, T.-H. Tran, and Y. Nakashima, “Run-length limited decoding for

visible light communications: A deep learning approach,” in Proc. 25th Asia-Pacific Con-

ference on Communications (APCC), pp. 496–501, IEEE, 2019.

[80] J. Fang, M. Bi, S. Xiao, G. Yang, H. Yang, Z. Chen, Z. Liu, and W. Hu, “Neural network

decoder of polar codes with tanh-based modified LLR over FSO turbulence channel,” Optics

Express, vol. 28, no. 2, pp. 1679–1689, 2020.

[81] V. G. Satorras and M. Welling, “Neural enhanced belief propagation on factor graphs,” arXiv

preprint arXiv:2003.01998, 2020.

[82] A. Askri, G. R. Othman, and H. Ghauch, “Counting lattice points in the sphere using deep

neural networks,” in Proc. 53rd Asilomar Conference on Signals, Systems, and Computers,

pp. 2053–2057, 2019.

[83] J. Zhang, O. Simeone, Z. Cvetkovic, E. Abela, and M. Richardson, “Itene: Intrinsic transfer

entropy neural estimator,” arXiv preprint arXiv:1912.07277, 2019.

[84] S. Ali, W. Saad, N. Rajatheva, K. Chang, D. Steinbach, B. Sliwa, C. Wietfeld, K. Mei,

143

H. Shiri, H.-J. Zepernick, et al., “6G white paper on machine learning in wireless commu-

nication networks,” arXiv preprint arXiv:2004.13875, 2020.

[85] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,” in

Proc. IEEE Information Theory Workshop (ITW), pp. 1–5, IEEE, 2015.

[86] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks via infor-

mation,” arXiv preprint arXiv:1703.00810, 2017.

[87] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and D. D. Cox,

“On the information bottleneck theory of deep learning,” Journal of Statistical Mechanics:

Theory and Experiment, vol. 2019, no. 12, p. 124020, 2019.

[88] M. Gabrié, A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, and L. Zdeborová,

“Entropy and mutual information in models of deep neural networks,” in Advances in Neural

Information Processing Systems, pp. 1821–1831, 2018.

[89] Z. Liao, T. Drummond, I. Reid, and G. Carneiro, “Approximate fisher information matrix to

characterize the training of deep neural networks,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 42, no. 1, pp. 15–26, 2020.

[90] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Inter-

pretable representation learning by information maximizing generative adversarial nets,” in

Advances in Neural Information Processing Systems, pp. 2172–2180, 2016.

[91] Y. Roh, K. Lee, S. E. Whang, and C. Suh, “Fr-train: A mutual information-based approach

to fair and robust training,” arXiv preprint arXiv:2002.10234, 2020.

[92] R. V. Zarcone, J. H. Engel, S. B. Eryilmaz, W. Wan, S. Kim, M. BrightSky, C. Lam, H.-L.

Lung, B. A. Olshausen, and H.-S. P. Wong, “Analog coding in emerging memory systems,”

Scientific Reports, vol. 10, no. 1, pp. 1–13, 2020.

[93] J. Kosaian, K. V. Rashmi, and S. Venkataraman, “Learning-based coded computation,” IEEE

Journal on Selected Areas in Information Theory, pp. 1–1, 2020.

[94] R. Bauer and J. Hagenauer, “On variable length codes for iterative source/channel decod-

ing,” Proceedings of Data Compression Conference, pp. 273–282, 2001.

144

[95] M. Fresia and G. Caire, “Combined error protection and compression with turbo codes for

image transmission using a JPEG2000-like architecture,” in Proc. International Conference

on Image Processing (ICIP), pp. 821–824, 2006.

[96] L. Guivarch, J. Carlach, and P. Siohan, “Joint source-channel soft decoding of Huffman

codes with Turbo-codes,” Proceedings of Data Compression Conference (DCC), pp. 83–92,

2000.

[97] J. Hagenauer, “Source-controlled channel decoding,” IEEE Transactions on Communica-

tions, vol. 43, no. 9, pp. 2449–2457, 1995.

