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Abstract

Many watermarking applications deal with a database of hosts. When given a

database of hosts to be watermarked, under the traditional watermarking approach,

every host is independently watermarked. That is, encoding of one host does not use

the knowledge of existence of other hosts in the database. If the encoder knows in

advance about all the hosts in the database to be watermarked, intuitively, it has more

information and hence can perform better. However it is not clear how to exploit this

information and how significant is the improvement. In this thesis, we propose the

notion of knowledge of hosts database and address this question: “If the encoder has

prior knowledge of the hosts database, and the detector has full or partial information

of the hosts database, how to exploit this additional information to significantly enhance

performance”.

To handle this question, a novel approach that demonstrates the efficacy of using

knowledge of hosts database during the watermarking process is proposed. The proposed

approach is generic and based on this, frameworks that address the problems associated

with different applications can be designed. In this dissertation three different frame-

works are proposed for three different applications, namely, copy detection, retrieval

systems and database watermarking. In each case, novel methods are designed to im-

plement each framework. Systematic theoretical formulation and practical experimental



evaluation is performed to validate the efficacy of the proposed frameworks.

Keywords: Copy Detection, Nearest Neighbor Search, Resolving Ambiguity, Re-

trieval, Watermarking, Database, Non-convex optimization.
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Summary

Many watermarking applications deal with a database of hosts. When given a

database of hosts to be watermarked, under the traditional watermarking approach,

every host is independently watermarked. That is, encoding of one host does not use

the knowledge of existence of other hosts in the database. If the encoder knows in

advance about all the hosts in the database to be watermarked, intuitively, it has more

information and hence can perform better. However it is not clear how to exploit this

information and how significant is the improvement. This thesis proposes the notion

of knowledge of hosts database and address the following question: “If the encoder has

prior knowledge of the hosts database, and the detector has full or partial information

of the hosts database, how to exploit this additional information to significantly enhance

performance”.

To handle this question, a novel approach that demonstrates the efficacy of using

knowledge of hosts database during the watermarking process is proposed. The proposed

approach is generic and based on this, frameworks that address the problems associated

with different applications can be designed. In this dissertation three different frame-

works are proposed for three different applications, namely, copy detection, retrieval

systems and database watermarking.

In the first work, a unified framework, which can be viewed as a combination of wa-

termarking and retrieval systems, is proposed to address the ambiguity problem in copy

detection. Here, both the encoder and the detector have access to the hosts database

and the size of the database is fixed. The encoder uses the knowledge of the original

hosts database to generate a modified database. Given a query, the detector performs a

iv



linear search in the modified database to retrieve the candidate original. Performance is

measured by the tradeoff achieved between distortion (average or maximum distortion)

undergone by the hosts in the database, and the robustness of the framework to noise.

In the previous work, the detector performs a linear search in the hosts database.

For a large database, this is rather inefficient. This is because, for encoding many

messages, high dimensions are required and searching in high dimensions is known to

be difficult. Hence, in the second work, another unified framework is proposed where

besides trading off distortion and robustness, the encoder generates an index tree to

facilitate fast searching during detection. The additional facility in this framework is

that it allows fast search in high dimensions during detection. The size of the original

hosts database is fixed.

Under the first and second framework, the encoder and detector both have access

to the whole database. In the third work, a novel framework is proposed where the

detector only has partial information of the database, which may be required to be

communicated from the encoder to the detector through a secure side channel. The

proposed framework is shown to enhance watermarking performance compared to a

traditional approach. Furthermore, an online scenario is investigated where more hosts

are added into the database incrementally, i.e., size of the database is not fixed.

In each of the above works systematic theoretical formulation and practical experi-

mental evaluations are performed to validate the efficacy of the proposed solutions.

v
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Chapter 1

Introduction

The recent explosion of digital media in an entire range of everyday life, and the abil-

ity to store, manipulate and easily transmit them through fast and inexpensive data

communication networks, has aroused serious concerns regarding its illegal copying and

distribution. Watermarking technology has been proposed as a viable solution that at-

tempts to address such concerns. Watermarking a media content entails hiding some

information into the content in an imperceptible way, so that even if an adversary may

be aware of the presence of the hidden information, he cannot remove it without se-

riously damaging the usability of the content. The hidden information, also called a

message, mostly concerns the identity of the content. This is different from associating

some identity information as header with a media content, as it can be easily removed

by an adversary.

The process of hiding some information into the media content involves minimally

distorting the content so that it carries the identifying information. From the definition

of watermarking above, it is noted that the idea of minimally distorting the content so

that it carries identifying information, does not mean that the actual information in

the form of a message need to be always embedded into the content. For example, the

modification introduced into the content can be an index into a database that stores

all information related to all contents [2]. Also, this definition does not specify what is

1



Figure 1.1: Traditional Watermarking Approach.

the associated information. For example, the information can be a confirmation about

the membership of the content in a database, as in copy detection systems. Hence, in

this dissertation this broader perspective is considered to look at watermarking as an

information hiding technique used in applications which allow the data to be modified

and the modification is associated with some information that is relevant for the specific

application.

Apart from the criterion of minimizing distortion, the criterion of preventing an

adversary from removing the hidden information while maintaining usability of the

content entails the watermarking method to be robust to manipulations. All these

criterion determine the performance of a watermarking systems.

In the next section, a traditional watermarking approach and the associated perfor-

mance measures are discussed.

1.1 A Traditional Watermarking Approach

Figure 1.1 depicts a traditional watermarking approach. It consists of an encoder and

a detector. The encoder takes as input a host sequence-message pair 〈I,m〉1, from a

database of hosts I and a secret key K to generate a watermarked host Ĩ. The key

K modulates the message m to generate a watermark w which is an i.i.d2 sequence

1In this dissertation, the host sequence mainly refers to an image, although it can refer to any other
data type. So the notation x for host sequence is interchangeably denoted by I.

2Independent identically distributed

2



and is embedded into the host sequence I to give the watermarked sequence Ĩ, such

that the distortion from I to Ĩ is small. Encoding may use knowledge of the hosts

distribution. Embedding of w into I could be performed on the actual sequence I

represented by a vector of pixels of an image, speech samples etc., or a transformed

sequence represented by coefficients from a linear or non-linear transform of the host

sequence I. The transform function could be a linear transform, viz., Discrete Cosine

Transform (DCT), Discrete Fourier Transform (DFT), or a non-linear transform. The

encoder uses the watermarked sequence and the original host I, to reconstruct the

watermarked host Ĩ. The encoding of every host is independent of the encoding of other

hosts in the database. The encoded hosts are distributed to the public. In the public

domain these hosts can undergo some manipulations, denoted by noise v, to generate I′.

The noise denotes both un-intentional and intentional manipulations that Ĩ may have

to undergo.

To verify the presence of a watermark, the detector takes the sequence I′, and detects

whether I′ is watermarked or not (Y es/No) using the key K and the original host I.

The process of verification of the presence of a watermark here is done by detection

and not decoding. The difference between decoding and detection at the detector needs

some clarification. In decoding, a message is extracted from I′, whereas in detection,

the detector just confirms the presence of the watermark by a Y es/No decision.

The dotted arrow in Figure 1.1 indicates that the original host sequence I can be

either made available or not available during detection. When the detection unit has

access to the host sequence I during the detection process, I could be subtracted from I′

and their difference used for detecting. Such a scenario is called non-blind watermarking.

When the detector does not have access to the host, it is called blind watermarking.

The performance of watermarking systems is measured by some performance mea-

sures. Some of the important performance measures are as follows:

• Distortion: It is a measure of the difference between I and Ĩ. For example, the

distortion between I and Ĩ can be measured by ǫ = ‖Ĩ − I‖2 where ‖ · ‖2 denotes

3



ℓ2 norm distance metric.

• Robustness: Robustness refers to the ability to detect the watermark after com-

mon signal processing operations (intentional or unintentional) with high prob-

ability. The minimal required robustness is highly application-dependent. For

signal processing operations like addition of AWGN , one may take the variance

of the noise as the measure of robustness.

• False Alarm: It indicates the probability that a randomly chosen sequence will be

declared as watermarked by the detector.

• Security: Watermarking security has been recently defined from a cryptanalytic

point of view. The main idea is that information about the secret key leaks from

the observations, for instance watermarked pieces of content, available to the op-

ponent. Tools from information theory (Shannons mutual information and Fishers

information matrix) have been shown [16] to be able to measure this leakage of

information. The security level is then defined as the number of observations the

attacker needs to successfully estimate the secret key. This dissertation does not

address this concern.

The relative importance of these measures vary from application to application.

Applications of Watermarking Watermarking was primarily proposed as a tech-

nology for alleviating security concerns in applications like broadcast monitoring, owner

identification, proof of ownership, transaction tracking, authentication, copy control,

device control etc. The idea of associating the identity of the content with the content

broadens the scope of use of watermarking technology, beyond security related appli-

cations. Examples of non-security applications are content identification, information

embedding, database annotation etc.

4



1.2 Issues in Traditional Watermarking Approach

The concerns in a traditional watermarking approach can be identified as follows:

Trading off performance measures: The performance measures discussed are in-

terdependent and hence a trade-off between them is required to be achieved. For ex-

ample, if the content is distorted with a high watermark strength, one can expect that

even after manipulations some portion of the watermark will be left over, good enough

to verify its presence. But this may be at the cost of distorting the content such that

the watermark becomes perceptible. Similarly, during detection, taking a low value of

threshold increases detection performance but in turn increases false alarm.

Application dependent: Every application has an associated problem and there are

some characteristics of the problem that make watermarking a suitable solution. Along

with that, each application will have its own requirements on how to incorporate the

watermarking process.

Detector side concerns For non-blind watermarking, the detector knows the original

hosts corresponding to every I′. This assumption is not practical, as in reality, for most

applications where non-blind detection is applicable, the detector has access to the hosts

database, but may not know which is the original host in it. For blind watermarking,

a fixed detection routine, i.e., the presence of the watermark at the detector, a fixed

detection boundary and known detection algorithm, makes the system vulnerable to

attacks like sensitivity attacks [23].

Encoder side concerns The encoding process may use knowledge of the hosts dis-

tribution to do the watermarking, which requires an assumption to be made about the

nature of the distribution. For unique identification, every host is associated with a

unique message; all of which are required by the detector at the point of detection. For

applications that deal with a large database of hosts, this approach is not practical.

5



The above issues motivate the need for a more generic approach to watermarking.

Need for another approach The traditional watermarking approach basically deals

with watermarking a single host. Extending this approach to a database of hosts means,

encoding of one host is independent of other hosts in the database. That is, in encoding

a host, knowledge of encoding of other hosts in the database is not exploited. The

observation made here is that, if the encoder knows in advance about all the hosts in

the database to be watermarked, intuitively, it has more information and hence this

information can be used to enhance performance. However it is not clear how to exploit

this information and how significant is the improvement. Moreover, in the traditional

approach with non-blind watermarking, the assumption is that the detector knows the

original host. For most watermarking applications where the detector has access to the

database of hosts, i.e., non-blind detection is possible, this assumption is not practi-

cal. Note that, although the detector may not know the original host, intuitively, the

availability of full or partial information of the hosts database at the detector, not only

provides information about the original but more. It is not clear, how this information

can be used to enhance performance. This dissertation proposes the notion of knowledge

of hosts database and addresses the following question:

“If the encoder has prior knowledge of the hosts database, and the detector has full

or partial information of the hosts database, how to exploit this additional information

to significantly enhance performance”.

To handle this question, a novel approach that demonstrates the efficacy of using knowl-

edge of the hosts database during the watermarking process is proposed in this disserta-

tion. The proposed approach is generic and based on this, frameworks can be designed

to address the problems associated with applications.
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Figure 1.2: Proposed Watermarking Approach.

1.3 Proposed Approach

The proposed approach is depicted in Figure 1.2. The encoder takes the whole database

I and based on some criterion which is decided according to the requirements of the

application, generates a modified database Ĩ. Note that here the encoding of each host

uses the knowledge of encoding of other hosts in the database. Hosts in the modified

database are released to the public, denoted by Ĩ, which may undergo some manipula-

tions or noise to form I′. During detection, the detector takes the sequence I′ and uses

either full or partial knowledge of the modified database to detect the identity of the

host.

Noticeable differences of the proposed approach with a traditional watermarking

approach are as follows:

1. Unlike in the traditional approach where knowledge of the hosts distribution may

be used during encoding, here knowledge of the actual hosts in the database is

used during encoding.

2. Encoding of one host is dependent on encoding of other hosts in I. In the tradi-

tional approach, encoding of each host is independent of encoding of other hosts.

3. In the proposed approach either partial or full information of the modified hosts

database is made available to the detector. However, given a watermarked host,
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the detector does not know which host in the database is the original. In tra-

ditional blind watermarking, the detector has no information about the original

host. In traditional non-blind watermarking, given a watermarked host, the de-

tector indeed knows the original host.

4. In the proposed approach communication between the encoder and detector may

be required. The bandwidth of the communication channel decides the amount of

information exchange between them. This makes encoding and detection process

dependent and adaptive.

5. In the traditional approach, to uniquely identify a host, every host is associated

with a unique message. In the scenario where a large database of host need to

be watermarked, the number of messages will be large. In the proposed approach

using knowledge of the database, it can be shown that the number of messages

required to uniquely identify every host need not be large, as discussed in Chapter

4.

Note that the proposed approach is generic and depending on the problem associ-

ated with an application, the criterion supplied to the encoder is varied to design an

appropriate encoding routine. Similarly, depending on the application, the detector will

have access to either partial or full information about the database. For example, a

retrieval system can be seen as a special case of the proposed approach; where the crite-

rions could be, (1) not to introduce distortions while generating the modified database

and (2) to generate an index structure carrying information about the organization of

the database. During detection, the detector uses the index structure to search into the

database.

Hence the essential contribution of this dissertation is to show the efficacy of using

knowledge of the hosts database during encoding and partial or full knowledge of the

database during detection. This also explains the title of this dissertation.
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1.4 Thesis Organization and Contributions

A background of some of the fundamental methods and theory in the field of traditional

watermarking is provided in Chapter 2. These methods can form the underlying meth-

ods in implementing the frameworks that follow the proposed approach. In the rest of

the dissertation three frameworks are proposed for three different applications, namely

copy detection, retrieval systems, and database watermarking. A brief discussion of the

existing literature on solving the problem associated with these applications is provided

in the individual chapters.

Chapter 3 proposes a unified framework, which is a combination of retrieval and

watermarking systems, to resolve ambiguity in copy detection. In the proposed frame-

work, the encoder and detector have access to the original and modified hosts database

respectively. The fundamental reason for ambiguity is identified to be the lack of suffi-

cient separation between the hosts in feature space. Hence the solution lies in increasing

this separation. The encoder uses knowledge of the original hosts database to increase

this mutual separation and achieves a tradeoff between distortion and robustness. The

detector searches for the nearest neighbor of a suspected copy (query) in the modified

database by doing a linear search and returns it as the candidate original. Here size of

the database is fixed. Experiments are performed to analyze the efficacy of the proposed

framework under ambiguity attacks.

In the framework proposed in the previous chapter the detector performs a linear

search. For a large database, this is rather inefficient. This is because, for encoding many

messages, high dimensions are required and searching in high dimensions is known to be

difficult. Chapter 4 proposes another framework that uses a combination of retrieval and

watermarking systems to reduce nearest neighborhood search complexity to logarithmic

order. The encoder and detector have access to the original and modified databases.

Here the encoder generates an index tree to facilitate fast search. Encoding is based on

a method called active clustering. The database in this scenario is also considered fixed.

In the previous chapters, the detector had access to the full database. In Chapter
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5 a framework for database watermarking is proposed where the detector has access to

partial information of the database, which is made available to the detector through a

secure channel between the encoder and detector. The encoder uses knowledge of the

original hosts database to generate the modified database and a partial description of

the database. The size of the partial description is influenced by bandwidth limitations

of the channel. The proposed framework demonstrates the efficacy of using knowledge

of hosts database in improving watermarking performance measures over a traditional

approach that uses i.i.d sequences as watermarks. An online setting where the database

is not fixed and new hosts are incrementally added into the database is also investigated.

Each chapter in this dissertation discusses how, based on the proposed approach,

frameworks can be designed to solve the problems associated with an application. De-

pending on the application, appropriate criterions are set that guide the design of the

frameworks. This leaves scope for investigating how the proposed approach (using

knowledge of hosts database) can be used to solve problems associated with other ap-

plications, thus opening up a wide spectrum of topics for future research. This is the

point of discussion in the chapter on conclusions and future work (chapter 6).
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Chapter 2

Background

In this chapter, a brief review of some of the fundamental concepts of watermarking

theory that is also relevant to the contents of the work in this thesis, is presented. These

concepts could form the building blocks for incorporating the novel approach proposed

in this thesis, in solving the problems associated with several applications. Hence this

chapter will provide the background to more clearly appreciate this work. However, not

reading this chapter would not impede in understanding and appreciating the contents

of this thesis. This dissertation dedicates specific chapters to specific applications, to

demonstrate the efficacy of using knowledge of hosts database in those applications. So

existing work related to a specific application is discussed in the individual chapters to

put the motivation in context. Hence a reader familiar with these concepts may chose

to move forward to the later chapters.

