198 research outputs found

    Mechanical and electrical characterisation of Au wire interconnects in electronic packages under the combined vibration and thermal testing conditions

    Get PDF
    This paper concerns the reliability of thermosonically bonded 25μm Au wires in the combined high temperature with vibration conditions, under which the tests have been carried out on wire bonded 40-pin Dual-in-Line (DIL) High Temperature Co-fired Ceramic (HTCC) electronic packages. Mechanical, optical and electrical analysis has been undertaken in order to identify the failure mechanisms of bonded wires due to the combined testing. The results indicated a decrease in the electrical resistance after a few hours of testing as a result of the annealing process of the Au wire during testing. Shear and pull strength levels remained high in general after testing, showing no significant deterioration due to the test under the combined high temperature and vibration conditions. However, a trend of the variation in the strength values is identified with respect to the combined conditions for all wire bonded packages, which may be summarised as: i) increase of the testing temperature has led to a decrease of both the shear and pull strength of the wire bonds; ii) the mechanical behaviour of the wires is affected due to crystallization that leads to material softening and consequently the deformation of wire

    The durability of solder joints under thermo-mechanical loading; application to Sn-37Pb and Sn-3.8Ag-0.7Cu lead-free replacement alloy

    Get PDF
    Solder joints in electronic packages provide mechanical, electrical and thermal connections. Hence, their reliability is also a major concern to the electronic packaging industry. Ball Grid Arrays (BGAs) are a very common type of surface mount technology for electronic packaging. This work primarily addresses the thermo-mechanical durability of BGAs and is applied to the exemplar alloys; traditional leaded solder and a popular lead-free solder. Isothermal mechanical fatigue tests were carried out on 4-ball test specimens of the lead-free (Sn-3.8Ag-0.7Cu) and leaded (Sn-37Pb) solder under load control at room temperature, 35°C and 75°C. As well as this, a set of combined thermal and mechanical cycling tests were carried out, again under load control with the thermal cycles either at a different frequency from the mechanical cycles (not-in-phase) or at the same frequency (both in phase and out-of-phase). The microstructural evaluation of both alloys was investigated by carrying out a series of simulated ageing tests, coupled with detailed metallurgical analysis and hardness testing. The results were treated to produce stress-life, cyclic behaviour and creep curves for each of the test conditions. Careful calibration allowed the effects of substrate and grips to be accounted for and so a set of strain-life curves to be produced. These results were compared with other results from the literature taking into account the observations on microstructure made in the ageing tests. It is generally concluded that the TMF performance is better for the Sn-Ag-Cu alloy than for the Sn-Pb alloy, when expressed as stress-life curves. There is also a significant effect on temperature and phase for each of the alloys, the Sn-Ag-Cu being less susceptible to these effects. When expressed as strain life, the effects of temperature, phase and alloy type are much diminished. Many of these conclusions coincided with only parts of the literature and reasons for the remaining differences are advanced

    Deposition and application of electroless Ni–W–P under bump metallisation for high temperature lead-free solder interconnects

    Get PDF
    A reliable and robust diffusion barrier, commonly known as under bump metallisation (UBM), is indispensable in solder interconnects in order to retard the interfacial reaction rate, hence the growth of intermetallic compounds (IMCs). However, electroless Ni-P coatings are not adequate to inhibit interfacial reactions effectively since the formation of columnar structure and voids in the crystalline Ni3P layer in hybrid automotive devices (operating temperature above 300ºC) can significantly deteriorate the mechanical integrity of solder joints. In this thesis, electroless Ni-W-P coatings, as an effective UBM capable to serving under high temperature (up to 450ºC), are developed, characterised and subsequently applied onto the high temperature lead-free solder interconnects. [Continues.

