213 research outputs found

    In silico study of calcium handling in the human failing heart

    Full text link
    Tesis por compendio[EN] Heart failure, a cardiomyopathy that produces mechanical dysfunction and sudden cardiac death following fatal arrhythmias, is one of the main causes of mortality worldwide that also causes elevated morbidity rates. Current clinical therapies are challenged by the complexity of this cardiac pathology, in which many factors are involved in the electrical instabilities that lead to an altered function. The electrical activity of the heart comprises a wide range of spatial and temporal scales. Ion transport across transmembrane proteins initiate the cellular depolarization that is propagated cell to cell through the myocardium depolarizing and then repolarizing the entire heart in an orchestrated manner. The electrical excitation of cardiomyocytes triggers the cellular contraction, a process in which Ca2+ ions are the main mediators. Ca2+ dynamics plays a relevant role in controlling excitation-contraction coupling and consequently, investigations have focused on Ca2+-handling proteins and the regulation of Ca2+ homeostasis to elucidate the causes of impaired contractility and pro-arrhythmic conditions in cardiac diseases. This thesis takes advantage of the existence of mathematical models with detailed representation of the subcellular processes to perform computational simulations of cardiac electrophysiology and understand the altered mechanisms that govern heart failure, especially those related with intracellular Ca2+ cycling. It is known that failing myocytes undergo a specific remodeling of ion channels and Ca2+-handling proteins that lead to an impaired excitation-contraction coupling. Initially, it was analyzed, in the human action potential model of ventricular myocytes selected for the whole study, the effects of modulating ionic mechanisms on the electrical activity and Ca2+ dynamics. In tissue, heart failure induces additional changes affecting cellular coupling. The development of fibroblasts and impact on myocyte electrophysiology was investigated, including the vulnerability to generate alternans, a common precursor to arrhythmogenesis. Finally, the beta-adrenergic signaling model was integrated with the action potential model because of the electrophysiological modulation exerted by the sympathetic nervous system, which is aggravated under heart failure conditions. Results highlighted the need of studying heart failure therapies on failing cells because of the different response of ion channels and membrane proteins to drugs. Functional Ca2+ proteins were important to maintain Ca2+ homeostasis and to avoid malignant electrical consequences, being SERCA pump the most critical factor. Apart from the electrophysiological remodeling, fibroblast interaction contributed to alter Ca2+ dynamics in myocytes and, when analyzing Ca2+ alternans, spatial electrical discordances predominated in failing tissues. The inclusion of beta-adrenergic stimulation showed that the inotropic response was diminished in heart failure as well as the antiarrhythmic benefits provided by catecholamines in the normal heart. These findings contribute to gain insight into the pathophysiology of heart failure and the development of new pharmacological agents targeted to restore Ca2+ dynamics. The control of intracellular Ca2+ cycling is crucial to ensure both the mechanical force and the electrical activity that lead to a rhythmic contraction of the heart.