Section 2.1 discusses the fundamental watermarking methods from a theoretical

point of view. Most of the watermarking methods proposed in the existing literature

can be considered to be variations of these fundamental methods. In most of the works

the encoder and detector are taken as separated units and there is no communication

between the two during the detection process. Recent works have shown the efficacy

of communication between the encoding and detection unit in improving watermarking

performance. Section 2.2 discusses works that use communication between the encoding
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and detection unit in the watermarking process.

2.1 Watermarking Methods

This section discusses existing watermarking methods. Watermarking is essentially a

form of communication, where one wishes to communicate a message from the water-

mark encoder to the watermark detector. The question about how to communicate the

message, brings in several considerations and hence several methods.

2.1.1 Host Interference Non-Rejecting Methods

A large number of watermark embedding algorithms are designed based on the premise

that the host sequence is like a source of noise or interference. This view arises when

the knowledge of the host sequence is not used for watermarking. Embedding methods

in this class are often referred to as spread spectrum methods.

Spread Spectrum Watermarking (SS)

In spread-spectrum watermarking, one watermark bit is spread over many samples of

the host sequence with the help of a modulated pseudo-random spreading sequence that

is added to the host sequence. Ideally, the bandwidth of the spreading sequence covers

the entire bandwidth of the host sequence. The term“spread spectrum watermarking”

particularly refers to simple additive embedding of a watermark sequence w chosen

independently of the original sequence x, into x, to generate the watermarked sequence

x̃, given by

x̃ = x + w(m).

The number of watermarking techniques using this method is too large to give a

complete survey of all of them. A few significant references are as follows.

Some of the earliest examples of these methods are given by Tirkel et. al [90, 89],

Bender et. al [9], Cox et. al [28, 27], Smith and Cominsky [82] etc. A lot of watermarking
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methods are in fact very similar and differ only in parts or single aspects of the three

stages: sequence design, encoding, and recovery. The watermark sequence is often

designed as a white [89, 90], or colored pseudo-random sequence with e.g., Gaussian

[27] uniform or bipolar [62, 64, 89], probability density function (pdf). In order to

avoid visibility of the embedded watermark an implicit or explicit spatial [56, 87, 95]

or spectral [56, 72, 87, 86, 95] shaping is often applied with the goal to attenuate the

watermark in areas of the image where it would become visible. The resulting watermark

sequence is sometimes sparse and leaves image pixels unchanged [65], but mostly it is

dense and alters all pixels of the image to be watermarked. The watermark sequence

is often designed in the spatial domain, but sometimes also in a transform domain like

the full-image discrete cosine transform (DCT) domain [27] or block-wise DCT domain

[61].

Although additive watermarking is very attractive because of its simplicity, in many

cases non-additive (multiplicative) watermarking is adopted, either to achieve image

dependent watermarking[29], or to better exploit the characteristics of the human visual

system (HVS). The watermark w in this case can be seen as a function of both the

message m and the host sequence x.

The watermark detection is usually done by some sort of correlation method. Since

the watermark sequence in these schemes, is designed without knowledge of the host

sequence, cross talk between watermark sequence and host sequence is a common prob-

lem. In order to suppress the crosstalk, many proposed schemes require the original

host sequence in order to subtract it before watermark extraction (non-blind detection).

Other proposed methods apply a pre-filter [35, 65, 90] instead of subtracting the orig-

inal. Yet, other methods do not suppress the crosstalk [72]. Some researchers propose

to use more sophisticated detectors than just simple correlation detectors, e.g., maxi-

mum a-posteriori (MAP) detectors [7]. Also a correlation based detection is adopted for

simple additive watermarking based on the assumption that the host sequence follows

a Gaussian pdf. Such a strategy is an optimum one, in that it permits to minimize the
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error probability[73]. If the host does not follow Gaussian pdf and if the embedding is

not additive, a correlation-based detector is not optimum. [8] proposes a decoder for

optimum recovery of non-additive watermarks. SS watermarking is robust to interfering

noise, as the amount of distortion that has to be added to the watermarked sequence

to erase the watermark can be very high. In fact, the host sequence itself is seen as a

source of interference.

Performance of SS Watermarking A theoretical realization about the maximum

rate of spread spectrum watermarking can be determined under the assumption that the

host sequence x ∼ N (0, σ2
x
) and the noise v is constrained to AWGN where v ∼ N (0, σ2

v
).

N (µx, σ
2
x
) denotes a Gaussian random variable x with linear mean µx and variance σ2

x
.

A Gaussian watermark w with power σ2
w

is also assumed. Under these conditions, the

maximum watermark rate is given by the capacity of an AWGN channel, which is

CAWGN
non−blind =

1

2
log2(1 +

σ2
w

σ2
v

), (2.1)

for non-blind SS watermarking and

CAWGN
blind =

1

2
log2(1 +

σ2
w

σ2
x

+ σ2
v

), (2.2)

for blind SS watermarking. Note that the bound (2.2) is applicable for any type of

watermarking scheme, not just SS watermarking, that treats the host sequence x as

interference. Also σ2
x
≫ σ2

w
, σ2

v
, to satisfy the quality constraints for watermark em-

bedding and attacks, respectively. Thus, the performance of non-blind SS watermark-

ing facing AWGN attack is completely independent of the characteristics of the host

sequence x. The performance of non-blind SS watermarking depends solely on the

watermark-to-noise power ratio WNR = 10log10(σ
2
w
/σ2

v
)[dB]. In contrast, performance

of blind SS watermarking is determined by the document-to-watermark power ratio

DWR = 10log10(σ
2
x
/σ2

w
)[dB].
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Improved Spread Spectrum Watermarking (ISS)

Malvar et al. [67] propose a watermark modulation technique, which when compared

to traditional SS, the host sequence does not act as noise. This technique has shown

competitive performance when compared to host interference rejecting methods to be

discussed in Section 2.1.2, while maintaining the high robustness property of SS wa-

termarking techniques. ISS works on the idea that, by using the encoder knowledge

about the host sequence x (or more precisely, x̄, the projection of x on the watermark

w), performance can be enhanced by modulating the energy of the inserted watermark

to compensate for the host interference. The embedding approach is a modification of

SS embedding, where the amplitude of the watermark sequence is varied by a function

µ(x, b),

x̃ = x + µ(x̄, b)w.

where, b denotes the message bit whose value is either +1 or −1, and x̄ = 〈x,w〉/‖w‖.

Note that traditional SS is a particular case of ISS in which the function µ is made

independent of x̄. They give an approximation of µ as a linear function, given by

µ = αb − λx̄, where parameters α and λ control the distortion level and removal of the

carrier distortion on the detection statistic.

2.1.2 Host Interference Rejecting Methods

In the previous section a class of watermarking methods that consider the host sequence

as interfering noise was discussed. During detection this interfering noise can be sub-

tracted before decoding depending on whether it is a blind or non-blind watermarking.

It can be naturally concluded that non-blind watermarking performs better than blind

watermarking because of host interference. However, most practical watermarking sce-

nario’s require blind watermarking.

In this section blind watermarking techniques that reject interference of the host are

reviewed. Such methods are commonly called “communication with side information
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Figure 2.1: Communication with Side Information at the Encoder.

at the encoder” and were first published independently by Chen and Wornell [20] and

Cox, Miller and McKellips [31]. The essential idea in such methods is that, although

in blind watermarking the detector does not know the host sequence x, the encoder

can use its knowledge of x to reduce the influence of the host interference. [31] gives

general concepts about the usefulness of side information at the encoder based on [80]

but says little about how to optimally exploit side information and improve perfor-

mance. Chen and Wornell introduced an almost forgotten paper by Costa [26], which

is an extension of a work by Gel’fand and Pinsker [45] for continuous valued Gaussian

sequences. Costa considered communication as side information at the encoder over a

Gaussian channel and derived a scheme that performs as well as non-blind detection.

Chen and Wornell also proposed watermarking schemes that can be considered as part

of Costa’s scheme, some of which perform as well as Costa’s scheme. Costa’s scheme is

purely theoretical and hence several practical approaches to implement Costa’s scheme

have been proposed. In this section, first the precise communication perspective of

the host interference rejecting methods for AWGN attacks is explained. Next, Costa’s

capacity achieving information embedding scheme for Gaussian IID host and AWGN

attacks is discussed, followed by a brief explanation of some of the several practical

implementations of Costa’s scheme. Figure 2.1 gives an illustration of watermarking as

communication with side information at the encoder.
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Communication Perspective for AWGN attack

Figure 2.1 gives an illustration of the communication problem for watermarking as com-

munication with side information at the encoder. The host sequence x is Gaussian IID

of length Lx, v is AWGN, and the watermark message m ∈ {1, 2, . . . ,M}. The embed-

ding process exploiting side information has two parts: first, an appropriate watermark

sequence w representing m is selected and second, w is added to the host, x. The map-

ping of m onto the sequence w, also of length Lx, is determined by x and a codebook

WLx(K), which is encrypted by the key K. Secrecy of the correspondence between m

and w and the exact realization of all watermark sequences w in WLx(K) is obtained

by a pseudo-random selection of all entries in WLx(K). Watermark sequences w are

zero mean and IID. Note that (2.1) is an upper bound on the watermark capacity in

case of AWGN attacks and is the desired capacity for host rejecting methods also.

Costa’s Scheme

Gel’fand and Pinsker [45] show that for a discrete memoryless channel, for communica-

tion with side information at the encoder, the capacity is given by

C = max
p(u,w|x)

(I(u; x′) − I(u; x)), (2.3)

where u is a finite alphabet auxiliary random variable and where the maximum is over all

joint distributions of the form p(x),p(u,w|x), p(x′|w,x). I(u; x′) and I(u; x) denote the

mutual information between u and the random variable x and the mutual information

between u and the random variable x
′. Costa considers x as additive channel “noise”

which is side information to the encoder. At the encoder, the sequence to be transmitted

is chosen depending on the message m, realizations u of u and the side information x

available at the encoder. Appropriate realization u of u for all possible m and x are

listed in a codebook U , which must be known to the encoder and decoder.

The main ingredients of Costa’s solution to the communication problem depicted
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Figure 2.2: Codebook structure and encoding, decoding process for Costa’s scheme.

in Figure 2.1 are (1) the design of a specific Lx dimensional codebook ULx and (2) an

appropriate encoding process. The codebook ULx is given by

ULx = {ul = wl + αxl|l ∈ {1, 2, . . . , LU},w ∼ N (0, σ2
w
ILx

),x ∼ N (0, σ2
x
ILx

)}, (2.4)

where w and x are realizations of two Lx-dimensional independent random processes x

and w with Gaussian PDF, ILx
is an Lx-dimensional identity matrix, and 0 < α < 1

is a codebook parameter. The size (number of entries) of the codebook is given by

LU = ⌈2(Lx·I(u;x′)−ǫ)⌉, where ǫ is an arbitrary small positive number. The codebook

is partitioned into LM disjoint sub-codebooks in such a way that each sub-codebook

ULx
m contains the same number of sequences. Thus the total codebook is defined by

ULx = ULx

1 ∪ ULx

2 ∪ ULx

3 ∪ . . . ∪ ULx
m ∪ . . . ∪ ULx

LM
. This codebook is available at the

encoder and the decoder. The structure of ULx and the encoding and decoding process

is depicted in Figure 2.2.

The encoding is defined as follows. Given, the host sequence x and the watermark

message m, first a pair (ui,x), also called the joint typical sequence, in the sub-codebook

ULx
m is found. Searching for a joint typical sequence is equivalent to looking for a

codebook entry ui in ULx
m such that w = ui−αx is nearly orthogonal to x (in Euclidean

space). If no such sequence is found, the encoder declares an error. however, the

probability of finding no suitable sequence ui vanishes exponentially as Lx → ∞. The

watermarked sequence x̃ = x + w is transmitted over the channel.
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The decoder receives x′ = w+x+v, searches the entire codebook ULx for a sequence

u such that the pair (u,x′) is jointly typical. An error is declared if more than one

sequence or no sequence is found, the probability of which is low. The index m̂ of the

sub-codebook ULx
m containing u is the decoded watermark message. The probability of

error averaged over a random choice of codes goes to zero exponentially as Lx → ∞.

Costa showed that for the codebook (2.4) with

α = α∗ =
σ2

w

σ2
w

+ σ2
v

=
1

1 + 10−WNR[dB]/10
, (2.5)

the capacity is

CAWGN
costa =

1

2
log2(1 +

σ2
w

σ2
v

), (2.6)

which is equal to CAWGN
non−blind. (2.6) shows that not knowing the host sequence at the

decoder does not decrease capacity, which is completely determined by the WNR =

10log10(σ
2
w
/σ2

v
)[dB],. The proof of optimality of Costa’s scheme is in the sense that

there exists a randomly chosen codebook ULx so that the capacity can be achieved for

Lx → ∞. However, this is not practical since the size LU of ULx can become very

large, even for modest value of Lx and size of watermark alphabet M. Besides this,

searching in such a codebook is not practical due to its random structure and huge size.

So some practical approaches to implement Costa’s scheme have been proposed which

are suboptimal in performance.

Quantization Index Modulation (QIM)

This technique was proposed by Chen and Wornell [20, 19, 18] where the host sequence

x is quantized depending on the watermark information to be embedded. A quantizer

can be uniquely described by a set of reconstruction points Q in an L-dimensional

space and a rule for assigning a length-L input sequence to one of the points defined

in Q. The minimum distance rule is used for selecting the appropriate points and

different quantizers are characterized by their reconstruction points Q. The number
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of quantizers in the ensemble determine the information embedding rate. The size and

shape of the quantization cells determine the embedding-induced distortions, all of which

arises from quantization error. The minimum distance between the set of reconstruction

points of different quantizers in the ensemble effectively determines the robustness of

the embedding.

“QIM” involves first defining a set of quantizers {Q1,Q2, . . . ,QLM
} to the set of

indices, M = {1, 2, . . . , LM}, representing the LM possible watermark messages. Then

for embedding message m, the host sequence x is quantized using Qm to obtain the

watermarked sequence x̃. For decoding, the decoder quantizes the received sequence

x′ by the union of all the quantizers {Q1,Q2, . . . ,QLM
}. For equiprobable watermark

messages m, the decoder determines the index of the quantizer containing the recon-

struction point closest to the received sequence. Hence QIM can be seen as a special

case of Costa’s scheme for α = 1, where w is equal to the quantization noise.

A key aspect behind the practical implementation of QIM systems involves the

choice of practical quantizer ensembles. A convenient structure considered in [18] is the

so-called dithered-quantizers, which has the property that the quantization cells and

reconstruction points of any given quantizer in the ensemble are shifted versions of the

quantization cells and reconstruction points of any other quantizer in the ensemble1.

In non-watermarking contexts, the shifts typically correspond to pseudorandom vectors

called dither vectors. For information embedding purposes, the dither vector can be

modulated with the embedded sequence, i.e., each possible embedded sequence maps

uniquely onto a different dither vector. The host sequence is quantized with the resulting

dithered quantizer to form the composite sequence. Chen and Wornell call this type of

embedding as “dither modulation”(DM) and the QIM technique can be called dither-

QIM. Chen and Wornell discuss two QIM schemes, namely (a) binary dither modulation

using a shifted uniform scalar quantizer and (b) spread transform dither modulation

where the information embedding in a spread transform watermarking scheme is done

1The quantization noise in a dither quantizers closely emulates an IID sequence of uniformly dis-
tributed variables and is uncorrelated with the input sequence[48].
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using dither-QIM. This technique is a suboptimal approach.

Spread Transform Watermarking (ST)

Chen et al [20] also proposed a particular QIM strategy, which is a more general approach

to spreading watermark information over many host sequence elements and called it

spread transform (ST) watermarking. Here, the watermark is not directly embedded

into the host x, but into the projection xST of x onto a random sequence t. Thus l-th

element of the projection xST is given by

xST
l =

τl+τ−1∑

n=τl

xntn,

where, τ denotes the spreading factor, meaning the number of host sequence elements,

that belong to one element of xST . This indicates that the information to be embedded

in an element of xST will be spread over τ elements in x, by the inverse ST. The

watermarked sequence is computed by the inverse spread transform

x̃n = xn − xST
l tn + x̃ST

l tn = xn + wST
l tn,

where l = ⌈n/τ⌉. For watermark detection, the received sequence x′ has to be pro-

jected onto t. Thus extraction and decoding of the watermarked information has to be

performed on the transformed data x′ST , where

x′ST
l =

τl+τ−1∑

n=τl

x′
ntn.

The basic idea of ST watermarking is that any component of the channel noise v, that is

orthogonal to the spreading vector t does not impair watermark detection. An attacker

not knowing t, has to introduce much larger distortions to impair a ST watermark as

strong as a watermark embedded directly into x. Under AWGN attack, the performance

of ST watermarking is given by WNRτ = WNR1 + 10log10τ [dB]. Thus increasing the
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spreading length gives an additional power advantage over SS watermarking.