[98] M. Jeanne, J. Carlach, and P. Siohan, “Joint source-channel decoding of variable-length

codes for convolutional codes and Turbo codes,” IEEE Transactions on Communications,

vol. 53, no. 1, pp. 10–15, 2005.

[99] A. N. Kim, S. Sesia, T. Ramstad, and G. Caire, “Combined error protection and compression

using turbo codes for error resilient image transmission,” in Proc. International Conference

on Image Processing (ICIP), 2005.

[100] Z. Peng, Y. Huang, and D. Costello, “Turbo codes for image transmission – a joint chan-

nel and source decoding approach,” IEEE Journal on Selected Areas in Communications

(JSAC), vol. 18, no. 6, pp. 868–879, 2000.

[101] C. Poulliat, D. Declercq, C. Lamy-Bergot, and I. Fijalkow, “Analysis and optimization of

irregular LDPC codes for joint source-channel decoding,” IEEE Communications Letters,

vol. 9, no. 12, pp. 1064–1066, 2005.

[102] L. Pu, Z. Wu, A. Bilgin, M. Marcellin, and B. Vasic, “LDPC-based iterative joint source-

channel decoding for JPEG,” IEEE Transactions on Image Processing, vol. 16, no. 2,

pp. 577–581, 2007.

[103] L. Alvarez, P. Lions, and J. Morel, “Image selective smoothing and edge detection by non-

linear diffusion II,” SIAM Journal on Numerical Analysis, vol. 29, no. 3, pp. 845–866, 1992.

[104] A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms, with a new

one,” Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005.

145

[105] P. Chatterjee and P. Milanfar, “Is denoising dead?,” IEEE Transactions on Image Processing,

vol. 19, no. 4, pp. 895–911, 2010.

[106] R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising,” in Wavelets and Statis-

tics, pp. 125–150, Springer, 1995.

[107] M. Lindenbaum, M. Fischer, and A. Bruckstein, “On Gabor’s contribution to image en-

hancement,” Pattern Recognition, vol. 27, no. 1, pp. 1–8, 1994.

[108] E. Ordentlich, G. Seroussi, S. Verdu, and K. Viswanathan, “Universal algorithms for channel

decoding of uncompressed sources,” IEEE Transactions on Information Theory, vol. 54,

pp. 2243–2262, May 2008.

[109] E. Ordentlich, G. Seroussi, S. Verdu, M. Weinberger, and T. Weissman, “A discrete universal

denoiser and its application to binary images,” in Proc. International Conference on Image

Processing (ICIP), vol. 1, pp. I–117, IEEE, 2003.

[110] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algo-

rithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp. 259–268, 1992.

[111] L. Yaroslavsky and M. Eden, Fundamentals of Digital Optics: Digital Signal Processing in

Optics and Holography. Springer, Verlag New York, 1996.

[112] Y. Li, Y. Wang, A. Jiang, and J. Bruck, “Content-assisted file decoding for nonvolatile mem-

ories,” in Proc. 46th Asilomar Conference on Signals, Systems and Computers, pp. 937–941,

2012.

[113] J. Luo, Q. Huang, S. Wang, and Z. Wang, “Error control coding combined with content

recognition,” in Proc. 8th International Conference on Wireless Communications and Signal

Processing, pp. 1–5, 2016.

[114] Y. Wang, M. Qin, K. R. Narayanan, A. Jiang, and Z. Bandic, “Joint source-channel de-

coding of polar codes for language-based sources,” in Proc. IEEE Global Communications

Conference (Globecom), December 2016.

[115] D. Mackay, “Encyclopedia of sparse graph codes.” http://www.inference.org.

uk/mackay/codes/data.html#l132, 2015. (Accessed on 05/19/2020).

146

http://www.inference.org.uk/mackay/codes/data.html#l132
http://www.inference.org.uk/mackay/codes/data.html#l132

[116] J. Lin, “Vector quantization for image compression: Algorithms and performance,” Ph.D.

thesis, Brandeis University, 1992.

