37 research outputs found

    Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques

    Get PDF
    In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%

    Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding

    Full text link

    Multimedia Protection using Content and Embedded Fingerprints

    Get PDF
    Improved digital connectivity has made the Internet an important medium for multimedia distribution and consumption in recent years. At the same time, this increased proliferation of multimedia has raised significant challenges in secure multimedia distribution and intellectual property protection. This dissertation examines two complementary aspects of the multimedia protection problem that utilize content fingerprints and embedded collusion-resistant fingerprints. The first aspect considered is the automated identification of multimedia using content fingerprints, which is emerging as an important tool for detecting copyright violations on user generated content websites. A content fingerprint is a compact identifier that captures robust and distinctive properties of multimedia content, which can be used for uniquely identifying the multimedia object. In this dissertation, we describe a modular framework for theoretical modeling and analysis of content fingerprinting techniques. Based on this framework, we analyze the impact of distortions in the features on the corresponding fingerprints and also consider the problem of designing a suitable quantizer for encoding the features in order to improve the identification accuracy. The interaction between the fingerprint designer and a malicious adversary seeking to evade detection is studied under a game-theoretic framework and optimal strategies for both parties are derived. We then focus on analyzing and understanding the matching process at the fingerprint level. Models for fingerprints with different types of correlations are developed and the identification accuracy under each model is examined. Through this analysis we obtain useful guidelines for designing practical systems and also uncover connections to other areas of research. A complementary problem considered in this dissertation concerns tracing the users responsible for unauthorized redistribution of multimedia. Collusion-resistant fingerprints, which are signals that uniquely identify the recipient, are proactively embedded in the multimedia before redistribution and can be used for identifying the malicious users. We study the problem of designing collusion resistant fingerprints for embedding in compressed multimedia. Our study indicates that directly adapting traditional fingerprinting techniques to this new setting of compressed multimedia results in low collusion resistance. To withstand attacks, we propose an anti-collusion dithering technique for embedding fingerprints that significantly improves the collusion resistance compared to traditional fingerprints

    A Comprehensive Review of Video Steganalysis

    Get PDF
    Steganography is the art of secret communication and steganalysis is the art of detecting the hidden messages embedded in digital media covers. One of the covers that is gaining interest in the field is video. Presently, the global IP video traffic forms the major part of all consumer Internet traffic. It is also gaining attention in the field of digital forensics and homeland security in which threats of covert communications hold serious consequences. Thus, steganography technicians will prefer video to other types of covers like audio files, still images or texts. Moreover, video steganography will be of more interest because it provides more concealing capacity. Contrariwise, investigation in video steganalysis methods does not seem to follow the momentum even if law enforcement agencies and governments around the world support and encourage investigation in this field. In this paper, we review the most important methods used so far in video steganalysis and sketch the future trends. To the best of our knowledge this is the most comprehensive review of video steganalysis produced so far

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Watermarking techniques using knowledge of host database

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem
    corecore