Chen and Wornell later proposed a class of watermarking schemes known as “Distortion-

compensated QIM”, which build directly on the scheme introduced by Costa. The

scheme is based on large random codebooks. Watermark embedding boils down to

replacing a vector of samples by a nearby codeword that corresponds to the to-be-

embedded symbol. In order to optimize the rate of the watermark channel, an addi-

tional parameter α (0 ≤ α ≤ 1) is introduced, referred to by Chen and Wornell as the

distortion compensation parameter. The interpretation of this parameter is that, rather

than replacing a sample x by the nearby codeword c, an intermediate point is chosen.

That is, x is replaced by x + α(c − x). Note that, setting α = 1 equals embedding

without distortion compensation, i.e., simply embedding using a scaled quantizer. The

advantage of using a scaled quantizer is that the embedding robustness is increased

by a factor of 1/α2, and the distortion is also increased by a factor of 1/α2. At the

other extreme, setting α = 0 is equivalent to complete distortion compensation, i.e., no

embedding at all. Hence distortion is minimum. Both Costa and Chen et al. derive an

expression for the rate maximizing value α∗ of the distortion compensation parameter

α, given by (2.6). In practice, both are impractical, as both of them are based on large

random codebooks.

Suboptimal Schemes

QIM has been shown to fail to guarantee reliable communication, in cases where the

watermark-to-noise ratio is negative, since the quantizer cells are too small. Also, al-

though optimal it is not practical. Recently a few suboptimal approaches to implement

Costa’s scheme have been proposed[38, 75]. The scheme proposed in [38], named Scalar

Costa scheme (SCS), replaces the use of large codebooks by simple structured coodbooks

consisting of sample-wise uniform quantizers. For this, simpler scheme (which from the

perspective of capacity is sub-optimal) a different value of α will maximize the rate.

A numerical approach was taken to derive an expression for the rate-maximizing value
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α∗. Ramkumar [75] proposed a watermarking scheme based on the idea of continuous

periodic functions for self noise suppression (CP-SNS). The periodicity is related to the

cell size in Costa’s scheme using lattice codebooks. CP-SNS with thresholding is almost

equal to SCS, except that the weighted embedding of the quantization error in SCS, is

replaced by thresholding each quantization error sample to a given maximum absolute

value.

Although lattice codes are appealing for their computational simplicity, they have

some inherent limitations. First, simple orthogonal lattices do not pack code words

together very efficiently. For example in 2-dimensions it is better to use a hexagonal

lattice. This lattice ensures the same minimum distance between code words as the

orthogonal lattice, but packs more code words onto the same area. Several good lattices

for higher-dimensional spaces are also known [24]. However, the payload that is carried

with simple orthogonal lattice systems using side information is vast compared to those

that do not use side information. Still, it is far from the theoretical bound. So this is

still a widely researched area. The second problem with lattice codes is that they are

inherently weak against valumetric scaling, such as contrast changes in images. This

is a serious concern for some applications. So marks invariant to scaling need to be

found. In general, handling synchronization attacks or more general transformations in

Costa’s framework is still an open area of research. Presently only methods in which the

host is transformed to some linear or non-linear transform domain have been proposed

to tackle this issue. Some ideas based on error correction coding for coding with side

information has been proposed as an alternative to lattice structure codes [22]. This is

in contrast to error correction coding that is used by the detector to search for valid

code words, this coding takes place at the encoder.

The above models for watermarking propose some practical ways for using side infor-

mation in a watermarking system. Recently a lot of research has been directed towards

improving these models. The frameworks proposed in this dissertation can use any of

these host interference rejecting or non-rejecting models with suitable modifications.
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The above review also sheds light on why there is a need to look into the prospects of

using knowledge of the hosts database.

2.1.3 Methods using Partial Information at Detector

In section 2.1.1 methods that consider the host as noise were discussed. These methods

primarily perform well under non-blind detection. In section 2.1.2 methods that do not

consider the host as noise was discussed. It was shown how by using host knowledge at

the encoder, theoretically, the watermarking rate achieved under blind detection can be

made the same as that under non-blind detection. A natural follow up from these two

scenario’s would be methods that use partial information of the host at the detector.

A contemporary work by Cannon’s and Moulin [14], proposes a system that uses

a secure channel between the encoder and detector to send over a hash of the host to

the detector. The hash conveys partial information about the host to the detector.

They demonstrate that when combined with a statistically optimal detection test, the

hash function can be designed to dramatically enhance detection performance, and in

particular offer-host sequence rejection capabilities. A recent work by Voloshynovskiy

et al. [92] proposes an extension of a traditional robust data-hiding set-up with host

state at the encoder to a case when partial side information about the host statistics is

also available at the decoder. They demonstrate that the knowledge of the host statis-

tics at the decoder can relax the critical requirements of the random codebook based

methods with assumption of knowledge of attack channel statistics at the encoder. This

is an interesting result as in the above discussed host interference rejecting methods,

an assumption about the knowledge of the noise variance is made at the encoder, al-

though the actual attack parameters are not available, which can only be estimated at

the decoder.

It is to be noted that the appropriate use of partial information at the detector

and the corresponding development of relevant systems is still an open problem. This

dissertation proposes a framework that gives some idea about how partial information
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at the detector can be helpful.

2.2 Watermarking using Communication

One particular problem with state-of-the-art watermarking systems is that they are

symmetric. This means that, the key K, which is a very important parameter defining

the security of the system, and which is necessary for watermark encoding and detec-

tion is identical for both the encoding and detection unit. For watermark detectors

that are in public domain, knowing all critical parameters of the watermarking scheme,

makes them prone to attacks. Thus symmetric watermarking systems pose security

risks as the detector has to know the private key. To counter this some public key wa-

termarking methods [52, 42, 43, 44, 91, 39] have been proposed that do not give enough

information during detection, to impair the embedded watermark. Note that public

key watermarking methods are different from public watermarking methods. Public

watermarking methods refers to blind watermarking methods, whereas public key wa-

termarking methods refer to the fact that the encoding and detection keys are different,

wherein the decoding key is publicly known and the encoding key is private. But there

are some general doubts about how good the public key methods are, because they have

been proved to be prone to attacks too. This behooves a careful look at watermarking

systems themselves. One interesting observation is that although watermarking systems

have been widely accepted to be analogous to communication systems, very few tech-

niques actually take advantage of the possibility of communication between the encoder

and detector.

From the inherent problems in private and public watermarking systems it is to be

noted that the solution seems to be in giving in as much less information as possible

at the detection unit. This brings in the concept of interactive watermarking, wherein

very less information is provided at the beginning and detection is carried out through

interactions between the server and the detector over the communication channel. This

may bring in other issues of interest, concerning channel coding and so on. Recently
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a solution to interactive watermarking based on the theory of cryptographic protocols

has been proposed [3]. It uses zero-knowledge protocols and commitment schemes to

establish proof of ownership of a watermarked host. Before this, several other works

had also attempted to use zero-knowledge proofs for proving ownership [59, 47, 32].

Although theoretically, zero-knowledge proofs provide the best level of security, the

communication cost involved in exchanging fairly big cryptographic keys between the

encoder and detector, makes them somewhat impractical. Nevertheless, it does give a

clue that communication between the encoder and detector can be exploited for more

secure detection. It is also interesting to note that a commercial product - Digimarc’s

MediaBridge [5, 2] uses communication to extract extra information about a water-

marked host. The extra information is stored in a server. This introduces a platform

where the server and the detector in a watermarking system can communicate with each

other and thus establish the presence of a watermark.

Works by Voyatzis and Pitas [93] and Cannons and Moulin [14] also propose the use

of a secure communication channel between the encoder and detector. Voyatzis et al. use

it to explain a content verification system, wherein a customer sends the to-be-verified

data, to a Content verification system (CVS) for verification. The result of detection

is relayed back to the customer. This method can use public key methods to do the

verification but it is not the same as public watermarking. They do not mention the

use of partial information at the detector. Cannons et al. also show the use of a secure

side channel to share a hash of the host with the detector, which enhances detection

performance. The hash gives partial information about the host to the detector as

discussed before.
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Chapter 3

Resolving Ambiguity in Copy

Detection

3.1 Introduction

In Chapter 1 a generic watermarking approach that uses knowledge of hosts database

was proposed. In this chapter, the proposed approach is treated as a combination

of retrieval and watermarking framework to reduce the ambiguity problem in copy

detection systems.

Several applications like near-replica detection[68, 58], copy detection[51, 17], sub-

image retrieval[58], content based image retrieval[6, 81, 40, 15] etc., use retrieval systems

as the underlying framework. Typically, in a retrieval system, a feature space is chosen

and the distance of the features of the query from the features of the hosts in the database

is measured based on a metric. The host or a set of hosts near to the query in feature

space, is returned as search result. To be robust against permissible manipulations or

inevitable noise, an effective retrieval system typically chooses a feature space and a

metric, such that any two hosts in the database are well separated from each other.

If two hosts are close to each other, detection error might occur, i.e., using a slightly

manipulated version of one of them as query may lead to the wrong host.
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Finding such a good feature representation and metric is not easy and is an active

research area. Instead of refining a known feature representation and distance metric, an

alternative approach to improve the effectiveness of retrieval systems is proposed herein.

The original hosts are slightly modified to increase their mutual separation in feature

space above a threshold, such that, the perceptual difference between the original and

the modified host is minimized. The possibility of modifying the original derives its

inspiration from the field of watermarking, where the encoder embeds information into

the host by modifying the original. If the feature representation of the hosts is consid-

ered as data points in high dimensional space, the above proposal can be expressed by

the following problem statement:

Given a set of multi-dimensional data points, how to minimally shift them so that their

mutual separation is above a threshold.

Note that, under a practical setting, for increasing mutual separation, not all the hosts

in the database need to be modified because of the natural separation of the hosts in

feature space. This decreases average distortion. The use of knowledge of the mu-

tual separation between the hosts in modifying them can be seen as a way of using

“knowledge of the hosts database” during encoding.

An application that can benefit from a solution to the above problem is a copy detec-

tion system, where the emphasis is on exact detection as opposed to inexact detection

(as is common in CBIR systems). In a typical copy detection scenario, an owner owns a

large database of images that is made available to the public for viewing only. The owner

may wish to know whether there are illegal copies of his images in the web. He could

employ a web-robot, which randomly picks an image from the web, and checks whether

this image is a copy of an image in his database. If a copy is found, the owner will

decide about what action to carry out. Note that the illegal copy could be a modified,

for example a lossy compressed, cropped, rotated, or even a maliciously altered version,
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(a)
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Figure 3.1: Illustration of the ambiguity problem and its solution
using the proposed framework. Here A(I) = {F1,F2,F3,F4} =
{(3, 2), (4, 3), (3, 4), (2, 3)}, is the original feature database, A(Ĩ) = {F̃1, F̃2, F̃3, F̃4} =
{(3,−0.83), (6.83, 3), (3, 6.83), (−0.83, 3)} is the modified feature database and
N = {(−1.40, 0.12), (0.08,−0.95), (1.64,−1.37), (−2.0, 0.75)}, is the noise (intensional
or un-intensional manipulations) that both A(I) and A(Ĩ) encounters to generate
A(I ′) = {F′

1,F
′
2,F

′
3,F

′
4} and A(Ĩ ′) = {F̃′

1, F̃
′
2, F̃

′
3, F̃

′
4} respectively.

modified by an attacker who is aware of the detection mechanism. Furthermore, in a

scenario where the owner had sold two copies of the same image in his database to two

different customers, he may want to identify each copy individually. This is equivalent

to having multiple copies (duplicates) of the same image in the database.

The problem of missed detection, which arises due to lack of separation between the

hosts in feature space, is referred to herein as the ambiguity problem. Figure 3.1 gives

an illustration of the ambiguity problem and also demonstrates the main idea. Given

a feature database A(I), it is modified by shifting the features away from each other

to generate a database A(Ĩ). This is depicted in Figure 3.1(a). Table (b) in Figure 3.1
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gives the pairwise distance between the elements in A(I). By adding noise N to A(I),

A(I ′) is obtained (refer Figure 3.1(a)). Table (b) gives the pairwise distance between

A(I) and A(I ′). The 3rd column in Table (b) shows that F2 is the nearest to F ′
3. Hence

adding noise creates ambiguity which will lead to wrong detection when the query is

F ′
3. On the other hand, Table (c) gives the pairwise distance between elements in A(Ĩ).

Note that the mutual separation between the features has increased. By adding noise N

to A(Ĩ), A(Ĩ ′) is obtained (refer Figure 3.1(a)). Table (d) gives the pairwise distance

between A(Ĩ) and A(Ĩ ′). Note that there is no ambiguity problem as the features are

still well separated even under noise N.

In this work, the goal is to reduce ambiguity in copy detection systems and a unified

framework combining retrieval and watermarking is proposed to achieve this goal. The

next section explains the motivation behind looking into a unified framework which

addresses some of the limitations of existing frameworks. In this chapter, a host sequence

primarily refers to an image.

3.2 Related Work and Motivation

Recently there has been growing interest in copy detection for copyright protection of

images [2, 51, 17, 68, 11, 58]. Most of the works highlight the importance of exact

detection as opposed to inexact detection (as is common in CBIR systems). Existing

copy detection systems can be classified into two categories or frameworks: retrieval

based [68, 11, 58, 17, 51] and watermarking [2] based framework.

Retrieval Framework In a retrieval framework, detection is done by computing the

feature representation of the query and using some similarity matching technique to

search through the database of pre-computed features [50, 74]. Retrieval systems form

an integral part of systems that organize multimedia content libraries [79, 88, 69] and

retrieve multimedia data based on content [96, 55, 81, 40, 15, 6]. The emphasis here

is on finding a good feature representation and distance metric. Some improvements
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in distance metrics are proposed in [68]. With regard to finding an appropriate fea-

ture representation, it is noted that images can be represented either by global or local

features. Recent works [66, 58, 70] highlight the efficacy of local features in improving

accuracy. In [66, 58] robust scale, rotation invariant descriptors are proposed. Such

features however create ambiguity problem when an image has multiple similar regions

or when the database consists of images of the same scene taken from different poses.

In [70] a solution to this is proposed which augments SIFT [66] descriptors with a global

context vector that adds curvilinear shape information for a much larger neighborhood.

If the database consists of duplicate copies of the same image this solution would also

fail to resolve ambiguity. Another limitation of retrieval systems is that, they are in-

efficient. This is because searching and maintaining the high dimensional hosts are

computationally intensive. In particular, performance of retrieval systems relies heavily

on the nearest-neighbor search, which can be stated as follows: given a set of points

in d-dimensions, with preprocessing allowed, how quickly can a nearest neighbor of a

given query point q be found. Nearest-neighbor search is an important operation in

retrieval systems and many algorithms have been proposed, such as R-tree[49], PMR

quadtree [53], k-d-trees[10] and their variants [63, 94, 41]. The computing resources

required by these algorithm are measured by the size of the index tree and the search

time. In most algorithms, the required resources increase rapidly as the dimension of

search space increases. This phenomenon is generally referred to as the dimensionality

curse and is usually avoided by reducing the dimensionality of the search space. Re-

ducing the dimensionality for fast retrieval leads to information loss and hence is not a

good option, because it may lead to wrong retrieval.

Watermarking Framework In a watermarking framework, a unique identifying

mark or message is embedded into every host. For example, hosts in database I are

associated with messages 〈(I1,m1), (I2,m2), . . . , (In,mn)〉, which are embedded into the

hosts. Detection is done by extracting the message from the host and comparing against

the messages associated with the hosts in the database. Once an associated message is
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reliably extracted, searching is fast and hence efficient. Digimarc’s MediaBridge Reader

[5] is one of the few recent efforts towards using watermarking for multimedia content

identification. It uses the concept of “smart images” wherein the watermarked message

includes pointers to some knowledge structure on a local database or on the Internet.

The watermark (message) detector extracts the message from the host and subsequently

extracts more information about the host from the database. The issues in watermark-

ing are that, distortions have to be introduced and a tradeoff between distortion and

robustness has to be achieved. In watermarking, detection is fast and can be done

in an off-line setting as the detector does not need to access a database. However, a

watermarking framework with fixed detection routine, is vulnerable to attacks.

Note that retrieval and watermarking framework both have their advantages and dis-

advantages. Although the retrieval method is computationally expensive and introduces

ambiguity, it achieves zero distortion. This is in contrast to the watermarking solution,

which generates undesirable distortions, but achieves fast retrieval and resolves ambi-

guity. Hence, the interesting question is, whether a combination of both techniques can

be devised to strike the right tradeoff, achieving low distortion, enabling fast retrieval,

and resolving ambiguity. Kalker et. al [4] brings out some relationship between water-

marking and retrieval systems (using perceptual hashing), but no concrete technique to

combine them is specified. These observations form the motivation for investigating a

combination of these two frameworks that achieves a tradeoff between them.

Some interesting observations that provide some idea on how such a combination

framework can be designed are as follows: (1) robustness of retrieval systems is depen-

dent on the robustness of the feature representation. If the same feature representation

is employed by a watermarking-based and retrieval-based system, both systems would

achieve the same robustness. (2) Although high dimensionality in retrieval systems hin-

ders search speed, note that high dimensionality means high capacity for information

embedding and hence is an advantage from the watermarking perspective. (3) Water-

marking based systems are less secure, as the detection routine is fixed and can not be
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Figure 3.2: Illustrative block diagram of the proposed framework (a) Preprocessing
stage (b) Detection stage.

changed after the images are watermarked, Hence, it is not easy to respond to subse-

quent attacks that target at the fixed watermarking method. A search based detector, as

in retrieval systems, can enhance the security of such a system as the detection routine

is not fixed.