[117] J. Lin, J. Storer, and M. Cohn, “Optimal pruning for tree-structured vector quantization,”

Information Processing and Management, vol. 28, p. 6, 1992.

[118] M. Ruhl and H. Hartenstein, “Optimal fractal coding is NP-hard,” in Proc. Data Compres-

sion Conference (DCC), April 1997.

[119] J. Bruck and M. Naor, “The hardness of decoding linear codes with preprocessing,” IEEE

Transactions on Information Theory, vol. 36, pp. 381–385, March 1990.

[120] I. Dumer, D. Micciancio, and M. Sudan, “Hardness of approximating the minimum distance

of a linear code,” IEEE Transactions on Information Theory, vol. 49, pp. 22–37, January

2003.

[121] U. Feige and D. Micciancio, “The inapproximability of lattice and coding problems with

preprocessing,” Journal of Computer and Systems Sciences, vol. 69, pp. 45–67, August

2004.

[122] A. Vardy, “Algorithmic complexity in coding theory and the minimum distance problem,”

in Proc. 29th ACM Symposium on Theory of Computing (STOC), (Texas), pp. 92–109, El

Paso, May 1997.

[123] A. Vardy, “The intractability of computing the minimum distance of a code,” IEEE Trans-

actions on Information Theory, vol. 43, pp. 1757–1766, November 1997.

[124] J. Lansky, K. Chernik, and Z. Vlckova, “Syllable-based Burrows-Wheeler transform,”

in Proc. Annual International Workshop on Databases,Texts, Specifications and Objects,

pp. 1–10, 2007.

[125] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. Weinberger, “Universal dis-

crete denoising: Known channel,” IEEE Transactions on Information Theory, vol. 51, no. 1,

pp. 5–28, 2005.

[126] Y. Wang, K. R. Narayanan, and A. Jiang, “Exploiting source redundancy to improve the

rate of polar codes,” in Proc. IEEE International Symposium on Information Theory (ISIT)

147

(G. Aachen, ed.), June 2017.

[127] C. D. Manning and H. Schutze, Foundations of Statistical Natural Language Processing.

MIT Press, Cambridge, 1999.

[128] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in

Proc. IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 2010.

[129] G. Maral, M. Bousquet, and Z. Sun, Satellite Communications Systems: Systems, Tech-

niques and Technology. Wiley, Hoboken, NJ, 5th ed., 2010.

[130] B. Addis, M. Di Summa, and A. Grosso, “Removing critical nodes from a graph: complexity

results and polynomial algorithms for the case of bounded treewidth,” Optimization online

(www. optmization-online. org), 2011.

[131] T. Fujito, “Approximating node-deletion problems for matrodial properties,” Journal of Al-

gorithms, vol. 31, pp. 211–227, 1999.

[132] M. Kumar, S. Mishra, N. S. Devi, and S. Saurabh, “Approximation algorithms for node

deletion problems on bipartite graphs with finite forbidden subgraph characterization,” The-

oretical Computer Science, vol. 526, pp. 90–96, 2014.

[133] M. Yannakakis, “Node-deletion problems on bipartite graphs,” SIAM Journal on Comput-

ing, vol. 10, pp. 310–327, May 1981.

[134] T. J. Schaefer, “The complexity of satisfiability problems,” in Proc. 10th Annual ACM Sym-

posium on Theory of Computing (STOC), pp. 216–226, 1978.

[135] K. Cai, “Vertical constrained coding for phase-change memory with thermal crosstalk,” in

International Conference on Computing, Networking and Communications, 2014.

[136] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,”

Advances in Neural Information Processing Systems, pp. 341–349, 2012.

[137] Y. Ichiki, G. Song, K. Cai, S. Lu, and J. Cheng, “Neural network detection of ldpc-coded

random access cdma systems,” in Proc. International Symposium on Information Theory

and Its Applications, (Singapore), 2018.

[138] M. Qin, C. Sun, and D. Vucinic, “Robustness of neural networks against storage media

148

errors,” arXiv preprint arXiv:1709.06173, 2017.

[139] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath, “Communication algorithms

via deep learning,” in Proc. International Conference on Representation Learning (ICLR),

(Vancouver), 2018.

