9,658 research outputs found

    Adaptive Streaming in P2P Live Video Systems: A Distributed Rate Control Approach

    Get PDF
    Dynamic Adaptive Streaming over HTTP (DASH) is a recently proposed standard that offers different versions of the same media content to adapt the delivery process over the Internet to dynamic bandwidth fluctuations and different user device capabilities. The peer-to-peer (P2P) paradigm for video streaming allows to leverage the cooperation among peers, guaranteeing to serve every video request with increased scalability and reduced cost. We propose to combine these two approaches in a P2P-DASH architecture, exploiting the potentiality of both. The new platform is made of several swarms, and a different DASH representation is streamed within each of them; unlike client-server DASH architectures, where each client autonomously selects which version to download according to current network conditions and to its device resources, we put forth a new rate control strategy implemented at peer site to maintain a good viewing quality to the local user and to simultaneously guarantee the successful operation of the P2P swarms. The effectiveness of the solution is demonstrated through simulation and it indicates that the P2P-DASH platform is able to warrant its users a very good performance, much more satisfying than in a conventional P2P environment where DASH is not employed. Through a comparison with a reference DASH system modeled via the Integer Linear Programming (ILP) approach, the new system is shown to outperform such reference architecture. To further validate the proposal, both in terms of robustness and scalability, system behavior is investigated in the critical condition of a flash crowd, showing that the strong upsurge of new users can be successfully revealed and gradually accommodated.Comment: 12 pages, 17 figures, this work has been submitted to the IEEE journal on selected Area in Communication

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page

    GLive: The Gradient overlay as a market maker for mesh-based P2P live streaming

    Get PDF
    Peer-to-Peer (P2P) live video streaming over the Internet is becoming increasingly popular, but it is still plagued by problems of high playback latency and intermittent playback streams. This paper presents GLive, a distributed market-based solution that builds a mesh overlay for P2P live streaming. The mesh overlay is constructed such that (i) nodes with increasing upload bandwidth are located closer to the media source, and (ii) nodes with similar upload bandwidth become neighbours. We introduce a market-based approach that matches nodes willing and able to share the stream with one another. However, market-based approaches converge slowly on random overlay networks, and we improve the rate of convergence by adapting our market-based algorithm to exploit the clustering of nodes with similar upload bandwidths in our mesh overlay. We address the problem of free-riding through nodes preferentially uploading more of the stream to the best uploaders. We compare GLive with our previous tree-based streaming protocol, Sepidar, and NewCoolstreaming in simulation, and our results show significantly improved playback continuity and playback latency

    Multiple-Tree Push-based Overlay Streaming

    Full text link
    Multiple-Tree Overlay Streaming has attracted a great amount of attention from researchers in the past years. Multiple-tree streaming is a promising alternative to single-tree streaming in terms of node dynamics and load balancing, among others, which in turn addresses the perceived video quality by the streaming user on node dynamics or when heterogeneous nodes join the network. This article presents a comprehensive survey of the different aproaches and techniques used in this research area. In this paper we identify node-disjointness as the property most approaches aim to achieve. We also present an alternative technique which does not try to achieve this but does local optimizations aiming global optimizations. Thus, we identify this property as not being absolute necessary for creating robust and heterogeneous multi-tree overlays. We identify two main design goals: robustness and support for heterogeneity, and classify existing approaches into these categories as their main focus

    Develop Guidelines for Pavement Preservation Treatments and for Building a Pavement Preservation Program Platform for Alaska

    Get PDF
    INE/AUTC 12.0

    Distributed Optimization of P2P Media Delivery Overlays

    Get PDF
    Media streaming over the Internet is becoming increasingly popular. Currently, most media is delivered using global content-delivery networks, providing a scalable and robust client-server model. However, content delivery infrastructures are expensive. One approach to reduce the cost of media delivery is to use peer-to-peer (P2P) overlay networks, where nodes share responsibility for delivering the media to one another. The main challenges in P2P media streaming using overlay networks include: (i) nodes should receive the stream with respect to certain timing constraints, (ii) the overlay should adapt to the changes in the network, e.g., varying bandwidth capacity and join/failure of nodes, (iii) nodes should be intentivized to contribute and share their resources, and (iv) nodes should be able to establish connectivity to the other nodes behind NATs. In this work, we meet these requirements by presenting P2P solutions for live media streaming, as well as proposing a distributed NAT traversal solution. First of all, we introduce a distributed market model to construct an approximately minimal height multiple-tree streaming overlay for content delivery, in gradienTv. In this system, we assume all the nodes are cooperative and execute the protocol. However, in reality, there may exist some opportunistic nodes, free-riders, that take advantage of the system, without contributing to content distribution. To overcome this problem, we extend our market model in Sepidar to be effective in deterring free-riders. However, gradienTv and Sepidar are tree-based solutions, which are fragile in high churn and failure scenarios. We present a solution to this problem in GLive that provides a more robust overlay by replacing the tree structure with a mesh. We show in simulation, that the mesh-based overlay outperforms the multiple-tree overlay. Moreover, we compare the performance of all our systems with the state-of-the-art NewCoolstreaming, and observe that they provide better playback continuity and lower playback latency than that of NewCoolstreaming under a variety of experimental scenarios. Although our distributed market model can be run against a random sample of nodes, we improve its convergence time by executing it against a sample of nodes taken from the Gradient overlay. The Gradient overlay organizes nodes in a topology using a local utility value at each node, such that nodes are ordered in descending utility values away from a core of the highest utility nodes. The evaluations show that the streaming overlays converge faster when our market model works on top of the Gradient overlay. We use a gossip-based peer sampling service in our streaming systems to provide each node with a small list of live nodes. However, in the Internet, where a high percentage of nodes are behind NATs, existing gossiping protocols break down. To solve this problem, we present Gozar, a NAT-friendly gossip-based peer sampling service that: (i) provides uniform random samples in the presence of NATs, and (ii) enables direct connectivity to sampled nodes using a fully distributed NAT traversal service. We compare Gozar with the state-of-the-art NAT-friendly gossip-based peer sampling service, Nylon, and show that only Gozar supports one-hop NAT traversal, and its overhead is roughly half of Nylon’s

    Overlay networks for smart grids

    Get PDF

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost
    • …
    corecore