Some of the above ideas are taken into consideration to propose a unified framework,

which is formally presented in the next section.

3.3 Proposed Framework

The overall framework is depicted in Figure 3.2. The framework follows the approach

modelled in Figure 1.2. The encoder is the routine named “separation algorithm” and

the detector is the routine named “search nearest neighbor(s)”. Note that the encoder

has access to the original database and the detector has access to the modified database.

The framework consists of a preprocessing and detection stage. The key component is

the separation algorithm, which modifies the feature vectors such that they are well

separated and yet minimized distortion. Section 3.4.1 will give a detailed discussion
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of this algorithm. The reconstruction is also an interesting side issue but will not be

elaborated upon.

Preprocessing Stage Given a database of images I = {I1, I2, . . . , In}, I is pre-

processed to get a modified database Ĩ = {Ĩ1, Ĩ2, . . . , Ĩn}. For this, first the feature

representation of the images are extracted. Let A(I) be the feature representation of

the image I, and F = {A(I1),A(I2), . . . ,A(In)} = {F1,F2, . . . ,Fn}, denote the set

of features corresponding to the image database I = {I1, I2, . . . , In}. Next, these fea-

ture vectors are significantly separated from each other using a separation algorithm to

generate a modified set of features F̃ = {F̃1, F̃2, . . . , F̃n}.

Finally, the modified database Ĩ is reconstructed from F̃ . In other words, the

reconstruction stage takes an image I, its modified feature F̃ and finds a Ĩ such that

A(Ĩ) = F̃ so that Ĩ is close to I. The modified database Ĩ is now ready to be released

to the public.

Detection Stage Given a query image I′, the detector extracts its feature represen-

tation F′ and finds its nearest neighbor, in terms of ℓ2 norm distance metric, in the

modified database Ĩ. Based on the nearest neighbor(s), more elaborate tests can be

conducted to determine whether the query is a copy, or we can simply decide whether

it is a copy by comparing their distance with a threshold. For performance evaluation,

the measure used in this work is to find out whether the system correctly output the

nearest neighbor. In this work, the two main technical issues are: the reconstruction

algorithm and the separation algorithm and the focus of this work is the separation

algorithm.

3.3.1 Reconstruction

The reconstruction algorithm depends on the choice of feature representation. For

certain representations, reconstructing the image is straightforward e.g., DCT, DFT

coefficients. Besides the ease of reconstruction, the choice of feature representation
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also depends on the type of noise to handle. Several global features, namely analyt-

ical Fourier-Mellin transform (AFMT ) invariants [46], color histograms [85] etc, and

local features, namely SIFT features [66, 57], that are robust to rotation-translation-

scaling (RST), illumination variances, affine, and geometric transformations etc, have

been proposed. As a proof of concept implementation, to achieve robustness against

geometric distortions, AFMT invariants [46] are chosen, which are robust to RST. One

important assumption made in the analysis is that, distortion in the image space can

be approximated by a proportional gaussian noise in feature space. The validity of this

is experimentally verified in Section 3.5.1.

3.3.2 Separation

Given a set of feature vectors F = {F1, . . . ,Fi, . . . ,Fn} where each Fi is a vector in

the d-dimensional space Rd, and a parameter δ, the goal is to preprocess F to get a

set of modified feature vectors F̃ = {F̃1, . . . , F̃i, . . . , F̃n}, such that (1) the maximum

distortion between F and F̃ is minimized, while (2) maintaining a minimum separation

of δ between the elements in F̃ . Specifically,

minimize ǫ

subject to ‖F̃i − F̃j‖2 ≥ δ, for all i 6= j (3.1)

ǫ ≥ ‖F̃i − Fi‖2, for all i (3.2)

Herein, ǫ denotes the maximum distortion, and δ the separation. By minimizing the

maximum distortion, modification to each feature will be kept low. The constraint on

separation ensures that the modified features are well separated.

Alternative objective function The usual practice in watermarking literature is

to minimize average distortion instead of minimizing the maximum distortion. So an

alternative formulation for constraint (3.2) would be ǫ ≥∑i(‖F̃i − Fi‖2
2)/n. Although
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only maximum distortion is considered, the proposed algorithm and analysis can be

adopted for average distortion also.

Choice of distance metric Herein, ℓ-2 norm distance metric is used to measure the

separation in feature space. This is an assumption which is commonly adopted [58].

ℓ-2 norm distance metric is also used to measure the distortion during preprocessing.

Note that, measuring the distortion by ℓ-2 norm does not necessarily translate to the

same distortion in the image space. For example, an image I and its rotated version

I′ (say rotated by 45 degree) should be considered as copies of each other and thus

their separation in feature space should be small, when the feature space is invariant to

rotation. However, they are perceptually different and hence the distortion value should

be large. In this case, the distortion value is the separation value, which is small. This

happens because the feature representation is not based on perceptual considerations.

Choosing a perceptual measure is a field of active research. Hence for the purpose of

simplicity in representing the distortion as an optimization constraint (3.2), ℓ-2 norm is

used.

3.4 Approximate Algorithm

The optimization problem constraint (3.1) is non-convex in the sense that the solution

space defined by the constraints is non-convex. Such optimization, in general, is very

difficult to solve. For example, by replacing the inequality in (3.2) to equality, it es-

sentially becomes a map labelling problem which is NP-hard[83]. In this section, an

efficient approximate algorithm by restricting the constraint is proposed. Two methods

that help achieve further speedup are also proposed.

3.4.1 Restriction Method

The proposed restricted formulation is as follows,
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Figure 3.3: (a) Geometric explanation of restriction method. (b) Simulation of the
behavior of approximation ratio with change in size of database. The database consists
of randomly generated feature vectors of dimension 25.

minimize ǫ

subject to
(Fi − Fj)

T

‖Fi − Fj‖2
(F̃i − F̃j) ≥ δ, for all i 6= j (3.3)

ǫ ≥ ‖F̃i − Fi‖2, for all i

Each quadratic constraint in (3.1) has now been restricted to a linear constraint.

The restriction is motivated by the following observation. By the Cauchy-Schwarz’s

inequality,

‖Fi − Fj‖2 ‖F̃i − F̃j‖2 ≥ (Fi −Fj)
T · (F̃i − F̃j) (3.4)

Putting (3.4) into (3.3), we have

(Fi − Fj)
T

‖Fi − Fj‖2
· (F̃i − F̃j) ≥ δ ⇒ ‖F̃i − F̃j‖2 ≥ δ

Therefore the solution space of the restricted formulation is a convex subset of the
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Figure 3.4: Illustration of the Linear Constraint Restriction Method. All points are in
R2 and consists of (a) 3 points (b) 5 points. The value of δ is taken as 2.

original solution space in (3.1). The restricted formulation (3.3) can be cast as a second

order cone programming (SOCP) problem and has an efficient solver[84]. This kind of

restriction for a hard non-convex constraint as (3.1) has been suggested in exercise 8.27

of [12]. For a minimum distance constraint, ‖F̃i − F̃j‖2 ≥ δ, the restriction is given

as, aT
ij · (F̃i − F̃j) ≥ δ, where aij is any direction with ‖aij‖2 = 1. Note that this is

equivalent to a projection of the vector between F̃i and F̃j, onto aij . In the proposed

formulation this direction is chosen to be the vector between the original data points.

A geometric interpretation for this is given next.

Geometric Interpretation Figure 3.3(a) gives a geometric explanation of the re-

striction. Suppose that a feature vector Fi is fixed and another feature vector Fj is to

be shifted to F′
j so that it is δ distance away from Fi. The shifted feature vector F′

j

must lie on or outside the arc AB of radius δ with Fi as the center (Figure 3.3). A point

on the arc AB which is closest to the point Fj is the point F′
j. Clearly, the minimum

shift from Fj to F′
j is along the direction (Fj −Fi).

Figure 3.4 (a) and (b) show two examples of the approximate algorithm implemented,

for points in R2. In both examples, the solution for the restricted formulation is indeed

the optimal solution of the original problem.

38



To investigate the accuracy of the approximate algorithm, an experiment was per-

formed where a few hundred 25-dimensional vectors were randomly chosen from a multi-

variate Gaussian distribution where the covariance matrix is the identity. Note that a

theoretical lower bound on the optimal maximum distortion (with respect to the original

optimization problem) is ǫl = (δ − dmin) where dmin is the minimum distance between

any two vectors in the data set. Figure 3.3 (b) show the ratio of ǫl/ǫ
′ where ǫ′ is the

maximum distortion obtained under the restricted formulation. It is observed that al-

most constant approximation is achieved in this experiment as the approximation ratio

lies within 0.5 to 0.66. There are small ups and downs in the actual ratio value within

in this range. The downs can be ascribed to the fact that, once a point is introduced

that reduces dmin, the value of ǫl is increased, but proportionately more distortion is

required to separate the points, thus increasing the value of ǫ′ and reducing the value

of the approximation ratio.

3.4.2 Improving Scalability

If the data set consists of n vectors, each in Rd, then the number of constraints in the

above formulation is in Θ(n2), and the number of variables is dn. For a database of

images where n and d are large, the number of constraints and variables are too large

for existing SOCP solvers. For example, in the experiments performed for this work,

the number of images is n = 23000 and d = 400. Hence the size of the input needs to

be significantly reduced.

Constraint Pruning Many constraints are redundant as the features are already

far apart from each other. Note that for a particular feature vector its interaction

with all feature vectors which are within a ball of radius δ + 2ǫu around needs to be

considered, where ǫu is an upper bound of the maximum distortion ǫ. For the proposed

application, a reasonable upper bound of ǫ is δ. This is because distortion of δ will give

unacceptable perceptual distortion from the original image. Hence, feature vector pairs

which are within a radius of 3δ could only be considered.
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Although this method significantly prunes the number of constraints, it is still not

good enough for very large databases.

Dividing into subproblems Another way of improving scalability would be to par-

tition the feature F into well-separated subsets, so that the features in each subset can

be independently modified. Given 2 subsets C1 and C2 of F , define the distance between

them as

d(C1, C2) = min
F1∈C1,F2∈C2

{‖F1 − F2‖2}.

If d(C1, C2) > δ + 2ǫu where ǫu is an upper bound of ǫ, then there is no interaction

between C1 and C2. Hence, optimization on C1 and C2 can be performed independently

and yet the solution will still remain the same, as if they were considered together. Such

partitioning can be easily found by scanning the pairwise distances among the features.

Note that each feature can be viewed as a vertex in a graph, wherein, there is an edge

between two features F1 and F2 if and only if ‖F1 −F2‖2 < δ +2ǫu. Then the partition

corresponds to the different connected components in the graph.

In all experiments performed in this work, the combination of the above two methods

is sufficient in reducing and dividing the optimization problem into manageable sub-

problems. Note that pruning away constraints and dividing into sub-problems does

not affect the optimality of the solution. That is, no approximation is being applied.

Nevertheless, in cases where the above two methods fail to achieve manageable sub-

problems, clustering algorithms can be applied on the feature set in that sub-problem.

Features that lie on the boundary of the clusters are shifted so that the clusters are

δ + 2ǫu apart. This is the technique applied in [77] and will be discussed in chapter 4.

However, unlike the above two methods, this is an approximation and the speedup will

affect the solution.
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3.5 Implementation

A proof of concept system, RAM (Resolving Ambiguity by Modification) was developed

and it follows the framework illustrated in Figure 3.2. Experiments were conducted on a

database of colored images from two data sets, namely, (1) COIL-100 data set[71] (7200

images of average size 128 × 128) and (2) Corel Image database[25] (15949 images of

average size 384×256 or 256×384). The Corel database consists of natural images, few

of which are duplicates. Out of 15949 images there are 65 duplicates. The COIL-100

database consists of images of 100 objects taken from different poses. As noted by Ke

et. al. [58] features robust to pose changes would not fair well for near-replica detection.

So it is interesting to test how the ability to modify the features helps in near-replica

detection of images of the same object at different poses. This is one of the primary

motivations in choosing the COIL-100 database.

Feature Representation For invariance to color modification the Y-component of

the YUV representation of the images were extracted and the AFMT invariants of

these representations were obtained. The fast algorithm as in [36] was employed to

compute a two dimensional Fourier transform on the log-polar transformed image of

the Y-component. Coefficients 1001 to 1400 of the AFMT invariant vector were taken

as the feature representation to form a set of feature vectors, A(I) = {F1,F2, . . . ,Fn}

and they correspond to the mid-frequency components. This choice was experimentally

verified. 30 images were taken, whose blocks of 400 AFMT coefficients were modified by

adding a random sequence to them, starting with the first coefficient and then shifting

it as a sliding window from the 1st to the 10000th coefficient. Figure 3.5(b) illustrates

the perceptual measure (average PSNR) after reconstruction. For coefficients after the

1000th coefficient, the PSNR between the original and reconstructed images remain

almost constant. Therefore the 1001th to 1400th coefficients were taken.
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Figure 3.5: (a) Distribution of the amount by which the feature representation A(I)
gets shifted when their corresponding images in Ĩ are manipulated (rotation, scaling,
painting etc). The red line indicates the mean. (b) Change in perceptual distortion
with change in blocks of AFMT coefficients watermarked.

3.5.1 Estimating the Parameter δ

For our analysis, the manipulations on the images in the spatial domain (namely geo-

metric transformations, cropping, painting, adding Gaussian noise, JPEG compression,

brightness change, contrast change etc.) is modeled by AWGN noise in the feature do-

main. To verify this assumption, the distribution of ‖A(I)−A(I′)‖2 (Squared Euclidean

distance) was experimentally estimated, where I is a randomly chosen image from the

database, and I′ is obtained from I by a combination of a rotation of 10o, cropping by

removing 70%, scaling down by 4 times, painting of 4, and AWGN noise of variance

3. The manipulations were all performed in ImageMagick. Such an estimated distribu-

tion is shown in Figure 3.5. It is observed that this distribution of squared Euclidean

distance emulates a χ2 distribution. This intuitively supports the fact that the noise

in the feature domain can be modeled as a Gaussian distribution. The variance of the

noise due to various manipulations is used to estimate an appropriate value for δ, which

makes the separation robust to manipulations.

In Figure 3.5 the variance of the distribution suggests the minimum mutual separa-

tion of the features so as to be robust against manipulations. Hence, the value of δ is
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Figure 3.6: (a) Histogram of the mutual separation between elements in A(I). (b)
Histogram of the mutual separation between elements in A(Ĩ). (For Corel database)

chosen as δ = 0.0375.

3.5.2 Performance of proposed Framework

Preprocessing For the Corel database, the minimum and maximum separation be-

tween any two feature vectors in A(I) is 0 and 0.72483. For δ = 0.0375, after pre-

processing using the separation algorithm in Section 3.4, the minimum and maximum

separation between the feature vectors in A(Ĩ) is 0.0375 and 1.3338 respectively, with

maximum distortion ǫ = 0.001. For the COIL database, the minimum and maximum

separation between any two feature representations in A(I) is 0.0007355 and 0.33369

before separation and 0.0375 and 1.2433 after separation with maximum distortion

ǫ = 0.01855. Figure 3.6 shows the histogram of the mutual separation between the

elements in A(I) before and after preprocessing of the database I. Note that, after

preprocessing all the feature vectors are at least δ separated. An illustration of the

reconstruction process is given in Figure 3.7. The availability of the original image in

the inverse log-polar transformation stage (refer Figure 3.2(a) ) helps to get an accurate

reconstruction. Note that the original and the modified images are perceptually similar.
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(a) (b) (c)

(d) (e)

Figure 3.7: Reconstruction Process: (a) Original Image I. (b) Log-polar transform
of I. (c) Reconstructed log-polar image of preprocessed AFMT invariants A(Ĩ). (d)
Reconstructed preprocessed image Ĩ. (e) Difference between the luminance components
of I and Ĩ.

Detection To test the detection performance of RAM, 211 images in Ĩ are randomly

picked and each image is manipulated by rotating (45o), cropping (removing 70% about

center), scaling (down x4), adding Gaussian noise (strength 3), changing contrast (x2),

changing brightness (150%), painting (x2), shearing (15% about x axis) and JPEG

compressing (quality 20) them to generate 211 query images I ′ = {I′1, . . . , I′211} for each

category of manipulation, i.e, a total of 1899 images. The manipulations are performed

by using ImageMagick. The manipulations performed are similar to the manipulations

in [58, 68]. Next, for every query, their original is searched in Ĩ. Unlike [58, 68] that

searches for the manipulated copies using the original as query, here search is done for

the original in Ĩ using the manipulated query and the nearest neighbors are returned.

The results of the query are presented in the fifth column (titled “Preprocessed”) of

Table 3.1.
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Figure 3.8: Examples of queries into the database. For all of them we can detect the
correct original (for k=1).

