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Cancer treatment has developed over the years; however not all patients respond to this treatment, and therefore further research
is needed. In this paper, we employ mathematical modeling to understand the behavior of cancer and its interaction with therapy.
We study a drug delivery and drug-cell interaction model along with cell proliferation. Due to the fact that cancer cells grow when
there are enough nutrients and oxygen, proliferation can be a barrier against a response to therapy. To understand the effect of
this factor, we perform numerical simulations of the model for different values of the parameters with a continuous delivery of
the drug. The numerical results showed that cancer dies after short apoptotic cycles if the cancer is highly vascularized or if the
penetration of the drug is high. This suggests promoting angiogenesis or perfusion of the drug. This result is similar to the situation
where proliferation is not considered since the constant release of drug overcomes the growth of the cells and thus the effect of

proliferation can be neglected.

1. Introduction

There have been extensive studies regarding cancer as it
is one of the leading causes of death [1]. The main goal
of these studies is to find the most effective therapy with
minimal patient suffering. One aspect of research includes
mathematical modeling which offers a platform to study
cancer without losing patients’ lives [2-6]. It provides an
insightful tool to explore and predict the growth of cancer
as well as the response to therapy by using biological and
physical properties. These models are then validated using in
vivo and in vitro experiments as well as patients’ data. The
results help oncologists customize therapy for each patient by
understanding the physical and biological barriers that make
some cancer patients not respond to therapy.

In light of cell population, one could use ordinary differ-
ential equations (ODEs) to describe the evolution of the total
number of cancer cells with and without chemotherapy [7];
however, since cancer may invade the surrounding tissue and
spread, one could subsequently incorporate spatial effects by
studying partial differential equations (PDEs) [5, 8]. Cancer
cells grow exponentially in early stages due to sufficient
supply of oxygen and nutrients [9-11]. Then growth decreases

until the population size reaches its carrying capacity after
nutrient supply is no longer enough, which is represented
by the logistic [4, 12] and Gompertz models [13, 14]. These
ODE:s can be used to describe the interaction between cancer
growth and therapy by adding an anticancer treatment term.
With constant drug concentration, the exponential model
predicts that cancer will continuously grow. However, the
logistic and Gompertz models show that therapy will hold the
cancer to some maximum size depending on the values of the
parameters [7].

To eradicate cancer, oncologists use anticancer drugs,
which either slow down or block the cell division cycle
causing cell death [15]. These drugs are considered toxic
because they attack rapidly growing cells including skin [16],
gut [17], and bone marrow [18]. One anticancer treatment
protocol includes a series of scheduled doses (conventional
bolus treatment) administered intravenously into the blood
stream [19]. Another protocol releases a drug at a constant
rate through, for example, nanoparticles [20]. Mathematical
modeling suggests that the effect of this constant delivery
depends on the initial size of the cell population when the
drug is first given [10]. Moreover, a continuous infusion is
more effective than bolus applications because of the higher
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uptake rate [21] and because cancer cells proliferate between
doses [22]. This kind of drug delivery exposes the healthy
tissue to an extensive amount of toxicity without allowing
them to regrow. This can be avoided by developing drugs
targeting only cancer cells. Choosing the therapeutic strategy
depends on the type of cancer. If the cancer has drug-resisting
cells, then mathematical modeling indicates that a bolus dose
is more effective as the cancer responds to it faster than a drug
given continuously. The two regimes yield the same result for
cancer with drug susceptible cells [8].

Most of the mathematical models describe the evolution
of cancer as a spatially uniform mass, which grows at a fixed
rate. In this paper, we consider the spatial influences on the
dynamics between cancer and chemotherapy with constant
drug delivery. Specifically, we develop the coupled PDE
for drug-cell interaction and drug diffusion and perfusion
[23] by considering an extra biological effect, which is cell
proliferation. These equations represent a more realistic
situation since highly vascularized cancers can proliferate
between doses. Model predictions are given through numer-
ical simulations for different values of the key biological
parameters (proliferation rate, radius of the blood vessel,
diffusion length of the drug, and blood volume fraction)
along with the ratio of the viable cancer mass to its initial
mass after giving the drug. These simulations represent
cancer response for a continuous drug delivery but are not
limited to this kind of drug method. Our results provide the
opportunity to understand the interaction between cancer
and chemotherapy. They can be used as a basis to model
more complicated situations or as an alternative therapeutic
strategy such as immunotherapy.

2. Methods

2.1. Mathematical Model. In our mathematical model, we
add complexity to the PDEs representing the drug-cancer
interaction (with the same assumptions) [23] by adding a
proliferation term. We assume that the cancer is vascularized
with enough nutrients and oxygen creating an ideal environ-
ment for cancer to grow at a rate proportional to its density
(with and without treatment).

The first equation in the coupled PDEs represents diffu-
sion of the drug into the cancer after it is delivered through
the blood vessel and the binding rate to cancer cells. The
second equation represents the death rate caused by the
drug and the growth rate of cancer cells. The death rate is
proportional to the history of drug uptake by cancer cells.
After the cells uptake the drug, it will typically damage the
DNA. Thus the increasing uptake over time causes more
damage across the cell population and an increase in cell
death [21, 23]. This represents the only death mechanism
caused by the drug. We assume that the growth rate is a
constant, although it may depend on the type of cancer or
its density; therefore the tumor grows exponentially without
treatment at a constant rate. We will study the model for
a cylindrically symmetric domain with an infinite radius,
where the cancer is initially homogenous and the drug has
a constant concentration at the blood vessel with no flux at
infinity.
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The mathematical model is given by

%g = DV?0 - A¢0, )

t
aa—(f = -1 A0 (x,1) J o(x1)e X 1)dr+ap, (2)
0

where o(x, 7) is the drug concentration, ¢(x, 7) is the density
of cancer cells, D is the drug diffusivity, A, is the cellular
uptake rate of drug per-volume, A, is the death rate of tumor
cells per unit cumulative drug concentration, and « is the
growth rate of cancer cells. Since the diffusion rate of the
drug is faster than the cell cycle, then the time derivative in
(1) is replaced by zero (because it does not depend on time).
Therefore, we need to find the quasi-steady state solution of
(1) given by ¢. Thus we need boundary conditions for (1) and
an initial condition for (2).

We assume that the domain surrounding the blood
vessel is cylindrically symmetric. This means that the system
depends on two parameters: time and radial distance r. At
the blood vessel, there is a constant rate of drug release oy, for
example, through nanocarriers. If r — oo there is no flux (the
tumor is infinitely sized). Accordingly, we have the following
initial and boundary conditions:

¢ (x,0) = ¢o,
o (r,,t) = 0y, (3)
n- VO‘IX*)OO — 0,

where r;, is the radius of the blood vessel and ¢ is initially
homogenous.

2.2. Nondimensionalizing. Before we numerically solve the
model, we nondimensionalize the system to determine the
key parameters. Thus, we get

2 1
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where the dimensionless variables are x' = x/L, t' = t/T,

o' =00y, 9" = 990, T = MAueo0) /% L = \DJpy),),
and «' = aT. T is the time of the apoptotic cycles caused by
the drug [21] and L is the diffusion length of the drug.

We assume that cancer cells depend on the closest blood
vessel, which has dimensionless radius r;,/L. Therefore, we
estimate the dimensionless radius of the cylindrical region
supported by the blood vessel by r;,/(LVBVEF) [6, 23]. BVF
is the blood volume fraction (that is the ratio of the volume
of blood to the volume of the tumor), which is less than 1. A
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higher value of BVF represents a highly vascularized tumor;
this means that there are more blood vessels and therefore
more treatment will be delivered to the tumor. Therefore, (8)
can be rewritten as

do’

P =0. 9)
" 1y =1, /(LVBVE)

Note that we will drop the dash for simplicity.

2.3. Long-Term Response. After a long time of treatment, the
cancer cells will be saturated with the drug and the death
rate becomes a constant. Since ¢ is a finite continuous series
of treatments, then by taking ¢ — ©o, the time integration
of drug uptake is fooo o(x, T)9(x, T)dT = y; and hence from

(5) we get ¢ = e® " This means that the tumor will grow

or decay exponentially depending on the values of « and p.
If « > p, then cancer will continuously proliferate. On the
other hand, if & < y, then cell death overcomes cell growth.
Otherwise, if « = y, we have a quiescence state since cancer
progression is balanced with cancer death.

2.4. Numerical Solution. We numerically simulate (4) and (5)
with the initial and boundary conditions given by (6), (7),
and (9). After nondimensionalizing, the only parameters in
theses equations are «, r,/L, and BVF which are biological
parameters. Small values of r,/L represent large diffusion
of the drug if we fix r,; and large values of BVF represent
tumor with high vascularization. First, we discretize ¢ and
o in space and then we solve (5) at each time step using
fourth-order Runge-Kutta Method [24], where ¢ is given.
The latter is calculated by solving (4) (using finite difference
method [25]), where ¢ is known from the previous time
step.

2.5. Calculating the Ratio of the Viable Cancer Mass to the
Initial Mass. First, we integrate the density of the viable
cancer cells at each time step over the cylindrically symmetric
domain around the blood vessel (after drug diffusion). This
is done during the numerical simulation (explained in the
previous section). Then, we calculate the ratio of the viable
cancer mass M to the initial mass M, as follows:

fly="L_2"

7,/ (LVBVE)
M, VOJ

@rdr. (10)

r,/L

The initial mass is equal to the initial volume of the tumor,
since ¢ = 1 att = 0, which is given by V;, =
m[(r,/(LVBVE))” - (1,/L)’].