[ES] La insuficiencia cardíaca, una cardiomiopatía que provoca disfunción mecánica y muerte súbita tras arritmias cardíacas letales, es una de las principales causas de mortalidad en todo el mundo que además causa tasas de morbilidad elevadas. Las terapias usadas actualmente en la clínica están comprometidas por la complejidad de esta patología cardíaca, ya que son muchos los factores que están implicados en las inestabilidades eléctricas que conllevan a alteraciones funcionales. La actividad eléctrica del corazón abarca un amplio rango escalas espaciales y temporales. El transporte de iones a través de las proteínas transmembrana inicia la despolarización celular que se propaga de célula en célula a través del miocardio, despolarizando y luego repolarizando todo el corazón de manera sincronizada. La excitación eléctrica de los cardiomiocitos desencadena la contracción celular, un proceso en el que los iones de Ca2+ son los principales intermediarios. La dinámica de Ca2+ tiene un papel relevante en el control del acoplamiento excitación-contracción y, como consecuencia, las investigaciones se han centrado en las proteínas que controlan el ciclo del Ca2+ y la regulación homeostática para encontrar las causas que empeoran la contractilidad y conducen a condiciones proarrítmicas en casos de insuficiencia cardíaca. Esta tesis hace uso de la existencia de modelos matemáticos con una representación detallada de los procesos subcelulares para realizar simulaciones computacionales de electrofisiología cardíaca y comprender los mecanismos que están alterados y predominan en insuficiencia cardíaca, especialmente aquellos relacionados con el ciclo intracelular de Ca2+ . Se sabe que los miocitos dañados por insuficiencia cardíaca experimentan un remodelado específico en los canales iónicos y en las proteínas partícipes en el ciclo de Ca2+, ocasionando fallos en el acoplamiento excitación-contracción. Inicialmente, se analizaron, en el modelo de potencial de acción humano de miocitos ventriculares seleccionado para todo el estudio, los efectos de la modulación de los mecanismos iónicos sobre la actividad eléctrica y la dinámica de Ca2+. En los tejidos, la insuficiencia cardíaca induce cambios adicionales que afectan el acoplamiento celular. Se ha investigado la presencia de fibroblastos y su impacto en la electrofisiología de los miocitos, incluida la vulnerabilidad para generar alternantes, un precursor común de la arritmogénesis. Finalmente, se ha incluido el modelo de señalización -adrenérgica integrado con el modelo de potencial de acción debido a la modulación electrofisiológica ejercida por el sistema nervioso simpático, que se agrava en condiciones de insuficiencia cardíaca. Los resultados han destacado la necesidad de estudiar las terapias de insuficiencia cardíaca en células de estos corazones debido a la diferente respuesta de los canales iónicos y las proteínas de membrana a los medicamentos. El buen funcionamiento de las proteínas reguladoras del Ca2+ es importantes para mantener la homeostasis del Ca2+ y evitar consecuencias eléctricas malignas, siendo la bomba SERCA el factor más crítico. Además del remodelado electrofisiológico, la interacción con fibroblastos contribuye a alterar la dinámica de Ca2+ en los miocitos y, al analizar los alternantes de Ca2+, predominan las discordancias eléctricas espaciales en los tejidos de corazones con insuficiencia cardíaca. La inclusión de la estimulación -adrenérgica ha mostrado que la respuesta inotrópica disminuye en insuficiencia cardíaca, así como los beneficios antiarrítmicos proporcionados por las catecolaminas en un corazón normal. Estos hallazgos contribuyen a obtener información sobre la fisiopatología de la insuficiencia cardíaca y el desarrollo de nuevos agentes farmacológicos destinados a restaurar la dinámica de Ca 2+. El control del ciclo de Ca2+ intracelular es crítico para garantizar tanto la fuerza mecánica como la actividad eléctrica que conducen a una contracción rítmica del corazón.[CA] La insuficiència cardíaca, una cardiomiopatia que provoca disfunció mecànica i mort sobtada després d'arrítmies cardíaques letals, és una de les principals causes de mortalitat a tot el món que a més causa taxes de morbiditat elevades. Les teràpies utilitzades actualment en la clínica estan compromeses per la complexitat d'aquesta patologia cardíaca, ja que són molts els factors que estan implicats en les inestabilitats elèctriques que comporten a alteracions funcionals. L'activitat elèctrica del cor abasta un ampli rang d'escales espacials i temporals. El transport d'ions a través de les proteïnes transmembrana