3.5.3 Comparison with Existing Framework

For fair comparison of RAM with a retrieval framework that does not do preprocessing,

a retrieval system that uses the 1001th to 1400th coefficients of the AFMT invariants is

considered as the feature representation. 211 images from I are taken and each image is

manipulated using the image transforms described in Section 3.5.2 to generate 211 query

images for each category of manipulation, i.e., a total of 1899 images. The manipulation

are again performed using ImageMagick. Using each manipulated image as query, its

original is searched for in I and the k = 10, k = 5 and k = 1 nearest neighbors are

returned. A retrieval is considered correct if the correct copy is one of the k-nearest

neighbors of the query. Columns 2, 3 and 4 of Table 3.1 give the detection accuracy

obtained by the retrieval system by searching in the original database I. Compared to

the accuracy obtained using RAM (indicated in column 5 of Table 3.1), note that for

a retrieval framework 100% detection accuracy is not achieved even for k = 10. In the

proposed framework for most cases the nearest neighbor (i.e., k = 1) is the query.

Figure 3.8 gives examples of the different kinds of queries considered in the above

experiments. For all these queries correct results were obtained. Since a global feature

representation is used in RAM, the performance of RAM under manipulations like

45



Nearest Neighbor Accuracy
Without Preprocessing(%) Preprocessed(%)
k = 10 k = 5 k = 1 k = 1

Rotation (45o) 100 100 95.26 100
Scaling (down x4) 98.57 98.57 91.46 100

Cropping (remove 70%) 2.84 0.47 0 71.4
Gaussian Noise (3) 96.20 94.3 84.83 100

Paint (2) 95.73 95.73 88.15 100
JPEG Compression (20) 100 100 95.26 100

Contrast (x2) 53.08 47.39 31.75 100
Brightness (150%) 77.72 70.61 60.95 100

Shear (x15) 73.45 60.67 32.7 100

Table 3.1: Comparison of RAM with AFMT based retrieval systems without prepro-
cessing (RF).

RF(%) SIFT(%) RAM(%)
Rotation (45o) 50 48.33 100

Scaling(down x4) 75 36.67 98.3
Cropping (remove 70%) 0 30 68.33

Gaussian Noise (3) 33.33 40 80
Painting (2) 76.67 38.33 90

JPEG Compression (20) 96.67 70 100
Contrast (x2) 16.67 81.67 98.3

Brightness (150%) 51.67 80 100
Shear (x15) 6.67 70 100

Original 100 90 100

Table 3.2: Performance comparison between (a) AFMT based retrieval system without
preprocessing (RF), (b) SIFT based systems and (c) RAM on the COIL database (for
k = 1). Total 360 queries were used.

excessive cropping (say 90%) is less effective than a state-of-the-art retrieval system

(for example [58]). However, the goal here is not to compare with a state-of-the-art

system but to demonstrate the efficacy of the proposed framework by giving a proof of

concept implementation.

Figure 3.9 depicts detection results for a query into the COIL database using RAM.

The purpose of this test is to analyze how the problems due to pose invariant feature

representations is solved by RAM. Table 3.2 gives a comparison of the proposed system

with a SIFT based retrieval system and an AFMT based retrieval system without

preprocessing. The nearest neighbor is searched for all three cases, i.e., k = 1. The

SIFT feature extraction and matching implementation used is the code made publicly

available by David Lowe [66]. For the SIFT based system implementation, the image

with the maximum number of “keypoint” matches is taken as the nearest neighbor.

Lack of ability to resolve ambiguity in images of the same object taken from different
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Figure 3.9: Result of search in COIL database: Nearest neighbors to the query arranged
in decreasing order from left to right. Query is a rotated (130o), cropped (8%), scaled
down (2 times), and paint (strength 2) copy of the image obj24 0

poses by SIFT descriptor is indicated by the search results when the original is used

as the query. AFMT descriptor being a global descriptor has better discrimination

ability. AFMT features without preprocessing perform very poorly under cropping of

70% (removed). RAM clearly improves upon this. SIFT features do not seem to perform

well under rotation, scaling and JPEG compression, for k=1. A possible explanation

for this observation is that for COIL images, the number of keypoint’s is less. This is

mainly because the amount of texture in these images is less. This is also one of the

known problems with local descriptors. Added to that, since many of the images in

the database are of the same object taken from different poses, the descriptors are very

close to each other and hence are not robust under such operations. From this it can

be concluded that, for a copy detection system aiming at finding the nearest neighbor

(k=1), this result is not good enough. Note that the COIL images are very much

sensitive to Gaussian noise. Overall it is noted that RAM performs significantly better

than existing systems on a database of images of same objects taken from different

poses. This is true for both cases, when the query is the original or is a manipulated

copy.

The proposed idea of selectively modifying some of the features is also an advantage

over a watermarking based framework, where every image needs to be embedded with a

message to identify it uniquely. In the proposed framework, the natural separation of the
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images in feature space helps to perturb only those features which are close enough and

are liable to create ambiguity problem. This can be seen as a method of “watermarking

with knowledge of image database”. This clearly demonstrates how knowledge of the

image database helps improve the watermarking performance measures compared to a

system that does not use knowledge of the database during the watermarking process.

3.6 Ambiguity Attacks

In this section attacks that try to create ambiguity by tampering the feature representa-

tion are analyzed. Firstly it is important to note that the notion of perceptual similarity

is a subjective measure and there is no good existing measure for it. Nevertheless, any

manipulation of the image that distorts the original semantics is likely to induce dis-

tortion in the feature domain. So with this assumption, the notion of security can be

measured in terms of analyzing how much A(Ĩ) needs to be shifted in feature space to

get A(Ĩ′), so that A(Ĩ′) is closer to the feature representation of another image in Ĩ.

The ability of an attacker to create ambiguities is dependent on his knowledge of

the database itself. If the attacker has just one image from the database, he can add a

random perturbation to its feature representation and try to create ambiguity. Herein

the assumption made is that the attacker has full knowledge of the the database Ĩ.

Hence, given any Ĩ, the attacker is able to induce minimum distortion so that the

distorted image will cause ambiguity.

For the concerned database, the average distance of an image in A(Ĩ) to its nearest

neighbor is 0.0726 and the distance between the closest pair is 0.0375. Thus, if an

attacker has knowledge of the whole database Ĩ, given a randomly chosen image from

Ĩ, he can create ambiguity by moving it towards its nearest neighbor, and the expected

distortion is (0.0726/2). In the best case for the attacker, when the chosen image

happens to be closest to its nearest neighbor, the attacker just has to distort the image

by 0.0375/2. Figure 10(a),(b) illustrate the distortion required on a randomly chosen

image, and 10(c), (b) illustrate the best case for the attacker. Note that the distortion
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(a) (b)

(c) (d)

Figure 3.10: Attacked reconstructed images: (a)-(b) A randomly chosen image and its
nearest neighbor, shifted towards each other by an amount half the distance between
them. (c)-(d) The closest pairs in a database shifted towards each other by an amount
half the distance between them.

is perceptually noticeable.

Figure 3.11 illustrates the nearest neighbor distance distribution for the full database,

before and after preprocessing. This supports the fact that, for an attacker to create

ambiguity by perturbing the feature representation of the images, it is much easier when

the images are not preprocessed. Hence RAM is more secure to malicious attacks than

a scheme that does not preprocess the database.

3.7 Discussions

A unified framework that resolves ambiguity by modifying the features which is applica-

ble to any modifiable feature representation is presented. The efficacy of this framework

in copy detection applications demonstrates how knowledge of hosts database can be

effectively used. A proof of concept implementation, RAM, was proposed, that uses An-
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Figure 3.11: Comparison of nearest neighbor distance distribution before and after
preprocessing.

alytical Fourier-Mellin (AFMT ) invariants as features. Experiments and comparison

with existing frameworks show promising results. The proposed framework does not

attempt to present a new feature representation to resolve ambiguity. It is to be applied

to existing feature representations to further reduce ambiguity. Hence, it complements

existing methods. It does not try to improve upon a feature representation or giving an

alternative method for watermarking.

Unfortunately the proposed framework inherits some of the limitations from water-

marking and retrieval systems. (1) An explicit feature representation is needed. For

certain feature representations it is not clear how the reconstruction can be achieved,

for example, if the feature is derived from line and shape information in the images.

(2) Access to the database during detection is required. (3) It is only possible in sit-

uations where modification of the database is allowed. On the other hand, unifying

both retrieval and watermarking frameworks enhances performance: (1) It further sep-

arates the images and thus reduces the chances of ambiguity. (2) It is arguably more

secure. (3) It introduces less distortions compared to a watermarking based approach.

In view of the pro’s and con’s in existing frameworks, the proposed framework presents

an alternative that complements currents methods.
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The proposed framework is designed for a static database setting. For an on-line

setting, it can be extended by adding constraints to the original optimization formula-

tion. The added constraints retain the present separation between the data points and

separate the added data in relation to it. Some studies on the effect on performance in

the on-line setting can be found in [76] and in Chapter 5. This work appears in [78].

51



Chapter 4

Improving NN-Search

Complexity in Retrieval Systems

4.1 Introduction

In the previous chapter, a unified framework for resolving ambiguity in copy detection

was proposed. Given a query, the detector finds its nearest neighbor in the modified

database by performing a linear search. Since the feature representation of the hosts

is in high dimensions, for a large database of hosts this is not practical, because of

the dimensionality curse. Also dimensionality reduction is not recommended, as it will

lead to loss of information. Hence, the inefficiency of searching in high dimensions is

a fundamental limitation of a search based detector, as in retrieval systems. On the

other hand, if the system uses a watermarking framework as the underlying framework,

and the detector has access to the full message-host association information, once the

identifying information (message) is reliably extracted, retrieval is fast. However, reli-

able extraction of the message is affected by the distortion-robustness tradeoff problem.

Note that here also, high dimensions are required for encoding more messages. Hence,

the fundamental problem of designing a detector, that has access to the hosts database

and employs a search based detection technique, lies in making nearest neighborhood
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Figure 4.1: Illustrative block diagram of the proposed framework (a) Preprocessing
stage (b) Detection stage.

search in high dimensions efficient. Since high dimensions are an inevitable requirement

in host representation (as noted above), a solution to this problem gains importance.

In this chapter another unified framework, combining retrieval and watermarking

systems is proposed. In the previous chapter the focus was on finding an encoding

technique that reduces the ambiguity problem. Detection efficiency was not the pri-

mary concern as the framework was meant to address applications that focus on exact

detection. In this chapter, apart from ensuring tradeoff of performance measures, there

is another concern of making searching in high dimensions efficient. The encoder here

ensures a proper tradeoff between distortion and robustness to generate a modified

database and an index tree that is used to search into the database. The proposed

method is based on active clustering. This idea is formally presented in the next sec-

tion. In this chapter, the hosts database used is a collection of images.
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4.2 Problem Formulation

The overall framework is depicted in Figure 4.1. Encoding as in Figure 1.2, is carried

out by the “active clustering” algorithm. The framework consists of a preprocessing

and detection stage. The key component is the active clustering algorithm, which uses

knowledge of the hosts database to generate an index tree, which is used by the detector

for searching. Section 4.3 will give a detailed discussion of this algorithm.

Given the database I = 〈I1, I2, . . . , In〉, a distortion constraint ǫ and robustness σ2,

the goal is to preprocess I to obtain the watermarked Ĩ = 〈Ĩ1, Ĩ2, . . . , Ĩn〉 and an index

tree. Each Ii = (a1, a2, a3, . . . , ad) denotes a host, and is represented by a sequence of d

coefficients. The watermarked Ĩ satisfies the distortion constraint ǫ, that is,

1

n

n∑

i=1

‖Ii − Ĩi‖2
2 < ǫ. (4.1)

The distortion should be small enough to meet the imperceptibility constraints of

watermarking. In many perceptual models, imperceptibility is achieved by ensuring

that the distortion (measured in 2-norm) is lower than a threshold. In the proposed

model, average distortion is used as the measure of performance (as indicated in (4.1)).

This can be also replaced by “maximum distortion”, given by maxi{‖Ii − Ĩi‖2
2}. This

ensures that the distortion of every image is lower than the required threshold ǫ.

The index tree facilitates searching such that given the query Ĩi, the index i can

be output efficiently. The searching is robust in the sense that if Ĩi is corrupted by

additive white Gaussian noise (AWGN) with power σ2, the output is correct with high

probability. Specifically, suppose

I′ = Ĩi + z,

where z = (z1, z2, . . . , zd) and each zj is independently drawn from the normal distri-

bution N(0, σ2/d). Then, taking I′ as the query, the algorithm gives the correct output

(which is i) with probability at least (1 − 1/d). The error probability was chosen to be

1/d so that asymptotically, it goes to zero.
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This formulation can be rephrased to an optimization problem. By fixing the dis-

tortion constraint, the objective is to find an index tree that maximizes the robustness

σ2, or vice versa, fixing σ2 and minimizing the distortion.

In the above formulation, the messages associated to the hosts are actually its indices.

This is different from the original description where the messages mi could be a string.

This difference is not critical because the actual message mi can be easily looked up

from a table.

Coding. A solution to the proposed problem has to address two issues. The

first is regarding coding. If I1 = I2 = . . . = In are identical, then the problem is the

same as non-blind watermarking, that is, watermarking with original host available at

the decoder. Because there is only one host, it can be used as the reference point. This

reduces the problem to finding the watermarked Ĩ1, Ĩ2, . . . , Ĩn that are far apart but

subject to 4.1, the distortion constraint
∑

i ‖Ĩi − Ii‖2
2 ≤ nǫ. This is essentially channel

coding, where ǫ is the power constraint and σ2 is the noise variance. Note that high

dimensionality is required to encode large number of messages.

Searching. The other issue is on the computational aspect of searching. As it

has been mentioned in chapter 3, the dimensionality curse prevents fast searching. For-

tunately, a few differences of the proposed problem from the classical nearest-neighbor

search can be exploited. The most notable difference is that, in the proposed problem,

the data points can be slightly modified (watermarked) for better searching perfor-

mance. In the extreme case, with unlimited distortion, the problem is trivially solved

by aligning the watermarked hosts along a straight line. Since distortion is undesirable,

the goal is to minimize the distortion while supporting fast retrieval.

4.3 Active Clustering by watermarking

In this section, an algorithm based on hierarchical clustering is proposed. This algorithm

first finds a hyperplane that separates I into two balanced (within a constant factor)

clusters. The hosts are then modified (watermarked) so that none of them are located
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Ĩ

I′

H

Figure 4.2: Each circle represents a host. Each filled circle represents the corresponding
watermarked host, if it is different from the original. The region between the two
dotted lines is the buffer zone, and its width is τ0. The point I is an original host,
Ĩ is the watermarked host and I′ is a corrupted query. The normal of the separating
hyperplane H can be viewed as the “watermark”. Those hosts on the left halve contain
the watermark −H, while those on the right contain watermark H.

near the hyperplane. The modification is done by pushing the host I in a direction

H, which is normal to the hyperplane. Finally, each cluster is recursively divided into

sub-clusters. The slab (region between two parallel hyperplanes) that does not contain

any watermarked host is called the buffer zone, and the distance of the hyperplane to

the buffer zone’s surface is called the buffer zone’s width. Figure 4.2 shows that the

modified host Ĩ is given by: Ĩ = I+k ·H, where k is a constant, H is the watermark and

Ĩ is the watermarked host in vector representation. This is similar to simple additive

watermarking in spread spectrum watermarking method [28]. Note that the modifica-

tions are carried out to ensure that no hosts are located near the hyperplane. Since

the hosts are modified to obtain better clusters, the proposed method is called active

clustering. The modification can be viewed as a watermarking process.

The hierarchical clustering method discussed above gives an index tree for searching.

The root and the internal nodes of this tree are the separating hyperplanes, and the

leaves are the indexes of the only host in the corresponding cluster. Given a query, say

the watermarked Ĩi, it is easy to traverse the tree from the root down to the correct leaf

(which is i). First of all, the inner product between the query and the root of the index
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tree is found to determine the position (left or right of the hyperplane) of the query with

respect to the root. Then the query is recursively compared with the internal nodes of

the tree. This eventually leads to the leaf to which the query belongs.

Under influence of AWGN, the query become I′ = Ĩi + z where z is the noise.

This additive noise might lead to error. Recall that the hyperplane is surrounded by

a thick buffer zone. The width of this buffer zone is analytically determined, so that

the probability of I′ crossing the hyperplane is extremely small. Thus, robustness is

achieved. In Section 4.3.1, it will be quantified how large the buffer zone should be in

order to achieve the required robustness.

Since the index tree contains at most n hyperplanes, and each hyperplane can be

represented by its normal and a point on its surface, the total size of the index tree

is linear with respect to the size of I. Because the tree is balanced, the depth of the

tree is O(log n). Thus, a compact data structure that facilitates searching in large data

sets is obtained, overcoming the dimensionality curse. The proposed algorithm was

tested on hosts generated from Gaussian source and natural images. In the experiments

conducted, the index trees was always successfully built by the proposed algorithm.

Section 4.3.1 describes the single-level clustering algorithm. Section 4.3.3 describes

how recursive clustering can be performed while achieving requirements on robustness

and distortion.

