522 research outputs found

    From Caenorhabditis elegans to the Human Connectome: A Specific Modular Organisation Increases Metabolic, Functional, and Developmental Efficiency

    Full text link
    The connectome, or the entire connectivity of a neural system represented by network, ranges various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of C. elegans and the fibre tract network of human brains yielded through diffusion spectrum imaging (DSI). We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values but otherwise maximally random. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of C. elegans and human connectomes are both higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in C. elegans connectome or each region of interest (ROI) in human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared to the alternative arrangements. This implies that fewer rules are needed to encode for the organisation of neural systems

    A morphospace of functional configuration to assess configural breadth based on brain functional networks

    Get PDF
    The best approach to quantify human brain functional reconfigurations in response to varying cognitive demands remains an unresolved topic in network neuroscience. We propose that such functional reconfigurations may be categorized into three different types: i) Network Configural Breadth, ii) Task-to-Task transitional reconfiguration, and iii) Within-Task reconfiguration. In order to quantify these reconfigurations, we propose a mesoscopic framework focused on functional networks (FNs) or communities. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, Trapping Efficiency (TE) and Exit Entropy (EE), which capture topology and integration of information within and between a reference set of FNs. In this study, we use this framework to quantify the Network Configural Breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.Comment: main article: 24 pages, 8 figures, 2 tables. supporting information: 11 pages, 5 figure

    Computing Scalable Multivariate Glocal Invariants of Large (Brain-) Graphs

    Full text link
    Graphs are quickly emerging as a leading abstraction for the representation of data. One important application domain originates from an emerging discipline called "connectomics". Connectomics studies the brain as a graph; vertices correspond to neurons (or collections thereof) and edges correspond to structural or functional connections between them. To explore the variability of connectomes---to address both basic science questions regarding the structure of the brain, and medical health questions about psychiatry and neurology---one can study the topological properties of these brain-graphs. We define multivariate glocal graph invariants: these are features of the graph that capture various local and global topological properties of the graphs. We show that the collection of features can collectively be computed via a combination of daisy-chaining, sparse matrix representation and computations, and efficient approximations. Our custom open-source Python package serves as a back-end to a Web-service that we have created to enable researchers to upload graphs, and download the corresponding invariants in a number of different formats. Moreover, we built this package to support distributed processing on multicore machines. This is therefore an enabling technology for network science, lowering the barrier of entry by providing tools to biologists and analysts who otherwise lack these capabilities. As a demonstration, we run our code on 120 brain-graphs, each with approximately 16M vertices and up to 90M edges.Comment: Published as part of 2013 IEEE GlobalSIP conferenc

    Mapping hybrid functional-structural connectivity traits in the human connectome

    Get PDF
    One of the crucial questions in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between these structural and functional layers is an open problem that involves novel conceptual ways of tackling this question. We here propose an extension of the Connectivity Independent Component Analysis (connICA) framework, to identify joint structural-functional connectivity traits. Here, we extend connICA to integrate structural and functional connectomes by merging them into common hybrid connectivity patterns that represent the connectivity fingerprint of a subject. We test this extended approach on the 100 unrelated subjects from the Human Connectome Project. The method is able to extract main independent structural-functional connectivity patterns from the entire cohort that are sensitive to the realization of different tasks. The hybrid connICA extracted two main task-sensitive hybrid traits. The first, encompassing the within and between connections of dorsal attentional and visual areas, as well as fronto-parietal circuits. The second, mainly encompassing the connectivity between visual, attentional, DMN and subcortical networks. Overall, these findings confirms the potential ofthe hybrid connICA for the compression of structural/functional connectomes into integrated patterns from a set of individual brain networks.Comment: article: 34 pages, 4 figures; supplementary material: 5 pages, 5 figure

    Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes

    Get PDF
    Many theories of neural networks assume rules of connection between pairs of neurons that are based on their cell types or functional properties. It is finally becoming feasible to test such pairwise models of connectivity, due to emerging advances in neuroanatomical techniques. One method will be to measure the functional properties of connected pairs of neurons, sparsely sampling pairs from many specimens. Another method will be to find a ā€œconnectome,ā€ a dense map of all connections in a single specimen, and infer functional properties of neurons through computational analysis. For the latter method, the most exciting prospect would be to decode the memories that are hypothesized to be stored in connectomes
    • ā€¦
    corecore