inicia la despolarització cel·lular que es propaga de cèl·lula en cèl·lula a través del miocardi, despolaritzant i després repolaritzant tot el cor de manera sincronitzada. L'excitació elèctrica dels cardiomiòcits desencadena la contracció cel·lular, un procés en el qual els ions de Ca2+ són els principals intermediaris. La dinàmica de Ca2+ té un paper rellevant en el control de l'acoblament excitació-contracció i, com a conseqüència, les investigacions s'han centrat en les proteïnes que controlen el cicle del Ca2+ i la regulació homeostàtica per a trobar les causes que empitjoren la contractilitat i condueixen a condicions proarrítmiques en casos d'insuficiència cardíaca. Aquesta tesi fa ús de l'existència de models matemàtics amb una representació detallada dels processos subcel·lulars per a realitzar simulacions computacionals de l'electrofisiologia cardíaca i comprendre els mecanismes que estan alterats i predominen en insuficiència cardíaca, especialment aquells relacionats amb el cicle intracel·lular de Ca2+. Se sap que els miòcits danyats per insuficiència cardíaca experimenten un remodelat específic en els canals iònics i en les proteïnes partícips en el cicle de Ca2+, ocasionant fallades en l'acoblament excitació-contracció. Inicialment, es van analitzar, en el model de potencial d'acció humà de miòcits ventriculars seleccionat per a tot l'estudi, els efectes de la modulació dels mecanismes iònics sobre l'activitat elèctrica i la dinàmica de Ca2+. En els teixits, la insuficiència cardíaca indueix canvis addicionals que afecten l'acoblament cel·lular. S'ha investigat la presència de fibroblasts i el seu impacte en l'electrofisiologia dels miòcits, inclosa la vulnerabilitat per a generar alternants, un precursor comú de l'arritmogènesi. Finalment, s'ha inclòs el model de senyalització beta-adrenèrgica integrat amb el model de potencial d'acció a causa de la modulació electrofisiològica exercida pel sistema nerviós simpàtic, que s'agreuja en condicions d'insuficiència cardíaca. Els resultats han destacat la necessitat d'estudiar les teràpies d'insuficiència cardíaca en cèl·lules d'aquests cors a causa de la diferent resposta dels canals iònics i les proteïnes de membrana als medicaments. El bon funcionament de les proteïnes reguladores del Ca2+ és importants per a mantindre l'homeòstasi del Ca2+ i evitar conseqüències elèctriques malignes, sent la bomba SERCA el factor més crític. A més del remodelat electrofisiològic, la interacció amb fibroblasts contribueix a alterar la dinàmica de Ca2+ en els miòcits i, en analitzar els alternants de Ca2+, predominen les discordances elèctriques espacials en els teixits de cors amb insuficiència cardíaca. La inclusió de l'estimulació beta-adrenèrgica ha mostrat que la resposta inotròpica disminueix en insuficiència cardíaca, així com els beneficis antiarrítmics proporcionats per les catecolamines en un cor normal. Aquestes troballes contribueixen a obtindre informació sobre la fisiopatologia de la insuficiència cardíaca i el desenvolupament de nous agents farmacològics destinats a restaurar la dinàmica de Ca2+. El control del cicle de Ca2+ intracel·lular és crític per a garantir tant la força mecànica com l'activitat elèctrica per a una contracció rítmica del cor.Mora Fenoll, MT. (2020). In silico study of calcium handling in the human failing heart [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153143TESISCompendi

    Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts

    Full text link