4.3.1 Single level clustering

The single level clustering attempts to solve this sub-problem: Given I = 〈I1, I2, . . . , In〉,

a distortion requirement ǫ0 and the buffer zone’s width τ0, the goal is to find a hyperplane

(represented by its normal H0 and a point C0 on the plane), and a watermarked Ĩ =

〈Ĩ1, Ĩ2, . . . , Ĩn〉, such that:

1. The distortion is at most ǫ0, that is
∑

i ‖Ĩi − Ii‖2
2 ≤ nǫ0.

2. For any watermarked Ĩ, the distance of Ĩ from the hyperplane is at least τ0 (that

is, |(Ĩ − C0) ·H0| > τ0).
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Figure 4.3: Performance of the single level clustering as the number of hosts increases.
The dimension d = 642 and the width of buffer zone is τ0 = 5/

√
d. The upper graph

gives the largest distortion among the n hosts. The lower graph gives the average
distortion.

3. Furthermore, the hyperplane divides the watermarked hosts into two equal (within

constant factor) halves. That is, suppose I0 is the set of watermarked Ĩ where

(Ĩ − C0) ·H0 > 0, then

1

4
< |I0|/|I| <

3

4
.

Figure 4.2 illustrates the result of a single level clustering in 2-dimensional space. This

problem can be rephrased as an optimization problem by fixing the buffer zone’s width

τ0 and minimizing the distortion, or vice versa.

Here is an approximation method, based on the 2-mean algorithm:

1. Compute the 2 means, m0 and m1 using the well-known iterative k-means method

[37]. Let Ĥ = m0 − m1 and Ĉ = (m0 + m1)/2.

2. Partition I into two clusters I0 and I1, where I0 contains all the hosts in I that

is nearer to m0, and I1 contains the remaining. Specifically, if (I − Ĉ) · Ĥ > 0,

then I is in I0.

3. Find the hyperplane that separates I0 and I1. We want to find the hyperplane

with the maximum distance from its nearest host. This criterion is the same as
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the criterion on Support Vector Machine, which finds the separating hyperplane

of two clusters with the largest margin. Here, the two clusters are I0 and I1, and

the margin corresponds to the buffer width.

Support Vector Machine is an established technique, and the support vectors can

be efficiently found using quadratic programming [21]. The theory of Support

Vector Machines and its use in single level clustering is explained in Section 4.3.2.

Let H0 and C0 be the normal and a point on this hyperplane respectively.

4. For all I in the buffer zone, watermark them by shifting them along the direction

H0 and away from C0. They are shifted until they reach the surface of the buffer

zone. Specifically, if (I − C0) · H0 ≥ 0, then the watermarked Ĩ is

Ĩ = I + max(0, τ0 − (I − C0) ·H0)H0, (4.2)

otherwise

Ĩ = I − max(0, τ0 + (I − C0) ·H0)H0,

Now, the relationship between τ0 and the required robustness σ2 is found. It can be

claimed that, to achieve robustness σ2, the buffer width τ0 should be,

τ0 = Ad

√
σ2/d, (4.3)

where Ad is a slow-growing function, for example log d. To see that, consider I′ in Figure

4.2. The point I′ = Ĩ + z is corrupted by noise z. Error occurs during searching if the

noise vector z, after being projected onto the one-dimensional normal H0, is more than

τ0 (or −τ0 depending on which side Ĩ is in). Because the noise is AWGN with variance

σ2, the distribution of the one-dimensional projected noise is also normally distributed

but with variance σ2/d. Since the probability of deviation from the standard deviation
√

σ2/d is small, τ0 can be chosen to be τ0 = Ad

√
σ2/d, where Ad is a slow-growing

function, for example log d. In the experimental studies (Section 4.4), instead of a slow-
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Figure 4.4: Histogram of the distances of original hosts from the hyperplane. The
dimension d = 642, n = 2048. In-between the two vertical lines is the buffer zone with
width τ0 = 2/

√
d.

growing function, Ad is chosen to be the constant 3. This gives the probability of error

about 0.0015.

4.3.2 Remark on Support Vector Machines

Support Vector Machines have been deployed successfully in classification and regres-

sion tasks. In classification, Support Vector Machines are used to find an “optimal”

separating hyperplane between two classes of data points. Among all separating hyper-

planes, the optimal separating hyperplane is the one with the maximum distance from

the nearest data points. Support vectors are those data points, nearest to the optimal

hyperplane. The optimal separating hyperplane can be found by solving a quadratic

programming problem for which efficient algorithms exist. (For details refer [33, 13])

In this implementation simplified support vector machine is used to find a separating

hyperplane H0. Although the separating hyperplane is not optimal, it serves as a good

approximation for the intended purpose.

The method for finding the separating hyperplane is as follows. Initially, the width

w i.e., the distance of the nearest point, is estimated based on the assumption that the

data points are normally distributed. The separating hyperplane H0 is found out by an
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Figure 4.5: Distortion versus the buffer zone’s width τ0. The number of hosts is fixed
at n = 2048 and the dimension is d = 642.

iterative algorithm. The initial guess for H0 is taken as the perpendicular bisector of the

line joining the center of the two classes. A few data points nearest to the hyperplane

are identified. The hyperplane is then updated so that its distance from the data points

is at least (w/2). This process is repeated for several iterations.

4.3.3 Extension to Multi-level

Extending the single level clustering to multi-level without special care might violate

the robustness requirement. Recall that step 4 in Section 4.3.1 moves hosts out of the

buffer zone. There are chances that the newly watermarked hosts re-enter the buffer

zone created in previous levels. Geometrically, the buffer zone is an union of slabs, and

the non-buffer zone is divided into disjoint polyhedrons. The task of watermarking is to

move original I out of the buffer zone and to the nearest point in the non-buffer zone,

which is on the surface of a polyhedra. For simplicity in implementation, instead of

finding the nearest point on the polyhedrons, step 3 is iterated to ensure buffer zones

in all levels are empty. This iteration might not give the nearest point. However, it

converges fast and gives a good approximation.

In the optimization version (fixing overall distortion ǫ and maximizing overall ro-
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bustness), the distortion can differ at different levels. Thus the allocation of “distortion”

amounts to a resource allocation problem. Also, the allocation should be fair so that

every level of clustering achieves same robustness. This is because a low robustness

at any intermediate level ultimately determines the robustness of the final stage. Let

ǫ0, ǫ1, . . . ǫk be the distortion allocated to the k levels. Assuming that the hyperplanes

at different levels are orthogonal, then the overall distortion is
∑k

i ǫi = ǫ. The al-

location of ǫ should be such that ǫi = ǫDist(2−in)/B, where Dist(·) is the average

distortion as a function of the number of hosts, and B is a normalizing factor such

that
∑

i Dist(2−in) = B. The expected number of hosts at each level is 2−in. So the

expected distortion at each level is Dist(2−in). The allocation of ǫ is done such that

every level of clustering achieves same robustness. Dist(·) can be obtained empirically.

4.4 Experimental Results

Two sets of experiments are conducted. In the first set, the hosts are generated from

Gaussian source. In the second set, the database are natural images, using the down-

sampled 64 by 64 gray-scaled values as the features (Figure 4.8).

Random hosts. In these experiments, hosts are generated from a Gaussian

source, more specifically, it is a multivariate Gaussian random variable I = (x1, x2, . . . , xd)

where each xi is normally distributed with variance 1/d. The embedding is performed

directly on the xi’s, in other words, on the “pixel domain”.

Figure 4.3, 4.4 and 4.5 illustrate the performance of the single level clustering. Figure

4.3 gives the average distortion as the number of hosts increases. When the number of

hosts increases, the computed 2-means in Section 4.3.1 step 1 is closer to the overall

average. Thus, the distortion should increase.

Figure 4.4 shows the distribution of the distance of the original hosts from the hyper-

plane. Note that these are the distances before watermarking. Observe that the center

region is empty. This is because the hyperplane is derived from the support vectors.

Thus, the slab enclosed by the support vectors is empty, even before watermarking. The
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Figure 4.6: Distortion versus size of database.

two peaks in the histogram are side-effects of the proposed approximation algorithm.

The two vertical lines in the figure indicate the buffer zone with τ0 = 2/
√

d. hosts

that fall between these two lines have to be watermarked. Figure 4.5 shows how the

width τ0 affects distortion. Observe from the histogram that the hosts are concentrated

around 0.025 and -0.025. Thus, for large τ0, the distortion is approximately the square

of the distance of τ0 from 0.025. This observation is confirmed in Figure 4.5, where the

distortion is approximately equal to (τ0 − 0.025)2.

Figure 4.6 shows the overall distortion (generated by multi-level clustering) as the

number of hosts increases. The width of buffer zones in all levels is kept at τ0 = 3
√

2/d.

This value is chosen so that retrieval is robust under noise variance σ2 = 2. That is,

when the signal-to-noise ratio is at most 0.5. The distortion is generally very small.

For example, at n = 2048, the distortion is 0.0027. This is much smaller than the

energy of the hosts (which is 1). It is also significantly smaller than the noise variance

σ2 = 2. Figure 4.7 illustrates how distortion decreases as the dimensionality increases

with number of hosts n = 512 and buffer width τ = 3
√

2/d. Interestingly, performance

improves as dimensionality increases. This is in contrast to general searching problems

in high dimensional space.
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Figure 4.7: Distortion versus dimension. Logarithmic scale is used for the y-axis. The
number of hosts n = 512 and width τ = 3

√
2/d.

Natural Images. In this set of experiments, the database consists of 2048 natural

images. The purpose of these experiments is to test the proposed idea on non-Gaussian

source. The original size of each image is about 2000 by 1500 pixels. Although images

are typically large, for watermarking purpose, their dimension is usually reduced to

remove redundancies and coherence among the pixels. Because image representation is

not a key issue here, the down-sampled 64 by 64 gray-scaled pixel domain is taken as

the domain to work in. Thus d = 642. Other representations like wavelet coefficients,

DCT coefficients, features etc. could also be used. Figure 4.8 shows samples from

the database. Unlike the database of random hosts, some of the images are similar.

Similar images are more difficult to handle, because they should be separated to resolve

ambiguities.

The robustness σ2 is chosen to be 2. This translates to the buffer zone’s width of

τ0 = 3
√

2/d. Figure 4.9 shows three instances of corrupted queries. The proposed

algorithm successfully retrieves the correct index for (a) and (b), but not (c). The

experiment is repeated for 1000 times, with same noise variance, but different noise

instances. With noise variance of 1 and 2, the algorithm outputs the correct index for

all instances. With noise variance of 4, it gives correct index in 655 instances. In the
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Figure 4.8: Twelve sample images from the database.

(a) (b) (c)

Figure 4.9: Three watermarked corrupted queries. The noise variance is (a) 1, (b) 2 and
(c) 4 respectively. The uncorrupted image is shown in the top-right corner of Figure
4.8. The proposed algorithm correctly retrieves the index for (a) and (b), but not (c).

implementation, the queries are normalized to unit energy before searching.

The average distortion generated is 8.5 × 10−4 and the maximum distortion among

the images is 0.010. Figure 4.10 shows three watermarked images. The top row is the

image with maximum distortion. Comparing to the random hosts (see Figure 4.6), the

average distortion for the images database is much lower (0.0027 for random hosts) but

the maximum distortion is higher (0.0052 for random hosts). Probably this is because

natural images tend to form clusters, thus reducing the average distortion. On the

other hand, a minority of the images might get too close, and require larger distortion

for separation. This small cluster of images increases the maximum distortion.

Figure 4.11 shows selected nodes of the tree at the 1st, 4th and 8th level. These
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0.010.

0.0094.

0.0090.
(a) (b) (c)

Figure 4.10: Images in column (a) are the original, (b) are the respective watermarked
image and (c) are the difference (watermarked minus original). The images in (c) are
enhanced (by scaling the intensity) for better printing quality. The values below the
images are the distortion (that is, energy of (c)).

nodes are visited while searching for the top-right image in Figure 4.8. That is, the

query image is first compared with ((a), (d)), and finally compared with ((c), (f)).

4.4.1 Comparison with watermarking

It is interesting to compare the performance of the proposed algorithm with methods

based solely on watermarking. For the purpose of comparison, watermarking schemes

which fall into the framework of Gaussian channel with side information are considered.

Costa [26] showed that, the maximum achievable rate with distortion ǫ and robustness
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: The normal H of the hyperplanes computed at the 1st, 4th, 8th level are
depicted as images (a), (b) and (c) . These normals can be viewed as the “watermarks”.
Image (d), (e) and (f) are the corresponding point C on the respective hyperplanes.

σ2 is

C =
d

2
log
(
1 +

ǫ

σ2

)
. (4.4)

That is, the maximum number of messages that can be embedded is 2C . If solely

watermarking is employed to solve the identification problem, with the constraint on

distortion and robustness, the size of the database is bounded above by (1 + ǫ/σ2)d/2.

From the experimental data in Section 4.4, with robustness σ2 = 2, dimension d = 642

and distortion 0.0035, the proposed method can have 2048 hosts. In contrast, the

theoretical maximum number achievable by watermarking is (1 + 0.0035/2)d/2 < 36.

4.4.2 Comparison with Retrieval systems

Nearest neighbor searching in high dimensions is both practically and theoretically

difficult. The performance of all known and popular data structures for this problem

degrades considerably for high dimensions. A brute force method would take O(dn) time
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complexity. The average case analysis of popular heuristics such as k-d trees reveals an

exponential dependence of d in the query time. It is well known that the k-d tree and

its variants perform poorly in dimensions higher than twenty. In such high dimensions,

nearly the entire data structure is searched when it is queried for a near or nearest

neighbor. Comparatively in high dimensions, the brute force method is more efficient.

There are many approximation algorithms, out of which [60] gives a theoretical con-

struction of two algorithms which are close to the proposed method. The two algorithms

perform the ǫ-approximate nearest neighbor search in a d-dimensional Euclidean space

with a query time complexity of O((d log2 d)(d + log n)) and O(n + d log3 n), where

the O(·) notation suppresses terms that are quadratic in ǫ−1 . Also much work has been

devoted to “dimension-reduction” techniques such as principle component analysis [54]

and latent semantic indexing [34] for reducing the complexity of similarity matching in

high dimensions, yet the dimensions are quite high and hence query time complexity is

high. Moreover, the performance comparison results analyzed in such techniques deal

mainly with specialized data sets. In contrast, experimental studies show that the pro-

posed method, with fixed distortion, can successfully build the index tree, and searching

in it involves a query time complexity O(d log n).
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Chapter 5

Detection using Partial

Information

5.1 Introduction

In this chapter a novel framework for database watermarking is presented. In chapters

3 and 4, two unified frameworks based on a combination of retrieval and watermarking

systems were proposed. In both cases, the detector has access to the full hosts database.

Some applications, do not have this facility, for example, blind watermarking, where

the detector only has access to the messages associated with the hosts. Although most

applications do assume that the messages (identifying information) should be available

at the detector at all times, it need not be so. Note that the identifying information can

be made available to the detector through a secure communication channel between the

detector and encoder, which can also make the detector secure from some attacks. This

facility brings in the additional consideration that the information to be communicated

should adjust to the bandwidth constraints of the channel. This affects both encoding

and detection.

Watermarking using communication has been proposed in some recent applications.

For example, the detector in Digimarc MediaBridge Reader [5] makes use of the Internet
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Figure 5.1: A schematic diagram of the proposed framework.

to lookup more information about an image from its server, which is part of the encoder,

based on the message extracted from the image. Theoretical works like zero-knowledge

detection [3] also exploit communication to enhance security.

In this chapter, a framework that exploits communication in another way is pro-

posed. In the proposed framework, the encoder knows the actual hosts that are to be

watermarked. Based on this knowledge, the encoder tailor-makes a set of watermarks

and suitably watermarks the hosts in the database. The watermarks are then stored

in the server. To determine whether a query host is watermarked, the detector re-

quests the watermarks to the server and performs detection (Fig. 5.1). The discussion

here primarily deals with images as hosts, and the main idea can be extended to other

multimedia sources.

Unlike spread spectrum watermarking [30] and watermarking as communication with

side information [26], where both the encoder and detector has knowledge of the host

distribution and only the encoder has knowledge of the host state, in the proposed

framework, the additional assumption that the encoder knows the actual hosts to be

watermarked, and the detector knows a compact but partial description of the actual

hosts (Fig. 5.1) is exploited. Note the fundamental difference between a priori knowl-

edge of the distribution and knowledge of the actual database. The actual hosts are

samples from the distribution, and can be used to estimate the distribution. On the

other hand, knowing the host distribution is not sufficient to determine the actual hosts.
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Figure 5.2: An application of our proposed framework.

Also note that in practice, the host distribution is usually assumed to be Gaussian, which

is an over simplification for hosts like natural images. Here detection can be seen as

semi-blind watermarking, as proposed in [14]. The partial or compact description in [14]

is a hash of the original host. In the proposed framework the compact description is a

partial description of the database. The considerations behind determining a compact

description follows.

Compact description of database. Given the database of hosts, say I, a possible

but inefficient scheme takes the whole database as the watermarks, W = I. Thus

nothing is done during encoding and zero distortion is achieved. To decide whether a

query I ′ is watermarked, W is sent over to the detector, which searches for I ′ in W. If

it is within the proximity of a watermark in W, then it is declared to be watermarked.