[140] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be’ery, “Deep

learning methods for improved decoding of linear codes,” IEEE Journal of Selected Topics

in Signal Processing, vol. 12, no. 1, pp. 119–131, 2018.

[141] W. C. Calhoun and D. Coles, “Predicting the types of file fragments,” Digital Investigation,

vol. 5, no. supplement, pp. S14–S20, 2008.

[142] S. Fitzgerald, G. Mathews, C. Morris, and O. Zhulyn, “Using NLP techniques for file frag-

ment classification,” Digital Investigation, vol. 9, no. supplement, pp. S44–S49, 2012.

[143] M. Amirani, M. Toorani, and A. Beheshti, “A new approach to content-based file type de-

tection,” in Proc. IEEE Symposium on Computers and Communications, pp. 1103–1108,

2008.

[144] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley, Hoboken, NJ, USA,

2nd ed., 2006.

[145] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-

tation,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 3431–3440, 2015.

[146] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Stacked denoising autoencoders:

Learning useful representations in a deep network with a local denoising criterion,” Journal

of Machine Learning Research, vol. 11, pp. 3371–3408, 2010.

[147] M. Zhang, K. Cai, Q. Huang, and S. Yuan, “On bit-level decoding of non-binary ldpc codes,”

IEEE Transactions on Communications, vol. 66, no. 9, pp. 3736–3748, 2018.

[148] S. Narayanan, A. Shafiee, and R. Balasubramonian, “Inxs: Bridging the throughput and

energy gap for spiking neural networks,” in Proc. International Joint Conference on Neural

Networks (IJCNN), pp. 2451–2459, 2017.

149

[149] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A

novel processing-in-memory architecture for neural network computation in ReRAM-based

main memory,” in Proc. International Symposium on Computer Architecture (ISCA), 2016.

[150] H. Kim, M. P. Sah, C. Yang, T. Roska, and L. O. Chua, “Neural synaptic weighting with

a pulse-based memristor circuit,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 59, no. 1, pp. 148–158, 2012.

[151] K. Xie, J. Li, and Y. Liu, “Analysis of performance of linear analog codes,” arXiv preprint

arXiv:1511.05509, 2015.

[152] K. Xie, J. Li, and Y. Liu, “Linear analog codes: The good and the bad,” in Proc. 46th Annual

Conference on Information Sciences and Systems (CISS), pp. 1–6, IEEE, 2012.

[153] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,

“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[154] A. Shamir, I. Safran, E. Ronen, and O. Dunkelman, “A simple explanation for the existence

of adversarial examples with small hamming distance,” arXiv preprint arXiv:1901.10861,

2019.

[155] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms from unreli-

able components,” Automata Studies, vol. 34, pp. 43–98, 1956.

[156] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”

in International Conference on Learning Representations (ICLR), 2015.

[157] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning mod-

els resistant to adversarial attacks,” in Proc. International Conference on Learning Repre-

sentations (ICLR), 2018.

[158] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural networks: A review,”

IEEE Access, vol. 5, pp. 17322–17341, 2017.

[159] D. S. Phatak and I. Koren, “Complete and partial fault tolerance of feedforward neural nets,”

IEEE Transactions on Neural Networks, vol. 6, no. 2, pp. 446–456, 1995.

[160] H. Ito and T. Yagi, “Fault tolerant design using error correcting code for multilayer neural

150

networks,” IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems,

pp. 177–184, 1994.

[161] E. M. E. Mhamdi and R. Guerraoui, “When neurons fail,” arXiv preprint arXiv:1706.08884,

2017.

[162] K. Huang, P. Siegel, and A. Jiang, “Functional error correction for robust neural networks,”

arXiv preprint arXiv:2001.03814, 2020.