    [EN] Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. Methods and findings The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. Conclusion It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.This work was partially supported by the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016" from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-17) from the Universitat Politècnica de València. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Mora-Fenoll, MT.; Gomez, JF.; Morley, G.; Ferrero De Loma-Osorio, JM.; Trenor Gomis, BA. (2019). Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS ONE. 14(6):1-19. https://doi.org/10.1371/journal.pone.0217993S119146Glukhov, A. V., Fedorov, V. V., Kalish, P. W., Ravikumar, V. K., Lou, Q., Janks, D., … Efimov, I. R. (2012). Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy. Circulation, 125(15), 1835-1847. doi:10.1161/circulationaha.111.047274Lou, Q., Fedorov, V. V., Glukhov, A. V., Moazami, N., Fast, V. G., & Efimov, I. R. (2011). Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure. Circulation, 123(17), 1881-1890. doi:10.1161/circulationaha.110.989707Gomez, J. F., Cardona, K., & Trenor, B. (2015). Lessons learned from multi-scale modeling of the failing heart. Journal of Molecular and Cellular Cardiology, 89, 146-159. doi:10.1016/j.yjmcc.2015.10.016Kohl, P., & Gourdie, R. G. (2014). Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? Journal of Molecular and Cellular Cardiology, 70, 37-46. doi:10.1016/j.yjmcc.2013.12.024Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0cKohl, P., Camelliti, P., Burton, F. L., & Smith, G. L. (2005). Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 38(4), 45-50. doi:10.1016/j.jelectrocard.2005.06.096Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 94(6), 828-835. doi:10.1161/01.res.0000122382.19400.14Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959Mahoney, V. M., Mezzano, V., Mirams, G. R., Maass, K., Li, Z., Cerrone, M., … Morley, G. E. (2016). Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart. Scientific Reports, 6(1). doi:10.1038/srep26744Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114Rubart, M., Tao, W., Lu, X.-L., Conway, S. J., Reuter, S. P., Lin, S.-F., & Soonpaa, M. H. (2017). Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovascular Research, 114(3), 389-400. doi:10.1093/cvr/cvx163Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007Li, Y., Asfour, H., & Bursac, N. (2017). Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomaterialia, 55, 120-130. doi:10.1016/j.actbio.2017.04.027Zlochiver, S., Muñoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 95(9), 4469-4480. doi:10.1529/biophysj.108.136473Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292Greisas, A., & Zlochiver, S. (2016). The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Cardiovascular Engineering and Technology, 7(3), 290-304. doi:10.1007/s13239-016-0266-xSridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273KODAMA, M., KATO, K., HIRONO, S., OKURA, Y., HANAWA, H., YOSHIDA, T., … AIZAWA, Y. (2004). Linkage Between Mechanical and Electrical Alternans in Patients with Chronic Heart Failure. Journal of Cardiovascular Electrophysiology, 15(3), 295-299. doi:10.1046/j.1540-8167.2004.03016.xRosenbaum, D. S., Jackson, L. E., Smith, J. M., Garan, H., Ruskin, J. N., & Cohen, R. J. (1994). Electrical Alternans and Vulnerability to Ventricular Arrhythmias. New England Journal of Medicine, 330(4), 235-241. doi:10.1056/nejm199401273300402Jordan, P. N., & Christini, D. J. (2006). Action Potential Morphology Influences Intracellular Calcium Handling Stability and the Occurrence of Alternans. Biophysical Journal, 90(2), 672-680. doi:10.1529/biophysj.105.071340Cherry, E. M. (2017). Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(9), 093902. doi:10.1063/1.4999354Groenendaal, W., Ortega, F. A., Krogh-Madsen, T., & Christini, D. J. (2014). Voltage and Calcium Dynamics Both Underlie Cellular Alternans in Cardiac Myocytes. Biophysical Journal, 106(10), 2222-2232. doi:10.1016/j.bpj.2014.03.048Nolasco, J. B., & Dahlen, R. W. (1968). A graphic method for the study of alternation in cardiac action potentials. Journal of Applied Physiology, 25(2), 191-196. doi:10.1152/jappl.1968.25.2.191Picht, E., DeSantiago, J., Blatter, L. A., & Bers, D. M. (2006). Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations. Circulation Research, 99(7), 740-748. doi:10.1161/01.res.0000244002.88813.91Díaz, M. E., O’Neill, S. C., & Eisner, D. A. (2004). Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans. Circulation Research, 94(5), 650-656. doi:10.1161/01.res.0000119923.64774.72Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart, P., … Rodriguez, B. (2016). In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circulation Research, 118(2), 266-278. doi:10.1161/circresaha.115.307836Xie, L.-H., Sato, D., Garfinkel, A., Qu, Z., & Weiss, J. N. (2008). Intracellular Ca Alternans: Coordinated Regulation by Sarcoplasmic Reticulum Release, Uptake, and Leak. Biophysical Journal, 95(6), 3100-3110. doi:10.1529/biophysj.108.130955Cutler, M. J., Wan, X., Laurita, K. R., Hajjar, R. J., & Rosenbaum, D. S. (2009). Targeted SERCA2a Gene Expression Identifies Molecular Mechanism and Therapeutic Target for Arrhythmogenic Cardiac Alternans. Circulation: Arrhythmia and Electrophysiology, 2(6), 686-694. doi:10.1161/circep.109.863118Kanaporis, G., & Blatter, L. A. (2015). The Mechanisms of Calcium Cycling and Action Potential Dynamics in Cardiac Alternans. Circulation Research, 116(5), 846-856. doi:10.1161/circresaha.116.305404Pastore, J. M., Girouard, S. D., Laurita, K. R., Akar, F. G., & Rosenbaum, D. S. (1999). Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation. Circulation, 99(10), 1385-1394. doi:10.1161/01.cir.99.10.1385O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2000). Electrophysiological Effects of Remodeling Cardiac Gap Junctions and Cell Size. Circulation Research, 86(3), 302-311. doi:10.1161/01.res.86.3.302Kieval, R. S., Spear, J. F., & Moore, E. N. (1992). Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium. Circulation Research, 71(1), 127-136. doi:10.1161/01.res.71.1.127Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602Taggart, P., Sutton, P. M., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., & Kallis, P. (2000). Inhomogeneous Transmural Conduction During Early Ischaemia in Patients with Coronary Artery Disease. Journal of Molecular and Cellular Cardiology, 32(4), 621-630. doi:10.1006/jmcc.2000.1105Heidenreich E. Algoritmos para ecuaciones de reacción difusión aplicados a electrofisiología. Ph.D. Thesis. Universidad de Zaragoza. 2009. https://institutoi4.net/wp-content/uploads/2017/08/TesisEAH.pdfHeidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2Xie, Y., Garfinkel, A., Weiss, J. N., & Qu, Z. (2009). Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. American Journal of Physiology-Heart and Circulatory Physiology, 297(2), H775-H784. doi:10.1152/ajpheart.00341.2009Luo, C. H., & Rudy, Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research, 68(6), 1501-1526. doi:10.1161/01.res.68.6.1501Pruvot, E. J., Katra, R. P., Rosenbaum, D. S., & Laurita, K. R. (2004). Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans. Circulation Research, 94(8), 1083-1090. doi:10.1161/01.res.0000125629.72053.95Kanaporis, G., & Blatter, L. A. (2017). Membrane potential determines calcium alternans through modulation of SR Ca 2+ load and L-type Ca 2+ current. Journal of Molecular and Cellular Cardiology, 105, 49-58. doi:10.1016/j.yjmcc.2017.02.004Goldhaber, J. I., Xie, L.-H., Duong, T., Motter, C., Khuu, K., & Weiss, J. N. (2005). Action Potential Duration Restitution and Alternans in Rabbit Ventricular Myocytes. Circulation Research, 96(4), 459-466. doi:10.1161/01.res.0000156891.66893.83Walmsley, J., Rodriguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., & Rodriguez, B. (2013). mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. PLoS ONE, 8(2), e56359. doi:10.1371/journal.pone.0056359Narayan, S. M., Bayer, J. D., Lalani, G., & Trayanova, N. A. (2008). Action Potential Dynamics Explain Arrhythmic Vulnerability in Human Heart Failure. Journal of the American College of Cardiology, 52(22), 1782-1792. doi:10.1016/j.jacc.2008.08.037Livshitz, L. M., & Rudy, Y. (2007). Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. American Journal of Physiology-Heart and Circulatory Physiology, 292(6), H2854-H2866. doi:10.1152/ajpheart.01347.2006WILSON, L. D., WAN, X., & ROSENBAUM, D. S. (2006). Cellular Alternans: A Mechanism Linking Calcium Cycling Proteins to Cardiac Arrhythmogenesis. Annals of the New York Academy of Sciences, 1080(1), 216-234. doi:10.1196/annals.1380.018Wilson, L. D., Jeyaraj, D., Wan, X., Hoeker, G. S., Said, T. H., Gittinger, M., … Rosenbaum, D. S. (2009). Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm, 6(2), 251-259. doi:10.1016/j.hrthm.2008.11.008Cutler, M. J., Wan, X., Plummer, B. N., Liu, H., Deschenes, I., Laurita, K. R., … Rosenbaum, D. S. (2012). Targeted Sarcoplasmic Reticulum Ca 2+ ATPase 2a Gene Delivery to Restore Electrical Stability in the Failing Heart. Circulation, 126(17), 2095-2104. doi:10.1161/circulationaha.111.071480Bayer, J. D., Narayan, S. M., Lalani, G. G., & Trayanova, N. A. (2010). Rate-dependent action potential alternans in human heart failure implicates abnormal intracellular calcium handling. Heart Rhythm, 7(8), 1093-1101. doi:10.1016/j.hrthm.2010.04.008Wang, L., Myles, R. C., De Jesus, N. M., Ohlendorf, A. K. P., Bers, D. M., & Ripplinger, C. M. (2014). Optical Mapping of Sarcoplasmic Reticulum Ca 2+ in the Intact Heart. Circulation Research, 114(9), 1410-1421. doi:10.1161/circresaha.114.302505Rovetti, R., Cui, X., Garfinkel, A., Weiss, J. N., & Qu, Z. (2010). Spark-Induced Sparks As a Mechanism of Intracellular Calcium Alternans in Cardiac Myocytes. Circulation Research, 106(10), 1582-1591. doi:10.1161/circresaha.109.213975Tomek, J., Tomková, M., Zhou, X., Bub, G., & Rodriguez, B. (2018). Modulation of Cardiac Alternans by Altered Sarcoplasmic Reticulum Calcium Release: A Simulation Study. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01306Hammer, K. P., Ljubojevic, S., Ripplinger, C. M., Pieske, B. M., & Bers, D. M. (2015). Cardiac myocyte alternans in intact heart: Influence of cell–cell coupling and β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 84, 1-9. doi:10.1016/j.yjmcc.2015.03.012Majumder, R., Engels, M. C., de Vries, A. A. F., Panfilov, A. V., & Pijnappels, D. A. (2016). Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium. Scientific Reports, 6(1). doi:10.1038/srep24334Shiferaw, Y., & Karma, A. (2006). Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. Proceedings of the National Academy of Sciences, 103(15), 5670-5675. doi:10.1073/pnas.0511061103Sato, D., Shiferaw, Y., Garfinkel, A., Weiss, J. N., Qu, Z., & Karma, A. (2006). Spatially Discordant Alternans in Cardiac Tissue. Circulation Research, 99(5), 520-527. doi:10.1161/01.res.0000240542.03986.e

    Modelling pathological effects in intracellular calcium dynamics leading to atrial fibrillation

    Get PDF
    The heart beating is produced by the synchronization of the cardiac cells' contraction. A dysregulation in this mechanism may produce episodes of abnormal heart contraction. The origin of these abnormalities often lies at the subcellular level where calcium is the most important ion that controls the cell contraction. The regulation of calcium concentration is determined by the ryanodine receptors (RyR), the calcium channels that connect the cytosol and the sarcoplasmic reticulum. RyRs open and close stochastically with calcium-dependent rates. The fundamental calcium release event is known as calcium spark, which refers to a local release of calcium through one or more RyRs. Thus, a deep knowledge on both the spatio-temporal characteristics of the calcium patterns and the role of the RyRs is crucial to understand the transition between healthy to unhealthy cells. The aim of this Thesis has been to figure out these changes at the submicron scale, which may induce the transition to Atrial Fibrillation (AF) in advanced stages. To address this issue, I have developed, and validated, a subcellular mathematical model of an atrial myocyte which includes the electro-physiological currents as well as the fundamental intracellular structures. The high resolution of the model has allowed me to study the spatio-temporal calcium features that arise from both the cell stimulation and the resting conditions. Simulations show the relevance of the assembly of RyRs into clusters, leading to the formation of macro-sparks for heterogeneous distributions. These macro-sparks may produce ectopic beats under pathophysiological conditions. The incorporation of RyR-modulators into the model produces a nonuniform spatial distribution of calcium sparks, a situation observed during AF. In this sense, calsequestrin (CSQ) has emerged as a key calcium buffer that modifies the calcium handling. The lack of CSQ produces an increase in the spark frequency and, during calcium overload, it also promotes the appearance of global calcium oscillations. Finally, I have also characterized the effect of detubulation, a common issue in cells with AF and heart failure. Thus, the present work represents a step forward in the understanding of the mechanisms leading to AF, with the development of computational models that, in the future, can be used to complement in vitro or in vivo studies, helping find therapeutic targets for this disease

    PLoS Comput Biol

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia, but our knowledge of the arrhythmogenic substrate is incomplete. Alternans, the beat-to-beat alternation in the shape of cardiac electrical signals, typically occurs at fast heart rates and leads to arrhythmia. However, atrial alternans have been observed at slower pacing rates in AF patients than in controls, suggesting that increased vulnerability to arrhythmia in AF patients may be due to the proarrythmic influence of alternans at these slower rates. As such, alternans may present a useful therapeutic target for the treatment and prevention of AF, but the mechanism underlying alternans occurrence in AF patients at heart rates near rest is unknown. The goal of this study was to determine how cellular changes that occur in human AF affect the appearance of alternans at heart rates near rest. To achieve this, we developed a computational model of human atrial tissue incorporating electrophysiological remodeling associated with chronic AF (cAF) and performed parameter sensitivity analysis of ionic model parameters to determine which cellular changes led to alternans. Of the 20 parameters tested, only decreasing the ryanodine receptor (RyR) inactivation rate constant (kiCa) produced action potential duration (APD) alternans seen clinically at slower pacing rates. Using single-cell clamps of voltage, fluxes, and state variables, we determined that alternans onset was Ca2+-driven rather than voltage-driven and occurred as a result of decreased RyR inactivation which led to increased steepness of the sarcoplasmic reticulum (SR) Ca2+ release slope. Iterated map analysis revealed that because SR Ca2+ uptake efficiency was much higher in control atrial cells than in cAF cells, drastic reductions in kiCa were required to produce alternans at comparable pacing rates in control atrial cells. These findings suggest that RyR kinetics may play a critical role in altered Ca2+ homeostasis which drives proarrhythmic APD alternans in patients with AF.DP1 HL123271/HL/NHLBI NIH HHS/United StatesDP1-HL123271/DP/NCCDPHP CDC HHS/United States25501557PMC426336

    Spark-induced Sparks as a Mechanism of Intracellular Calcium Alternans in Cardiac Myocytes

    Get PDF
    Rationale: Intracellular calcium (Ca) alternans has been widely studied in cardiac myocytes and tissue, yet the underlying mechanism remains controversial. Objective: In this study, we used computational modeling and simulation to study how randomly occurring Ca sparks interact collectively to result in whole-cell Ca alternans. Methods and Results: We developed a spatially-distributed intracellular Ca cycling model in which Ca release units (CRUs) are locally coupled by Ca diffusion throughout the myoplasm and sarcoplasmic reticulum (SR) network. Ca sparks occur randomly in the CRU network when periodically paced with a clamped voltage waveform, but Ca alternans develops as the pacing speeds up. Combining computational simulation with theoretical analysis, we show that Ca alternans emerges as a collective behavior of Ca sparks, determined by three critical properties of the CRU network from which Ca sparks arise: randomness (of Ca spark activation), refractoriness (of a CRU after a Ca spark), and recruitment (Ca sparks inducing Ca sparks in adjacent CRUs). We also show that the steep nonlinear relationship between fractional SR Ca release and SR Ca load arises naturally as a collective behavior of Ca sparks, and Ca alternans can occur even when SR Ca is held constant. Conclusions: We present a general theory for the mechanisms of intracellular Ca alternans, which mechanistically links Ca sparks to whole-cell Ca alternans, and is applicable to Ca alternans in both physiological and pathophysiological conditions