This is similar to non-blind watermarking, with the additional work of the detector

having to search for the appropriate watermark. Although this scheme achieves zero

distortion, the number of watermarks is too large and thus inefficient. This brings forth

the interesting issue of finding a trade-off between efficiency (number of watermarks)

and performance (distortion, false alarm, and robustness).

Potential Applications A potential application of the proposed framework is as

follows. An owner may posses a database of images and is concerned about protecting
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his copyright over it. To address his concern, a practical setting, where a decision

about the ownership over a disputed image has to be resolved, is conceived. The setting

consists of three entities, the owner of the database, the client who has a query image

and a trusted third party (TTP). The detector can be considered to be the trusted third

party whom both the client and the owner trust. A secure channel exists between the

owner and the trusted third party, using which, it has access to a compact description

(partial information) of the database, as provided by the owner. The client trusts the

TTP and submits the query image to it for any issue on validation of ownership. This

security model prevents the client from giving away his image to the owner whom he

does not trust. On the other hand it saves the owner from giving away the compact

description of his database to any client whom he does not trust. Also the TTP need

not access the whole database. Thus the detector acts like a proxy server. The client

submits his image to the detector (TTP). The TTP contacts the owner for the compact

description of the database using the secure channel and uses it to verify whether the

image belongs to the owners database. Figure 5.2 gives an illustration of the above

application setting.

Another possible application of this framework could be in relational database wa-

termarking, where the whole database is watermarked. During detection it is required

to verify whether a record or a set of records is watermarked.

5.2 Formulation

Let I = 〈I1, I2, . . . , Im〉 be a database of m images. Each image is a sequence of d

coefficients which is generated from a source distribution. Given the image database I,

the encoder derives a compact description of the database W. The compact description

is organized as a set of ℓ watermarks W = 〈w1,w2, . . . ,wi, . . . ,wℓ〉, and is used to

generate an encoded Ĩ = 〈Ĩ1, Ĩ2, . . . , Ĩm〉. The compact description is shared between

the encoder and the detector using the secure channel between them. The size of W,

given by |W|, is limited by the bandwidth of the secure channel. During detection,
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given an image I′i and the set of watermarks W, the detector declares whether it is

watermarked (output Yes) or not watermarked (output No).

W is organized as a set of watermarks given by W = 〈w1,w2, . . . ,wi, . . . ,wℓ〉. Each

wi is a sequence of d coefficients. For example, given a channel bandwidth of 524288

bits, W of size 524288 bits can be organized as one 256× 256 sized image of pixel depth

8 (written as [256 × 256 × 8]) i.e., ℓ = 1 and d = 524288) or two [256 × 256 × 4] images

(i.e., ℓ = 2 and d = 262144) and so on, thus giving a set of watermarks.

The database of images can be realized in two setting, static and dynamic setting.

Static Setting In the static setting the image database remains unchanged, i.e., there

are no addition or deletion of images from the database. The images in I are water-

marked by W to generate the set of encoded Ĩ = 〈Ĩ1, Ĩ2, . . . , Ĩm〉. Since the size of the

database does not change, the watermarks once determined remain unchanged through-

out the process.

Dynamic Setting In the dynamic setting, the database changes as new images are

added or deleted. Let It = 〈I1, I2, . . . , It〉 be the database with the first t images, and Ĩt

be the corresponding set of encoded images. The encoding is done in an online manner,

that is, the image It must be encoded before It+1 arrives. Once an Ĩt is obtained it cannot

be recalled for modification. Similar to the static setting, detection is done using the set

of watermarks W. However, because the database dynamically changes, W also changes.

The watermarks are updated once a new image arrives, where, Wt = 〈w1,w2, . . . ,wℓ〉

denotes the set of watermarks after It has arrived and been encoded. An additional

requirement is that the set Wt has to be backward compatible, i.e., the detector must be

able to detect Ĩs, for any s ≤ t based on Wt.

Performance measures The performance measures for the proposed framework are:

false alarm, robustness and distortion. Distortion is measured by finding the average
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distance between an image I and its watermarked version Ĩ i.e.,

1

m

m∑

i=1

‖Ii − Ĩi‖2
2.

The scheme is robust if, under AWGN attack, an encoded image is still declared to

be watermarked with high probability (the actual probability is not a concern). The

variance of AWGN is taken as the measure of robustness. The false alarm is the prob-

ability of a randomly chosen sequence (from the image distribution) to be declared as

watermarked by the detector.

5.3 Watermarking Schemes

Herein, a variant of the well-known spread-spectrum method [30] is considered as the

underlying watermarking method. However, the proposed framework is not restricted

to this method, and can be extended to other methods. The watermarking method used

can be considered to be a special case of the formulation for improved spread spectrum

watermarking (ISS) proposed in [67].

This variant is parameterized by a watermark w, a constant threshold T and a

constant K, which is representative of the detection strength. The encoding of I giving

Ĩ is achieved by

Ĩ = I + max(0, K − I · w)w. (5.1)

The w is normalized so that ‖w‖2
2 = 1. An I′ is declared to be watermarked if

I′ ·w > T. (5.2)

The false alarm, robustness and distortion of this scheme can be obtained analytically.

The threshold T is experimentally determined.

For the encoding method in (5.1), depending on how w is generated, watermark-
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ing schemes under the static and dynamic database setting are proposed next. Their

performance is compared with a traditional spread-spectrum method, where the wa-

termark is an IID sequence. A traditional spread spectrum method can be viewed as

an equivalent scheme with no knowledge of the image database. The false alarm and

robustness is fixed in all schemes, which amount to the parameters K and T being fixed.

For performance comparison of different schemes, by fixing false alarm and robustness,

the distortion obtained in each scheme are compared.

5.3.1 Static with single watermark

This section gives two schemes static and static iterative. The encoder of static scheme,

computes the normalized sum of the database and quantizes it to generate the compact

description W, that is,

W = q

(
∑

I∈I
I/‖

∑

I∈I
I‖
)

, (5.3)

where q(·) is the quantization function, and ‖ · ‖ indicates the norm. The amount of

quantization is decided according to the bandwidth of the secure channel. For a static

database with single watermark setting, W is organized to form one watermark i.e., W

= 〈w〉.

The encoding and detection is same as the method given in (5.1) and (5.2). Unlike

the traditional spread spectrum (SS) method, where the watermark is randomly chosen,

in this scheme, w is computed from the image database. Note that if both parameters

K and T are fixed, then the false alarm and robustness of this scheme are the same as

that of the traditional spread spectrum method. By fixing K and T , the goal is to know

which scheme provides lower distortion.

The distortion of each image in (5.1) is a function of its correlation with the wa-

termark. The difference between the detection strength K and the correlation gives a

measure of the amount of distortion needed to be introduced. Distortion is zero when

I·w > K. Otherwise it is proportional to the correlation I·w. So for the whole database,
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Figure 5.3: Correlation of Images in database with watermark for 1000 images. This
figure illustrates the importance of B in defining the amount of distortion required
for successful detection. The horizontal red line indicates K. The black and green
horizontal lines indicate the estimated and actual average correlation values. The cyan
line indicates the average correlation value for the spread spectrum scheme. Note that
the distance of the cyan and green lines from the red line indicates the amount of
distortion required in the spread spectrum and static scheme respectively to ensure
successful detection.

the reduction in distortion can be analyzed by finding the average correlation value, B,

of w with the images in I,

B =
1

m

∑

I∈I
I ·w.

The average correlation is a good indicator of the reduction in distortion. The expected

value of the baseline under both traditional SS and single-watermark static setting are

as follows:

Traditional SS setting: For all Ii ∈ I, Ii = {Ii1, . . . , Iij , . . . , Iid} with Iij ∼ N (0, 1),

and w = {w1, . . . , wj , . . . , wd} with wj ∼ N (0, 1), the expected baseline is given by

E(B) = 1/m
∑

I∈I E(I · w) = 0.
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Static single-watermark setting: For all Ii ∈ I, Ii = {Ii1, . . . , Iid} and Iij ∼

N (0, 1), then w = {w1, . . . , wj , . . . , wd} =
Pm

i=1
Ii

‖Pm
i=1

Ii‖ can be represented as

wj =
1√
m

m∑

i=1

Iij ,

to ensure that wj ∼ N (0, 1). Note that the definition of norm used here is,

‖
m∑

i=1

Ii‖ =

√√√√var(

m∑

i=1

Ii)) =

√√√√
m∑

i=1

E(I2
i ).

The expected baseline is given by

E[B] =
1

m
√

m

∑

I∈I
(E[I · I] + E[I · (

∑

Ij 6=I,Ij∈I
Ij)]) =

d√
m

.

Since B is raised to d/
√

m, the distortion required to “push” the image over the detection

strength K is reduced. This is illustrated in Figure 5.3. Hence, theoretically, the static

single-watermark setting achieves lower distortion than a traditional SS watermarking

technique.

Figure 5.4 confirms the gain in performance achieved when the watermark w is

obtained using (5.3) compared to a watermark whose components belong to a normal

distribution of zero mean. Here, distortion is calculated for fixed robustness and false-

alarm (that is K and T ). Depending on the channel bandwidth, the size of the watermark

will vary. For a static single-watermark setting, the compact representation W consists

of a single watermark w. For watermarks of fixed size, 256 × 256, to cater to varying

channel bandwidth, the pixel depth is varied. Figure 5.4 compares the effect of such

watermarks on the watermarking performance. Higher the pixel depth better is the

performance. Note that for a given channel bandwidth as low as 131072 bits the dis-

tortion is significantly lower compared to a scheme using a traditional SS method. For

watermarks with unit pixel depth, the distortion encountered by traditional SS methods

is lesser.
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Figure 5.4: Distortion verses (m/d) for images from a Gaussian distribution for static
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bandwidth of 256 × 256 × 8 bits till bandwidth of 256 × 256 × 2 bits the watermarking
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scheme performs better. Note that for the static setting as the size of the database
increases, the distortion increases.
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Figure 5.5: Comparison of distortion under various channel bandwidths between static
and static iterative setting, for images from a natural image database. The database
consists of 1000 images. The number of coefficients is fixed at d = 256 × 256, and
K = 0.1. Note that a small improvement in performance is achieved using the static
iterative setting.
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The second encoder considered is a (static iterative) scheme, which tries to further

improve the performance by searching for the watermark w̃ which minimizes the average

distortion. The minimization is done in an iterative manner, such that

1

m

∑

I∈I
max(0, K − I · w̃),

is minimized. The algorithm for the static iterative scheme is as follows:

Algorithm: Static Iterative Scheme

Step1 : Find w̃ = q (
∑m

i=1 Ii/‖
∑m

i=1 Ii‖) .

Step2 : Initialize w = w̃. For all Ii ∈ I, find ci = Ii · w̃.

Step3 : For all Ii ∈ I, w̃ = w̃ − max(0, K − ci) · Ii.

Step4 : Until ‖w − w̃‖2
2 < 0.001 Go to Step2.

A performance comparison between the static and static iterative setting with varying

channel bandwidth is illustrated in Figure 5.5. Note that for low channel bandwidths

there is a marked difference in distortion between the two schemes, which gives an

indication of the gain in performance that can be achieved by using the static iterative

scheme. This shows that the static iterative scheme can be used to reduce the distortion

encountered by a static scheme under low channel bandwidth, as noted before.

5.3.2 Static with Multiple watermarks

The multiple watermark scheme is particularly relevant when the size of the database

increases. In this scheme, instead of organizing W as a single watermark, it is organized

as a set of watermarks given by W = 〈w1,w2, . . . ,wk〉. Thus the detector uses a set of

watermarks as evidence during detection. An image I′ is declared to be watermarked if

there is an i such that I′ ·wi > T .

It is noted that if the size of the database is small, for a static single watermark

setting the distortion should be small. This can be understood from the fact that for
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Figure 5.6: Illustration of the effect of partitioning algorithm on the distortion in a static
multiple watermark setting, for images from a Gaussian distribution. The database
consists of 1000 images. The number of coefficients is fixed at d = 256 × 256, and
K = 0.1. Note that as the size of the database increases the efficacy of using a good
partitioning algorithm becomes more prominent.

a database with a single image, the distortion is zero. Thus as the size of the database

increases, the distortion increases. This was also illustrated in Figure 5.4. Thus for larger

databases, if the database is divided into smaller subsets and the static single watermark

scheme is applied on each subset, intuitively it will help reduce the distortion further.

But the bottle neck in this option is that it would require more network resources to

pass more watermarks to the detector. An extreme example as discussed in Section

5.1 considers every image in the database as a watermark. Hence for a secure channel

with a limited bandwidth the number of watermarks cannot be significantly large. One

proposition to solve this could be to reduce the pixel depth during the organization of

W into watermarks. But as illustrated in Figure 5.4, as the bit depth decreases, the

distortion increases significantly. Hence a proper trade-off is required to decide upon

how to organize W as a set of watermarks.

To implement multiple watermark setting the database is partitioned into smaller

subsets (say k) of images and the quantized normalized sum for each subset as in (5.3),

is computed. This gives a set of k compact representations. Each of these compact
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representations can be organized as a single watermark and thus a set of k watermarks

is obtained. Note that the partitioning algorithm used to create the clusters also effects

the distortion, for example, the database can be partitioned into k subsets using a

random partitioning technique or a k-mean partitioning algorithm.

Figure 5.6 illustrates the effect of using a random partitioning, compared to using

a 2-mean algorithm. For random partitioning, the database is randomly divided into

two subsets of equal size. The watermark for each subset (w1 and w2) is generated

using (5.3) by treating each subset as a single database. It is easy to verify that the

average correlation value will improve by a factor of 1/
√

2 and this implies that the

distortion will also improve by approximately the same factor. On the other hand,

the false alarm will increase by a factor of approximately 2. This is because in the

2-watermark situation, a sequence I is declared to be watermarked if either (I ·w1) ≥ T

or (I · w2) ≥ T . However, constant factor growth of the false alarm is insignificant,

because the false alarm decreases exponentially as the threshold T increases linearly.

Thus, it is desirable to allow more watermarks, if efficiency is not a consideration.

Alternatively, a good partition of the the database is found by using the well-known

2-mean algorithm. Figure 5.6 shows that the 2-means algorithm gives an improvement

in distortion compared to randomly partitioning the database. Also note that as the

size of the database increases, the effect of the partitioning algorithm on the distortion

becomes prominent.

Several other inter-dependent parameters that affect the watermarking performance

are, pixel depth, the number of watermarks and the channel bandwidth. These pa-

rameters are varied to analyze their effect on distortion. Figure 5.7 illustrates the

performance of multiple watermarks setting for a fixed channel bandwidth. Note that

the 1× [256×256×8] setting in Figure 5.7 is actually a single watermark static setting.

For a fixed channel bandwidth as the number of watermarks increases the distortion

decreases. Note that even for very low pixel depth, for example the 8 × [256 × 256 × 1]

setting, i.e., W is organized as 8 watermarks each quantized to 1 bit pixel depth, the
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Figure 5.7: Distortion verses (m/d) for images from a Gaussian distribution for static
multiple watermark setting with fixed bandwidth. The number of coefficients is fixed
at d = 256 × 256, andK = 0.1. Note that the bandwidth of the side channel is fixed at
524288 bits. The above graph shows the performance of different sets of watermarks with
varying database size and thus is an indicator of how to choose W. Here 2×[256×256×4]
denotes 2 watermarks each of size 256 × 256 of pixel depth 4.
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Figure 5.8: Distortion verses (m/d) for images from a Gaussian distribution for static
multiple watermark setting with fixed pixel depth, i.e., for the same quantized amount.
The number of coefficients is fixed at d = 256× 256, and K = 1. The above graph shows
the efficacy of choosing more number of watermarks, given that there is no constraint
on bandwidth. Here 2× [256 × 256 × 8] denotes 2 watermarks each of size 256 × 256 of
pixel depth 8.
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Figure 5.9: Distortion verses (m/d) for images from a Gaussian distribution for static
multiple watermark setting with fixed number of multiple watermarks (6). The number
of coefficients is fixed at d = 256×256, and K = 0.1. The above graph shows the efficacy
of multiple watermark setting even with low pixel depth, i.e., if the channel bandwidth
is low, the quantization can be high provided we have more watermarks, to get low
distortion. Here 6× [256× 256× 2] denotes 6 watermarks each of size 256× 256 of pixel
depth 2.

distortion is lower compared to a traditional SS scheme. From Figure 5.7 it is noted

that by increasing the number of watermarks, the effect of quantization (determined by

the pixel depth) can be significantly traded-off. Figure 5.8 also shows the efficacy of

using multiple watermarks for fixed quantization. Distortion decreases as the number of

watermarks increases. This perfectly corroborates the discussion in Section 5.1. Figure

5.9 illustrates the effect on distortion for a fixed number of watermarks. This basically

illustrates the effect of quantization on the watermarking performance. For low band-

width the pixel depth should be increased. Even under high quantization the distortion

is still low. This supports the previous conclusion that by having more watermarks the

effect due to quantization can be reduced.