    Modeling the SAC microstructure evolution under thermal, thermomechanical and electrical constraints

    Get PDF
    [no abstract

    Non-destructive evaluation of solder joint reliability

    Get PDF
    A through life non-destructive evaluation technique is presented in which a key solder joint feature, nucleating at the bump to silicon interface and propagating across a laminar crack plane is captured and tracked using acoustic microscopy imaging (AMI). The feasibility of this concept was successfully demonstrated by employing the measurement technique in combination with Finite Element Analysis (FEA) to study the impact of component floor plan layout on the reliability of electronics systems subjected to thermal cycling. A comprehensive review of current and emerging packaging and interconnect technologies has shown increasingly a move from conventional 2D to 3D packaging. These present new challenges for reliability and Non Destructive Evaluation (NDE) due to solder joints being hidden beneath the packaging, and not ordinarily visible or accessible for inspection. Solutions are developed using non-destructive testing (NDT) techniques that have the potential to detect and locate defects in microelectronic devices. This thesis reports on X-ray and Acoustic Micro Imaging (AMI) which have complementary image discriminating features. Gap type defects are hard to find using X-ray alone due to low contrast and spot size resolution, whereas AMI having better axial resolution has allowed cracks and delamination at closely spaced interfaces to be investigated. The application of AMI to the study of through life solder joint behaviour has been achieved for the first time. Finite Element Analysis and AMI performance were compared to measure solder joint reliability for several realistic test cases. AMI images were taken at regular intervals to monitor through- life behaviour. Image processing techniques were used to extract a diameter measurement for a laminar crack plane, within a solder joint damage region occurring at the bump to silicon interface. FEA solder joint reliability simulations for flip-chip and micro-BGA (mBGA) packages placed on FR4 PCB's were compared to the AMI measurement performance, with a reasonable level of correlation observed. Both techniques clearly showed significant reliability degradation of the critical solder joints located furthest from the neutral axis of the package, typically residing at the package corners. The technique also confirmed that circuit board thickness can affect interconnect reliability, as can floor plan. Improved correlation to the real world environment was achieved when simulation models considered the entire floor plan layout and constraints imposed on the circuit board assembly. This thesis established a novel through life solder joint evaluation method crucial to the development of better physics of failure models and the advancement of model based prognostics in electronics systems

    Thermo-mechanical reliability studies of lead-free solder interconnects

    Get PDF
    N/ASolder interconnections, also known as solder joints, are the weakest link in electronics packaging. Reliability of these miniature joints is of utmost interest - especially in safety-critical applications in the automotive, medical, aerospace, power grid and oil and drilling sectors. Studies have shown that these joints' critical thermal and mechanical loading culminate in accelerated creep, fatigue, and a combination of these joints' induced failures. The ball grid array (BGA) components being an integral part of many electronic modules functioning in mission-critical systems. This study investigates the response of solder joints in BGA to crucial reliability influencing parameters derived from creep, visco-plastic and fatigue damage of the joints. These are the plastic strain, shear strain, plastic shear strain, creep energy density, strain energy density, deformation, equivalent (Von-Mises) stress etc. The parameters' obtained magnitudes are inputted into established life prediction models – Coffin-Manson, Engelmaier, Solomon (Low cycle fatigue) and Syed (Accumulated creep energy density) – to determine several BGA assemblies' fatigue lives. The joints are subjected to thermal, mechanical and random vibration loadings. The finite element analysis (FEA) is employed in a commercial software package to model and simulate the responses of the solder joints of the representative assemblies' finite element models. As the magnitude and rate of degradation of solder joints in the BGA significantly depend on the composition of the solder alloys used to assembly the BGA on the printed circuit board, this research studies the response of various mainstream lead-free Sn-Ag-Cu (SAC) solders (SAC305, SAC387, SAC396 and SAC405) and benchmarked those with lead-based eutectic solder (Sn63Pb37). In the creep response study, the effects of thermal ageing and temperature cycling on these solder alloys' behaviours are explored. The results show superior creep properties for SAC405 and SAC396 lead-free solder alloys. The lead-free SAC405 solder joint is the most effective solder under thermal cycling condition, and the SAC396 solder joint is the most effective solder under isothermal ageing operation. The finding shows that SAC405 and SAC396 solders accumulated the minimum magnitudes of stress, strain rate, deformation rate and strain energy density than any other solder considered in this study. The hysteresis loops show that lead-free SAC405 has the lowest dissipated energy per cycle. Thus the highest fatigue life, followed by eutectic lead-based Sn63Pb37 solder. The solder with the highest dissipated energy per cycle was lead-free SAC305, SAC387 and SAC396 solder alloys. In the thermal fatigue life prediction research, four different lead-free (SAC305, SAC387, SAC396 and SAC405) and one eutectic lead-based (Sn63Pb37) solder alloys are defined against their thermal fatigue lives (TFLs) to predict their mean-time-to-failure for preventive maintenance advice. Five finite elements (FE) models of the assemblies of the BGAs with the different solder alloy compositions and properties are created with SolidWorks. The models are subjected to standard IEC 60749-25 temperature cycling in ANSYS 19.0 mechanical package environment. SAC405 joints have the highest predicted TFL of circa 13.2 years, while SAC387 joints have the least life of circa 1.4 years. The predicted lives are inversely proportional to the magnitude of the areas of stress-strain hysteresis loops of the solder joints. The prediction models are significantly consistent in predicted magnitudes across the solder joints irrespective of the damage parameters used. Several failure modes drive solder joints and damage mechanics from the research and understand an essential variation in the models' predicted values. This investigation presents a method of managing preventive maintenance time of BGA electronic components in mission-critical systems. It recommends developing a novel life prediction model based on a combination of the damage parameters for enhanced prediction. The FEA random vibration simulation test results showed that different solder alloys have a comparable performance during random vibration testing. The fatigue life result shows that SAC405 and SAC396 have the highest fatigue lives before being prone to failure. As a result of the FEA simulation outcomes with the application of Coffin-Manson's empirical formula, the author can predict the fatigue life of solder joint alloys to a higher degree of accuracy of average ~93% in an actual service environment such as the one experienced under-the-hood of an automobile and aerospace. Therefore, it is concluded that the combination of FEA simulation and empirical formulas employed in this study could be used in the computation and prediction of the fatigue life of solder joint alloys when subjected to random vibration. Based on the thermal and mechanical responses of lead-free SAC405 and SAC396 solder alloys, they are recommended as a suitable replacement of lead-based eutectic Sn63Pb37 solder alloy for improved device thermo-mechanical operations when subjected to random vibration (non-deterministic vibration). The FEA simulation studies' outcomes are validated using experimental and analytical-based reviews in published and peer-reviewed literature.N/