151

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation
	Research Contributions
	Learning Techniques for Correcting Errors by Natural Redundancy
	LDPC Decoding with Natural Redundancy
	Stopping Set Elimination of LDPC Codes by Language-based Natural Redundancy
	Deep Learning for Representation-Oblivious Error Correction by Natural Redundancy
	Externally Coded Neural Networks
	Internally Coded Neural Networks

	Organization of the Dissertation

	Two Fundamental Apporaches: Interplay between Information Theory and Machine Learning
	Background
	Recent Work
	Machine Learning for Information Theory
	Information Theory for Machine Learning

	Importance of this Dissertation

	CORRECTING ERRORS BY NATURAL REDUNDANCY USING LEARNING TECHNIQUES ©IEEE 2017. Parts of this section are reprinted, with permission, from A. Jiang, P. Upadhyaya, E. F. Haratsch and J. Bruck, "Correcting errors by natural redundancy," 2017 Information Theory and Applications Workshop (ITA), San Diego, CA, 2017.
	Introduction
	Sampling-based Decoding for Random Codes
	Sliding-Window Decoder for Prefix-free Codes
	Sampling-based Decoder for Random Codes

	Capacity of ECC with Natural Redundancy
	Channel Capacity with Natural Redundancy
	Upper Bound to ECC Sizes with NR

	Computational-Complexity Tradeoff

	COMBINATION OF LDPC AND MACHINE LEARNING-BASED NATURAL REDUNDANCY DECODING ©IEEE 2017. Parts of this section are reprinted, with permission, from P. Upadhyaya and A. A. Jiang, ``On LDPC decoding with natural redundancy," 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, 2017.
	Introduction
	Efficient Natural Redundancy Discovery
	Discovery of Natural Redundancy in Languages

	Related Works
	NR-Decoding for Languages and Images
	NR-Decoding for Language
	NR-Decoding for Images
	Convolutional Neural Network
	Filter Based on Connected Components
	Joint Decoder

	Decoding Performance of NR Decoders

	Combine NR-decoding with LDPC Codes
	Decoding Algorithm
	Density Evolution Analysis
	Erasure Threshold

	Iterative LDPC Decoding with NR
	NR Decoder For Compressed Languages
	Iteration with LDPC Decoder
	Density Evolution Analysis

	STOPPING SET ELIMINATION OF LDPC CODES BY LANGUAGE-BASED NATURAL REDUNDANCY ©IEEE 2017. Parts of this section are reprinted, with permission, from A. A. Jiang, P. Upadhyaya, et al., ``Stopping set elimination for LDPC codes," 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, 2017
	Introduction
	Related Applications and Related Works
	Applications of SSE
	Related Works

	NP-Hardness of SSE Problem
	NP-completeness of Pseudo Set Cover Problem
	NP-hardness of Stopping Set Elimination Problem

	SSE with Constraint on Belief-Propagation Iterations and Its NP-Hardness
	Reducing Not-all-equal SAT Problem to SSE1 Problem
	Properties of Reduction

	Approximation Algorithm for SSE1 Problem
	Analysis and Algorithms for SSEk Problems
	Effect of RBER for Approximation Algorithms
	Exact Algorithm for SSE Problem with Stopping Tree
	Exact Algorithm for SSEk Problem with Stopping Tree

	Deep Learning for Representation-Oblivious Error Correction by Natural Redundancy ©IEEE 2019. Reprinted, with permission, from P. Upadhyaya and A. A. Jiang, ''Representation-Oblivious Error Correction by Natural Redundancy," 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019
	Introduction
	File Type Recognition Using Deep Learning
	DNN Architecture and Training
	Experimental Performance

	Soft Decoding by Deep Neural Networks
	Portfolio Theory-based Soft Decoding
	Soft Decoding for Noisy File Segments

	Error Correction for Noisy File Segments
	Conclusion

	Externally Coded Neural Networks
	Introduction
	Deterioration of DNN Performance with Noise
	Datasets
	Results

	 Analog Codes for Noisy DNN
	Linear Analog Codes
	Experimental Performance of Linear Analog Codes in DNNs

	Conclusion

	Internally Coded Neural Networks
	Introduction
	Construction of Coded Neural Networks
	Coded Neural Network Construction By Analog Codes
	Related Work
	Conclusion

	Conclusion and Future Work
	REFERENCES