5.3.3 Dynamic with single watermark

In the dynamic setting, images arrive sequentially. Let wt
1 be the watermark computed

after the arrival of It. The encoding and detection is performed similar to (5.1) and
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(5.2). The watermark satisfies the additional backward compatibility requirement, i.e.,

Ĩs ·wt
1 ≥ K, for any s < t and Ĩs ∈ Ĩ.

In this setting there are two interesting issues. The first issue is about how to enforce

backward compatibility. Second, it is interesting to study the reduction in performance

when information is available in an on-line manner, as opposed to the static setting

where full knowledge of the database is available from the very beginning.

On arrival of the t−th image, the following iterative method searches for the new

watermark wt
1.

Algorithm: Dynamic Single Key Generation

Step1 : Let wt
1 = wt−1

1 + (1/
√

t)It.

Step2 : If there is a r < t such that Ir · wt
1 < K, then update wt

1 = wt
1 + (K− Ir · wt

1)Ir.

Step3 : Repeat Step 2 until no such r is found.

It is important to choose the weighting function as (1/
√

t) in Step 1. This is done so

that the estimated average correlation value still improves by (1/
√

t). For all It ∈ I,

It = {It1, . . . , Itj , . . . , Itd}, if Itj ∼ N (0, 1), the estimated value of It ·wt
1 is

E[It ·wt
1] = E[It · wt−1

1 ] + 1√
t
E[It · It]

= 0 + d√
t

= d√
t

Similarly, for any other image Is where s < t and Isj ∼ N (0, 1), 1 ≤ j ≤ d, the estimated

value of Is ·wt
1 is

E[Is ·wt
1] = E[Is ·wt−1

1 ] + 1√
t
E[Is · It]

= 1√
t−1

(E[Is · Is] + E[Is · (
∑

s 6=i Ii)]) + 0

= d√
t−1

.

Note that in a dynamic setting, as the size of the database increases incremen-
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Figure 5.10: Distortion verses (m/d) for images from a Gaussian distribution for dy-
namic single watermark setting with fixed bandwidth of 256×256×8 bits. The number
of coefficients is fixed at d = 256 × 256, and K = 0.1. The above graph shows a com-
parison of performance between a spread spectrum, static and dynamic setting. Note
that although the dynamic setting performs worse than a static setting it still improves
upon a spread spectrum setting with random watermark.
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Figure 5.11: Distortion verses (m/d) for images from a Gaussian distribution for dy-
namic single watermark setting with varying channel bandwidth. The number of coef-
ficients is fixed at d = 256 × 256, and K = 0.1. The above graph shows a comparison of
performance of a dynamic setting under varying channel bandwidths. Note that for a
low bandwidth of 256×256×1 the distortion is still lower than a spread spectrum setting
for most sizes of the evolving database. This is a promising sign of the efficacy of the
dynamic setting in comparison to a spread spectrum scheme with a random watermark.
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tally, the estimated average correlation value decreases sharply (note d/
√

t is a sharply

decreasing function). Intuitively, this explains the reduction in performance when in-

formation is available in an on-line manner. Hence compared to a static setting, for

same number of images at the t-th time instant the distortion is expected to be more

in a dynamic setting. This is illustrated in Figure 5.10, where the rise in distortion is

sharper with increase in size of database. Note that still an improvement over a tradi-

tional spread spectrum setting is obtained. Backward compatibility of the watermark is

implemented by modifying the watermark in an iterative way such that always a correct

detection for any image in the database is obtained.

Figure 5.11 illustrates the performance of dynamic setting with single watermark in

comparison to a spread spectrum setting. Note that for a channel bandwidth as low as

256×256×1 (i.e., a single watermark with pixel depth 1), the distortion is less than the

spread spectrum setting. As the allowed bandwidth increases the distortion decreases

further. Still the sharp rise in distortion with increasing database size is evident. Thus a

dynamic single watermark setting performs better than the spread spectrum setting us-

ing a random watermark, proving the efficacy of using prior knowledge of host database

to generate the watermark, even under a dynamic database scenario.

5.3.4 Dynamic with multiple watermark

In this setting, more watermarks are allowed as is in the static multiple watermark

setting (Section 5.3.2). The encoding unit employs a combination of the encoding used in

the dynamic setting and the static multiple watermark setting. Here also a partitioning

of the database is dynamically performed to generate the multiple watermarks. Note

that watermarks in this setting evolve with time. On arrival of a new image It, It ·wi is

computed for all wi ∈ W, to decide which subset it belongs to. Next the encoder uses

an iterative technique (similar to dynamic single watermark setting) to ensure backward

compatibility within its own subset of images. It was observed that in a dynamic setting

as the size of the database increases incrementally, the distortion increases (i.e., average
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Figure 5.12: Distortion verses (m/d) for images from a Gaussian distribution for dy-
namic multiple watermark setting with fixed bandwidth. The number of coefficients
is fixed at d = 256 × 256, and K = 0.1. Note that the bandwidth of the side channel
is fixed at 524288 bits. The above graph shows the performance of different sets of
watermarks with varying database size and thus in an indicator of how to choose W.
Herein 2× [256× 256× 4] denotes 2 watermarks each of size 256× 256 of pixel depth 4.

correlation value given d/
√

t decreases). Note that for a smaller value of t distortion

can be lowered. By considering multiple watermarks, the database gets divided into

smaller subsets and thus it is expected that distortion can be lowered.

Figure 5.12 gives a clue as to how W can be organized as a set of watermarks

for fixed channel bandwidth in a dynamic setting. For fixed channel bandwidth, the

amount of quantization and the number of watermarks need to be traded-off. Note that

as the number of watermarks increases, distortion is less. For less number of watermarks

even with relatively less quantization, the distortion is relatively higher, although less

than in the traditional SS scheme. Figure 5.13 clearly illustrates the efficacy of using

more watermarks. The distortion reduces significantly for more number of watermarks.

Figure 5.14 compares the behavior of distortion to different amounts of quantization,

denoted by pixel depth. Note that even under very low pixel depth the distortion is

significantly less compared to traditional SS scheme.
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Figure 5.13: Distortion verses (m/d) for images from a Gaussian distribution for dy-
namic multiple watermark setting with fixed pixel depth. The number of coefficients is
fixed at d = 256×256, and K = 0.1. For a fixed quantization it is very clear that increas-
ing the number of watermarks reduces distortion significantly. Here 2× [256 × 256 × 8]
denotes 2 watermarks each of size 256 × 256 of pixel depth 8.
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Figure 5.14: Distortion verses (m/d) for images from a Gaussian distribution for dy-
namic multiple watermark setting with fixed number of watermarks (6). The number
of coefficients is fixed at d = 256 × 256, and K = 0.1. Note that even under high
quantization an improvement over a spread spectrum scheme is obtained.
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5.4 Experiment with Image Database

Experiments were conducted on a database of 1000 natural images from [1]. The main

goal of this experiment was to test the efficacy of the proposed framework for non-

Gaussian image distributions. Image representation is not the focus of this work, hence

each image is represented by its re-scaled 256 by 256 gray-scale image. The efficacy

of generating the watermark from the database is illustrated in Figure 5.15. Row 1 in

Figure 5.15, shows five of the original images in the database. Row 2 in Figure 5.15

depicts the images in Row 1 watermarked using the static single-watermark scheme and

Row 3 depicts images in Row 1 watermarking using a random watermark. The images

are normalized to unit energy. Watermarking is carried out in the pixel domain. The

images and the watermarks are all normalized and thus have energy 1. Hence it can

seen that the chosen detection strength K = 1 is high.

Under static single-watermark scheme, for K = 1, and ‖w‖ = 1, the actual baseline

is 0.81056 and the average distortion is 0.042043. Note that the actual baseline is much

lower than the theoretically estimated value of baseline under the assumption that the

host coefficients are from a Normal distribution of zero mean and unit variance. This

is due to the correlation between the images in the database. Under a traditional

spread spectrum scheme, for K = 1, and ‖w‖ = 1, the actual baseline is 0.00011 and the

average distortion is 0.9997. Compared to the static single-watermark setting, significant

improvement in distortion is achieved. Intuitively, the significant improvement observed

is due to strong coherence amongst the images in the database. Figure 5.16 depicts

the watermark for the traditional SS scheme and the watermark for the static single-

watermark scheme.

Experiments were also conducted to evaluate the performance of static and dynamic

multiple watermark schemes for a natural image database of 1000 images. For imple-

menting the static multiple watermark scheme, a 2-mean algorithm was used to partition

the image database. A compact representation of the database with W = 1048576 bits

is organized as two watermarks of size 256 × 256 × 8 each, which are the normalized
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Figure 5.15: Comparison of distortion due to Spread Spectrum and Static Schemes on
the actual database of 700 images. Row 1: Original Images Row 2: Images watermarked
using static scheme with watermark generated using prior knowledge of image database.
Row 3: Images watermarked using spread spectrum scheme with watermark generated
randomly. For fair comparison the false alarm and robustness have been kept fixed for
either watermarking methods. This is done by fixing the detection strength K = 1 and
threshold T = 0.5. The average correlation value, B, for the spread spectrum scheme is
0.00011 and the average correlation value, B, for the static scheme is 0.81056.

average of the two partitions. The two watermarks are depicted in Figure 5.17. The

watermarks in Figure 5.17 are complementary in the sense that they point towards

opposite directions if treated as vectors in the 256 by 256 dimensional space. This is

characteristic of the 2-mean algorithm that was used to partition the database. Figure

5.18 depicts the evolving of 2 watermarks for a 2-watermark dynamic scheme. The wa-

termarks in the dynamic 2-watermark scheme are updated as new images arrive. Note

that, here also the watermarks are complementary because of the 2-mean algorithm

used. The watermarks generated by the dynamic scheme are backward compatible.

Figure 5.19 illustrates the performance comparison of spread spectrum, static and

dynamic settings for a natural image database of 1000 images. The conclusions are

similar to a Gaussian database case except that the difference in distortion between a

spread spectrum scheme and the proposed schemes is significantly higher, even more
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Figure 5.16: Watermarks for traditional SS scheme and static single-watermark scheme,
for a natural database of 1000 images.
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Figure 5.17: Keys for the 2-watermark static setting, for the image database. Note that
the 2 watermarks are almost complementary to each other.

than the theoretical findings. This is probably because of the strong coherence amongst

the images in the database. It is interesting to note that the increase in distortion with

increasing size of database is very slow. Figure 5.20 gives the performance of water-

marking in terms of distortion with changing size of database under a static multiple

watermark setting for images from a natural image database. Note that the distortion

is very low and follows the trends as in the Gaussian case. Figure 5.21 illustrates the

change in distortion with increase in size of database under a dynamic multiple wa-

termark setting. Note that in this case also the difference in distortion from a spread

spectrum scheme is significant.
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Figure 5.18: Evolving of watermarks in the dynamic 2-watermark case, for the image
database. from left to right: First row depicts the evolving of the first watermark for
the 10th, 40th, 125th, 250th and 400th image. The second row depicts evolving of the
corresponding second watermark. Note the complimentary nature of the watermarks
which is indicative of the 2-mean algorithm used to divide the database. (Final size of
database: 700 images)
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Figure 5.19: Distortion verses (m/d) for natural images from an image database for
dynamic single watermark setting with fixed bandwidth of 256 × 256 × 8 bits. The
number of coefficients is fixed at d = 256 × 256, and K = 1. The above graph shows
a comparison of performance between a spread spectrum, static and dynamic setting.
Note that although the dynamic setting performs worse than a static setting it still
improves upon a spread spectrum setting with random watermark.
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Figure 5.20: Distortion verses (m/d) for natural images from an image database for
static multiple watermark setting with fixed bandwidth of 256 × 256 × 8 bits. The
number of coefficients is fixed at d = 256×256, and K = 1. As the number of watermarks
increases, the distortion decreases. The distortion is very low.
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Figure 5.21: Distortion verses (m/d) for images from a natural image database for
dynamic multiple watermark setting with fixed bandwidth. The number of coefficients
is fixed at d = 256 × 256, and K = 1. Note that the bandwidth of the side channel is
fixed at 524288 bits.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation highlights the efficacy of using knowledge of the hosts database in

improving performance of watermarking based applications and presents a generic ap-

proach (Figure 1.2) that demonstrates this. In the proposed approach the encoder has

access to the hosts database and the detector has access to either full or partial informa-

tion about the database. This dissertation describes how the proposed approach can be

effective in addressing the problems associated with applications that adopt traditional

watermarking based solutions. In this work three applications are considered. All of

them deal with a database of hosts, which can be either static or on-line.

In chapter 3 a unified framework, which is a combination of retrieval and watermark-

ing systems, is proposed to reduce the ambiguity problem in copy detection systems. In

this scenario the detector has access to the modified hosts database. It is shown that

by increasing mutual separation of images in feature space ambiguity can be resolved.

The separation problem is expressed as a solution to a non-convex optimization problem

and a linear approximate algorithm to solve it is given. A prototype system, RAM is

presented that shows the efficacy of this framework over state-of-the-art copy detection

systems that use SIFT features, in resolving ambiguity. The intent is not to improve
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upon a feature representation but to show the efficacy of the proposed framework on

any modifiable feature representation. It is shown that the proposed system is arguably

more secure than a simple watermarking based solution.

In chapter 4 another unified framework (combining retrieval and watermarking sys-

tems) for improving nearest neighborhood search speed in high dimensions in proposed.

In this scenario the detector has access to the modified hosts database. The proposed

framework is implemented using a novel method called active clustering, where the

encoder takes as input the original database to generate a modified database and an

index tree, that can be used to search in the database. The method is applied on images

whose feature representation is taken as its spatial representation down-sampled to 4096

dimensions. Using the index tree the search complexity is logarithmic. A theoretical

analysis of how the combination system improves upon both retrieval and watermarking

systems is described.

In chapter 5 a framework for database watermarking is proposed. In this scenario

the detector has access to a partial information of the hosts database, made available

to it through a secure channel between the encoder and the detector. The encoder

uses knowledge of the original hosts database to generate the modified database and

a partial description of the database. The size of the partial description is influenced

by bandwidth limitations of the channel. The proposed framework demonstrates the

efficacy of using knowledge of hosts database in improving watermarking performance

measures over a traditional approach that uses i.i.d sequences as watermarks. An online

setting where the database is not fixed and new hosts are incrementally added into the

database is also investigated.

In all the above three applications, the conflicting requirements of robustness and

distortion are efficiently traded off. One common feature of all the three works is the

use of adaptive modification. For this, note Eq. 5.1, Eq. 3.1 and 3.2, and Eq. 4.2. The

natural separation of the hosts in their feature space or the knowledge of the detection

strength is used to reduce average distortion and simultaneously improve robustness.
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The proposed approach also shows how the watermarking of individual hosts can be

made interdependent when a database of hosts is available at the encoder. The use of

partial and full information at the detector, as proposed in this dissertation, is a more

practical approach towards addressing the problems associated with applications that

adopt a watermarking based solution. Note that the notion of detection by searching

(a requirement in retrieval system) is inspired by the possibility of taking advantage of

the natural separation of hosts in feature space.

6.2 Future Work

This dissertation proposes a novel watermarking approach that has opened up several

directions of research. Availability of a database of hosts is a common occurrence in

most practical applications. Hence one obvious direction of research is to show the

efficacy of using knowledge of hosts database in other applications.

For the framework proposed in chapter 4, the database remains unchanged (static)

throughout the encoding and query processing stages. It will be interesting to study the

dynamic setting. In this setting, the database I starts from one host I1. New hosts can

be added into I, but once added, cannot be removed. Furthermore, the corresponding

watermarked host must be computed before the arrival of new hosts. The watermarked

host, once computed, can not be modified. The dynamic setting is motivated by ap-

plications where a stream of images are to be watermarked by a watermarking service

provider before releasing to the public domain. The watermarking service provider

does not know in advance the images to be watermarked, and the watermarked im-

ages, once released to the public domain, can not be recalled for modification. This

is also applicable for the solution to resolving ambiguity presented in chapter 3. In a

dynamic database, images can both be added and deleted from the database, so it will

be interesting to investigate techniques to tackle the optimization problem in such a

setting.

Another possible research direction in relation to the application in chapter 4 is to
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study how the size of the index tree affects watermarking performance. Most water-

marking formulations (for example, watermarking with side information) assume that

the encoder and decoder know the distribution of the hosts, but not the actual hosts.

In the proposed formulation, the encoder and decoder have access to the index tree and

thus have full information of the actual database. In applications where the decoding is

to be performed in the client-side, the index tree has to be sent over the network. This

is practical only if the description of the database is small. Thus, it is useful to know

how to obtain a compact description of the database, and how to tradeoff its size with

other watermarking performance measures.

The framework proposed in chapter 5 opens up several research questions. The

facility of communication between the detection and encoding unit in detecting the

watermark behooves investigating what information and how much information must

be actually embedded in the host, so that over a few interactions the detection results

can be ascertained. This reduces the distortion further but adds to the communication

cost. Thus a tradeoff needs to be found. Another research direction would be to inves-

tigate methods for generating the watermarks. Presently a simple k-mean or averaging

technique is used. For large values of m, it may be required to organize the partial

information appropriately to perform detection by searching.
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