30,657 research outputs found

    Mechanistic Model for Cancer Growth and Response to Chemotherapy

    Get PDF
    Cancer treatment has developed over the years; however not all patients respond to this treatment, and therefore further research is needed. In this paper, we employ mathematical modeling to understand the behavior of cancer and its interaction with therapy. We study a drug delivery and drug-cell interaction model along with cell proliferation. Due to the fact that cancer cells grow when there are enough nutrients and oxygen, proliferation can be a barrier against a response to therapy. To understand the effect of this factor, we perform numerical simulations of the model for different values of the parameters with a continuous delivery of the drug. The numerical results showed that cancer dies after short apoptotic cycles if the cancer is highly vascularized or if the penetration of the drug is high. This suggests promoting angiogenesis or perfusion of the drug. This result is similar to the situation where proliferation is not considered since the constant release of drug overcomes the growth of the cells and thus the effect of proliferation can be neglected

    Polo like kinase 2 tumour suppressor and cancer biomarker: new perspectives on drug sensitivity/resistance in ovarian cancer

    Get PDF
    The polo-like kinase PLK2 has recently been identified as a potential theranostic marker in the management of chemotherapy sensitive cancers. The methylation status of the PLK2 CpG island varies with sensitivity to paclitaxel and platinum in ovarian cancer cell lines. Importantly, extrapolation of these in vitro data to the clinical setting confirms that the methylation status of the PLK2 CpG island predicts outcomes in patients treated with carboplatin and paclitaxel chemotherapy. A second cell cycle regulator, p57Kip2, is also subject to epigenetic silencing in carboplatin resistance in vitro and in vivo, emphasising that cell cycle regulators are important determinants of sensitivity to chemotherapeutic agents and providing insights into the phenomenon of collateral drug sensitivity in oncology. Understanding the mechanistic basis and identification of robust biomarkers to predict collateral sensitivity may inform optimal use of chemotherapy in patients receiving multiple lines of treatment

    Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer

    Get PDF
    Matrix metalloproteinase 9 (MMP9) is involved in the proteolysis of extracellular proteins and plays a critical role in pancreatic ductal adenocarcinoma (PDAC) progression, invasion and metastasis. The therapeutic potential of an anti-MMP9 antibody (αMMP9) was evaluated in combination with nab-paclitaxel (NPT)-based standard cytotoxic therapy in pre-clinical models of PDAC. Tumour progression and survival studies were performed in NOD/SCID mice. The mechanistic evaluation involved RNA-Seq, Luminex, IHC and Immunoblot analyses of tumour samples. Median animal survival compared to controls was significantly increased after 2-week therapy with NPT (59%), Gem (29%) and NPT+Gem (76%). Addition of αMMP9 antibody exhibited further extension in survival: NPT+αMMP9 (76%), Gem+αMMP9 (47%) and NPT+Gem+αMMP9 (94%). Six-week maintenance therapy revealed that median animal survival was significantly increased after NPT+Gem (186%) and further improved by the addition of αMMP9 antibody (218%). Qualitative assessment of mice exhibited that αMMP9 therapy led to a reduction in jaundice, bloody ascites and metastatic burden. Anti-MMP9 antibody increased the levels of tumour-associated IL-28 (1.5-fold) and decreased stromal markers (collagen I, αSMA) and the EMT marker vimentin. Subcutaneous tumours revealed low but detectable levels of MMP9 in all therapy groups but no difference in MMP9 expression. Anti-MMP9 antibody monotherapy resulted in more gene expression changes in the mouse stroma compared to the human tumour compartment. These findings suggest that anti-MMP9 antibody can exert specific stroma-directed effects that could be exploited in combination with currently used cytotoxics to improve clinical PDAC therapy

    Addressing current challenges in cancer immunotherapy with mathematical and computational modeling

    Full text link
    The goal of cancer immunotherapy is to boost a patient's immune response to a tumor. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumor microenvironment, immune-modulating effects of conventional treatments, and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modeling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumor classification, optimal treatment scheduling, and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modelers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumor-immune biology. We conclude the review with recommendations for modelers both with respect to methodology and biological direction that might help keep modelers at the forefront of cancer immunotherapy development.Comment: Accepted for publication in the Journal of the Royal Society Interfac

    Complex Systems Analysis of Cell Cycling Models in Carcinogenesis

    Get PDF
    A new approach to the modular, complex systems analysis of nonlinear dynamics in cell cycling network transformations involved in carcinogenesis is proposed. Carcinogenesis is a complex process that involves dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments that form numerous inter-related pathways referred to as networks.
The variable biotopology of such dynamic networks is highly complex, and has a number of interesting properties that can be formally characterized at one level of organization by mathematical structures called 'biogroupoids'. 
One such family of pathways contains the cell cyclins. Cyclins are proteins that link several critical pro-apoptotic and other cell cycling/ division components, including the tumor suppressor gene TP53 and its product, the Thomsen-Friedenreich antigen (T antigen), Rb, mdm2, c-Myc, p21, p27, Bax, Bad and Bcl-2, which all play major roles in carcinogenesis of many cancers. A novel theoretical analysis is thus possible based on recently published studies of cyclin signaling, with special emphasis placed on the roles of cyclins D1 and E, suggests novel clinical trials and rational therapies of cancer through reestablishment of cell cycling inhibition in metastatic cancer cells

    Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update

    Get PDF
    Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15–20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents
    • 

    corecore