    Sympathetic nervous regulation of calcium and action potential alternans in the intact heart

    Get PDF
    Rationale: Arrhythmogenic cardiac alternans are thought to be an important determinant for the initiation of ventricular fibrillation. There is limited information on the effects of sympathetic nerve stimulation (SNS) on alternans in the intact heart and the conclusions of existing studies, focused on investigating electrical alternans, are conflicted. Meanwhile, several lines of evidence implicate instabilities in Ca handling, not electrical restitution, as the primary mechanism underpinning alternans. Despite this, there have been no studies on Ca alternans and SNS in the intact heart. The present study sought to address this, by application of voltage and Ca optical mapping for the simultaneous study of APD and Ca alternans in the intact guinea pig heart during direct SNS. Objective: To determine the effects of SNS on APD and Ca alternans in the intact guinea pig heart and to examine the mechanism(s) by which the effects of SNS are mediated. Methods and Results: Studies utilized simultaneous voltage and Ca optical mapping in isolated guinea pig hearts with intact innervation. Alternans were induced using a rapid dynamic pacing protocol. SNS was associated with rate-independent shortening of action potential duration (APD) and the suppression of APD and Ca alternans, as indicated by a shift in the alternans threshold to faster pacing rates. Qualitatively similar results were observed with exogenous noradrenaline perfusion. In co ntrast with previous reports, both SNS and noradrenaline acted to flatten the slope of the electrical restitution curve. Pharmacological block of the slow delayed rectifying potassium current (I Ks ), sufficient to abolish I Ks -mediated APD-adaptation, partially reversed the effects of SNS on pacing-induced alternans. Treatment with cyclopiazonic acid, an inhibitor of the sarco(endo)plasmic reticulum ATPase, had opposite effects to that of SNS, acting to increase susceptibility to alternans, and suggesting that accelerated Ca reuptake into the sarcoplasmic reticulum is a major mechanism by which SNS suppresses alternans in the guinea pig heart. Conclusions: SNS suppresses calcium and action potential alternans in the intact guinea pig heart by an action mediated through accelerated Ca handling and via increased I Ks

    Computational modeling of human atrial cardiomyocytes: integration of electro-mechanical & mechano-electric feedback pathways

    Get PDF
    The cardiomyocytes are very complex consisting of many interlinked non-linear regulatory mechanisms between electrical excitation and mechanical contraction. Thus given a integrated electromechanically coupled system it becomes hard to understand the individual contributor of cardiac electrics and mechanics under both physiological and pathological conditions. Hence, to identify the causal relationship or to predict the responses in a integrated system the use of computational modeling can be beneficial. Computational modeling is a powerful tool that provides complete control of parameters along with the visibility of all the individual components of the integrated system. The advancement of computational power has made it possible to simulate the models in a short timeframe, providing the possibility of increased predictive power of the integrated system. My doctoral thesis is focused on the development of electromechanically integrated human atrial cardiomyocyte model with proper consideration of feedforward and feedback pathways
    corecore