13 research outputs found

    Level set medical image segmentation aided by cooperative quantum particle optimization with Lévy flights

    Get PDF
    Image segmentation plays an important part of image processing, and is also the premise and basis of image analysis and image understanding and recognition. Among the level set based methods, the original Local Binary Fitting (LBF) algorithm is a successful deterministic algorithm that suffers from sensitization to size of the local minimum, image contours, shapes, and initial positions. Among them, Level Set method promotes the two-dimensional problem to the three-dimensional one and then solves it using implicit method to express closed curve of plane. In this article, a novel Level Set model aided by PSO was proposed to solve automated medical image segmentation. The experimental result of segmentations on the benchmark shows that our proposed method is effective to both simple and complex medical images

    Local Binary Fitting Segmentation by Cooperative Quantum Particle Optimization

    Get PDF
    Recently, sophisticated segmentation techniques, such as level set method, which using valid numerical calculation methods to process the evolution of the curve by solving linear or nonlinear elliptic equations to divide the image availably, has become being more popular and effective. In Local Binary Fitting (LBF) algorithm, a simple contour is initialized in an image and then the steepest-descent algorithm is employed to constrain it to minimize the fitting energy functional. Hence, the initial position of the contour is difficult or impossible to be well chosen for the final performance. To overcoming this drawback, this work treats the energy fitting problem as a meta-heuristic optimization algorithm and imports a varietal particle swarm optimization (PSO) method into the inner optimization process. The experimental results of segmentations on medical images show that the proposed method is not only effective to both simple and complex medical images with adequate stochastic effects, but also shows the accuracy and high efficiency

    Fuzzy Clustering Image Segmentation Based on Particle Swarm Optimization

    Get PDF
    Image segmentation refers to the technology to segment the image into different regions with different characteristics and to extract useful objectives, and it is a key step from image processing to image analysis. Based on the comprehensive study of image segmentation technology, this paper analyzes the advantages and disadvantages of the existing fuzzy clustering algorithms; integrates the particle swarm optimization (PSO) with the characteristics of global optimization and rapid convergence and fuzzy clustering (FC) algorithm with fuzzy clustering effects starting from the perspective of particle swarm and fuzzy membership restrictions and gets a PSO-FC image segmentation algorithm so as to effectively avoid being trapped into the local optimum and improve the stability and reliability of clustering algorithm. The experimental results show that this new PSO-FC algorithm has excellent image segmentation effects

    Driving Active Contours to Concave Regions

    Get PDF
    Broken characters restoration represents the major challenge of optical character recognition (OCR). Active contours, which have been used successfully to restore ancient documents with high degradations have drawback in restoring characters with deep concavity boundaries. Deep concavity problem represents the main obstacle, which has prevented Gradient Vector Flow active contour in converge to objects with complex concavity boundaries. In this paper, we proposed a technique to enhance (GVF) active contour using particle swarm optimization (PSO) through directing snake points (snaxels) toward correct positions into deep concavity boundaries of broken characters by comparing with genetic algorithms as an optimization method. Our experimental results showed that particle swarm optimization outperform on genetic algorithm to correct capturing the converged areas and save spent time in optimization process

    Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia.

    Full text link
    The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique

    Enhanced segment particle swarm optimization for large-scale kinetic parameter estimation of escherichia coli network model

    Get PDF
    The development of a large-scale metabolic model of Escherichia coli (E. coli) is very crucial to identify the potential solution of industrially viable productions. However, the large-scale kinetic parameters estimation using optimization algorithms is still not applied to the main metabolic pathway of the E. coli model, and they’re a lack of accuracy result been reported for current parameters estimation using this approach. Thus, this research aimed to estimate large-scale kinetic parameters of the main metabolic pathway of the E. coli model. In this regard, a Local Sensitivity Analysis, Segment Particle Swarm Optimization (Se-PSO) algorithm, and the Enhanced Segment Particle Swarm Optimization (ESe-PSO) algorithm was adapted and proposed to estimate the parameters. Initially, PSO algorithm was adapted to find the globally optimal result based on unorganized particle movement in the search space toward the optimal solution. This development then introduces the Se-PSO algorithm in which the particles are segmented to find a local optimal solution at the beginning and later sought by the PSO algorithm. Additionally, the study proposed an Enhance Se-PSO algorithm to improve the linear value of inertia weigh

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore