10,934 research outputs found

    Characterisation of the relationship between surface texture and surface integrity of superalloy components machined by grinding

    Get PDF
    The surface texture of a machined component is influenced largely by the processing parameters used during machining and hence, there is a relationship between both the formation of the surface texture and surface integrity of the machined component. In the study to be reported in this paper, GH4169, a hard-to-cut superalloy, widely used in aero-engines, was selected for a detailed investigation into the relationship between the surface texture and the component-performance (surface integrity) of the machined components for which a series of grinding experiments with different grinding-wheels and grinding parameter-values was carried out in order to quantitatively analyze variations of the surface roughness with processing parameters. Further, considering that the features of the ground-surfaces measured are of a random nature, statistic properties of the produced surfaces were revealed and characterised with power spectral density function (PSD) and auto-covariance function(ACV) method respectively

    Evaluation of superalloy heavy-duty grinding based on multivariate tests

    Get PDF
    The quality and economy of grinding depend on proper selection of grinding conditions for the materials to be ground. In order to evaluate the effect of heavy-duty grinding, a new performance index, which includes specific material removal rate, size accuracy, and grinding forces, was proposed. Robust design of experiment, including orthogonal arrays, the signal-to-noise ratio (SNR) method, and analysis of variance (ANOVA) for multivariate data, was employed to estimate the effect of uniform experimental design and to optimize grinding parameters. Empirical models of grinding force were investigated for finite element analysis of new fixture design. These empirical models, based on robust design of experiments and multiple regression methodology, have been confirmed through further verification experiments. Correlation coefficients from 0.87 to 0.96 were achieved

    Machining and grinding of ultrahigh-strength steels and stainless steel alloys

    Get PDF
    Machining and grinding of ultrahigh-strength steels and stainless steel alloy

    Design of ultraprecision machine tools with application to manufacturing of miniature and micro components

    Get PDF
    Currently the underlying necessities for predictability, producibility and productivity remain big issues in ultraprecision machining of miniature/microproducts. The demand on rapid and economic fabrication of miniature/microproducts with complex shapes has also made new challenges for ultraprecision machine tool design. In this paper the design for an ultraprecision machine tool is introduced by describing its key machine elements and machine tool design procedures. The focus is on the review and assessment of the state-of-the-art ultraprecision machining tools. It also illustrates the application promise of miniature/microproducts. The trends on machine tool development, tooling, workpiece material and machining processes are pointed out

    Effect of grinding on the fatigue life of titanium alloy (5 Al-2.5 Sn) under dry and wet conditions

    Get PDF
    The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and, of course, reliability. Machining processes and, in particular, grinding under adverse conditions have been found to cause damage to surface integrity and affect the residual stress distribution in the surface and subsurface region. These effects have a direct bearing on the fatigue life. In this investigation the effects of grinding conditions on the fatigue life of Titanium 5 Al-2.5Sn were studied. This alloy is used in ground form in the manufacturing of some critical components in the space shuttle's main engine. It is essential that materials for such applications be properly characterized for use in severe service conditions. Flat sub-size specimens 0.1 inch thick were ground on a surface grinding machine equipped with a variable speed motor at speeds of 2000 to 6000 rpm using SiC wheels of grit sizes 60 and 120. The grinding parameters used in this investigation were chosen from a separate study. The ground specimens were then fatigued at a selected stress and the resulting lives were compared with that of the virgin material. The surfaces of the specimens were examined under a scanning electron microscope, and the roughness and hardness were measured using a standard profilometer and microhardness tester, respectively. The fatigue life of the ground specimens was found to decrease with the increase in speed for both dry and wet conditions. The fatigue life of specimens ground under wet conditions showed a significant increase at the wheel speed of 2000 rpm for both the grit sizes and thereafter decreased with increase profilometry, microhardness measurements and scanning electron microscopic examination

    An investigation into Vibratory Grinding of hard-to Machine Aerospace Materials

    Get PDF
    There is an increased demand for high surface finishes and tight tolerances, especially in high value manufacturing processes. However, progress in materials science has led to the development of new materials especially in the aerospace industry, where high heat resistance materials are preferred such as Ti-6Al-4V. These new materials have different mechanical properties from conventional ones. This makes their machinability very unusual when compared to that of conventional materials. Consequently machining these materials poses a significant challenge to industry. Since this alloy has got low density, high strength to weight ratio and also high temperature strength, it is used for aerospace, civil and military aircraft turbine engine compressor blades manufacturing. This research programme sets up an investigation into vibration assisted grinding in a range of frequencies and amplitudes combined with various process parameters in the attempt to grind advanced aerospace materials. Such a novel approach called “Resonance machining” also depends on the Taguchi experimental design method, with the aim of improving the grinding quality and efficiency. The novelty of this new approach is that the vibration assisted resonance was implemented in the axial direction of the grinding feed rate, using an aluminium oxide grinding wheel, with the application of coolant fluid to enhance grinding difficult to machine aerospace materials, this approach is considered to be an alternative to the usage of super abrasive wheels such as CBN and diamond wheels currently been used, with negative effect where damage to the workpiece surface and subsurface crack have been reported. However, the advantages of vibration assisted grinding as a new technique are the reduction of wheel wear and cutting forces. Through over this study it has been proven that vibration assisted grinding allows the wheel to cut in two directions and that will increase the material removal rate reduce the wheel wear, cutting forces and also the power consumption. The purpose of this research is to achieve an optimum performance of vibration assisted grinding processes using difficult-to-machine advanced aerospace materials. The first step in this investigation is to identify the material under investigation. Therefore, the above mentioned aerospace materials have been tested. Initial hardness testing was carried out on two types of materials involved this study, namely Nickel alloy (Inconel 718) and Ti-6Al-4V. This was followed by a chemical element content analysis undertaken on the scanning electron microscope with X-Ray setup. However, this work investigates the grinding performance of titanium and nickel alloys using aluminium oxide (Al2 O3) grinding wheel. Hence, experiments were carried out in wet conditions with/without vibration grinding and the results are provided to confirm the effectiveness of this approach

    Sub-surface damage issues for effective fabrication of large optics

    Get PDF
    A new ultra precision large optics grinding machine, BoX®has been developed at Cranfield University. BoX®islocated at the UK's Ultra Precision Surfaces laboratory at the OpTIC Technium. This machine offers a rapidand economic solution for grinding large off-axis aspherical and free-form optical components.This paper presents an analysis of subsurface damage assessments of optical ground materials produced usingdiamond resin bonded grinding wheels. The specific materials used, Zerodur®and ULE®are currently understudy for making extremely large telescope (ELT) segmented mirrors such as in the E-ELT project.The grinding experiments have been conducted on the BoX®grinding machine using wheels with grits sizes of76 μm, 46 μm and 25 μm. Grinding process data was collected using a Kistler dynamometer platform. Thehighest material removal rate (187.5 mm3/s) used ensures that a 1 metre diameter optic can be ground in lessthan 10 hours. The surface roughness and surface profile were measured using a Form Talysurf. The subsurfacedamage was revealed using a sub aperture polishing process in combination with an etching technique.These results are compared with the targeted form accuracy of 1 μm p-v over a 1 metre part, surface roughnessof 50-150 nm RMS and subsurface damage in the range of 2-5 μm. This process stage was validated on a 400mm ULE®blank and a 1 metre hexagonal Z

    Technology transfer: Transportation

    Get PDF
    Standard Research Institute (SRI) has operated a NASA-sponsored team for four years. The SRI Team is concentrating on solving problems in the public transportation area and on developing methods for decreasing the time gap between the development and the marketing of new technology and for aiding the movement of knowledge across industrial, disciplinary, and regional boundaries. The SRI TAT has developed a methodology that includes adaptive engineering of the aerospace technology and commercialization when a market is indicated. The SRI Team has handled highway problems on a regional rather than a state basis, because many states in similar climatic or geologic regions have similar problems. Program exposure has been increased to encompass almost all of the fifty states

    Planetary surface exploration: MESUR/autonomous lunar rover

    Get PDF
    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included

    History of ball bearings

    Get PDF
    The familiar precision rolling-element bearings of the twentieth century are products of exacting technology and sophisticated science. Their very effectiveness and basic simplicity of form may discourage further interest in their history and development. Yet the full story covers a large portion of recorded history and surprising evidence of an early recognition of the advantages of rolling motion over sliding action and progress toward the development of rolling-element bearings. The development of rolling-element bearings is followed from the earliest civilizations to the end of the eighteenth century. The influence of general technological developments, particularly those concerned with the movement of large building blocks, road transportation, instruments, water-raising equipment, and windmills are discussed, together with the emergence of studies of the nature of rolling friction and the impact of economic factors. By 1800 the essential features of ball and rolling-element bearings had emerged and it only remained for precision manufacture and mass production to confirm the value of these fascinating machine elements
    corecore