3. Results

We numerically solve (4)-(7) and (9), for BVF = 0.01, r,/L =
0.102 (same as in [23] to compare the results), and « = 0.3 for
10 apoptotic cycles (caused by the drug). Note that witha = 0
we get the same model as in [23]. The solution in Figure 1(a)
shows that, at the beginning of the simulation, cancer cells
near the blood vessel wall die (due to drug penetration) and

further away cells proliferate. Then, we get a similar result
as in the case for « = 0, where the killing of cancer cells
increases causing also an increase in the drug concentration
(Figure 1(b)) killing more cells. In Figure 1(c) (for & = 0.3),
the ratio of the viable cancer mass to the initial mass increases
at the beginning of the treatment due to proliferation; then
after a short time, the drug overcomes proliferation and all
cancer cells die after 6 apoptotic cycles, which is similar to
the number of cycles needed for & = 0.

Now we vary the parameters BVE r,/L, and « and
numerically calculate the value of the ratio of the viable
cancer mass to the initial mass as shown in Figure 2. Note
that the values of « are indicated in the legend of each graph
and the values of BVF and r,/L are given under each figure
(values same as in [23]). In each figure, the values of BVF and
r,/L are fixed and the value of « is varied. As the value of
« is increased in each figure more cells will proliferate, and
cancer cells will continue growing. However, at some point,
the continuous release of the drug will cause the cells to stop
proliferating and then all cells will die. If we compare the
figures from left to right (r;,/L increases which means less
diffusion of the drug if we fix r, and BVF is fixed), we find
that cancer progresses more and the drug needs to be given
for a longer period of time. Moreover, there is a noticeable
difference between different values of « (in each figure) on the
growth of cancer. For example, in Figure 2(a), all values of «
almost have the same effect on the growth and cancer cells die
after a short time. However, in Figure 2(c) there is a distinct
result for each case and the drug becomes successful after a
long time. If we compare the figures from top to bottom (i.e.,
BVF increases which represents highly vascularized cancer
and r,,/L is fixed), we get a better result in which cancer is
killed in a shorter period of time. Moreover, proliferation
becomes closer for the different values of « in each figure.
Therefore, as suggested by [23], increasing angiogenesis or
perfusion by, for example, hyperthermia, will improve the
result of treatment.

4. Discussion (Implementation and
Future Work)

We have added a proliferation term to the PDE representing
the interaction between cancer density and drug concentra-
tion. Then we performed numerical simulations for different
values of the parameters: proliferation rate, radius of the
blood vessel, diffusion length of the drug, and blood volume
fraction. We found that a continuously administered drug
is more effective if the tumor is highly vascularized (which
means more exposure to the treatment) or if the penetration
length of the drug is high. In this case, the drug overcomes
proliferation and the cancer is killed in a short time. This
result suggests increasing angiogenesis or perfusion. This is
similar to the case where proliferation is neglected because
the continuous application of the drug outweighs the effect
of cancer growth.

From our result, it seems that when BVF is high and
r,/L is low, the treatment is successful even if we increase
the value of a as shown in Figure 3; however, we need to
know the extent to which we can increase this value (also,
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FIGURE 1: (a) Numerical simulations of (4)-(7) and (9), where BVF = 0.01, r,/L = 0.102, and &« = 0.3. Here r and ¢ are the dimensionless
radial distance and time, respectively. In (c), f is plotted against t for « = 0 and & = 0.3. For the latter, f increases at the beginning of the
treatment due to proliferation; then after a short time the drug overcomes proliferation and cancer cells all die after 6 apoptotic cycles.

for different values of BVF and r,/L). This means finding the
threshold value of «, such that above this value the drug is
no longer effective. In Figure 3, we chose the highest value of
BVF and the lowest value of r;,/ L from Figure 2 and increased
the value of «. As the growth rate increases, the ratio of
the viable cancer mass to the initial mass also increases at
the beginning of the simulation. Then after approximately
the same number of apoptotic cycles, cancer cells die for all
chosen values of «. It is useful to estimate the values of the
parameters from in vivo or in vitro experiments for different
kinds of cancer and validate the model with patient’s data so
that it can be used to predict the outcome of the treatment.

This will guide oncologists to choose the optimal therapy with
minimal patient suffering.

Future work could also include adding physiological or
biological complexity to the coupled PDEs. For example,
instead of choosing the proliferation rate as a constant, it
could depend on the size of the tumor [4, 26, 27]; thus
the growth term can be represented by the logistic or
Gompertz growth. Our model was studied with a continuous
delivery of the drug from the blood vessel. We can also
investigate the situation where the drug is given as a bolus
dose in repeated cycles then compare the two results. If the
proliferation of cells is neglected, then experimental data and
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FIGURE 2: Temporal evolution curves of the ratio of the viable cancer mass to the initial mass calculated numerically from (10) with different
values of BVF and r,/L as shown under each figure. The values of « are given in the legend of each graph.

the mathematical model show that there is a 3-fold increase
in response for the continuous delivery of the drug compared
to the bolus treatment [23]. Thus, if cell growth is taken
into account, it is expected to get a better response for the

continuous infusion of the drug. This is because cancer cells
might proliferate between the doses of the bolus treatment
and the continuous delivery of the drug will overcome the
proliferation.
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different values of « as given in the legend, where BVF = 0.05 and
r,/L = 0.05.
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