    Nanowires for 3d silicon interconnection – low temperature compliant nanowire-polymer film for z-axis interconnect

    Get PDF
    Semiconductor chip packaging has evolved from single chip packaging to 3D heterogeneous system integration using multichip stacking in a single module. One of the key challenges in 3D integration is the high density interconnects that need to be formed between the chips with through-silicon-vias (TSVs) and inter-chip interconnects. Anisotropic Conductive Film (ACF) technology is one of the low-temperature, fine-pitch interconnect method, which has been considered as a potential replacement for solder interconnects in line with continuous scaling of the interconnects in the IC industry. However, the conventional ACF materials are facing challenges to accommodate the reduced pad and pitch size due to the micro-size particles and the particle agglomeration issue. A new interconnect material - Nanowire Anisotropic Conductive Film (NW-ACF), composed of high density copper nanowires of ~ 200 nm diameter and 10-30 µm length that are vertically distributed in a polymeric template, is developed in this work to tackle the constrains of the conventional ACFs and serves as an inter-chip interconnect solution for potential three-dimensional (3D) applications

    Novel fine pitch interconnection methods using metallised polymer spheres

    Get PDF
    There is an ongoing demand for electronics devices with more functionality while reducing size and cost, for example smart phones and tablet personal computers. This requirement has led to significantly higher integrated circuit input/output densities and therefore the need for off-chip interconnection pitch reduction. Flip-chip processes utilising anisotropic conductive adhesives anisotropic conductive films (ACAs/ACFs) have been successfully applied in liquid crystal display (LCD) interconnection for more than two decades. However the conflict between the need for a high particle density, to ensure sufficient the conductivity, without increasing the probability of short circuits has remained an issue since the initial utilization of ACAs/ACFs for interconnection. But this issue has become even more severe with the challenge of ultra-fine pitch interconnection. This thesis advances a potential solution to this challenge where the conductive particles typically used in ACAs are selectively deposited onto the connections ensuring conductivity without bridging. The research presented in this thesis work has been undertaken to advance the fundamental understanding of the mechanical characteristics of micro-sized metal coated polymer particles (MCPs) and their application in fine or ultra-fine pitch interconnections. This included use of a new technique based on an in-situ nanomechanical system within SEM which was utilised to study MCP fracture and failure when undergoing deformation. Different loading conditions were applied to both uncoated polymer particles and MCPs, and the in-situ system enables their observation throughout compression. The results showed that both the polymer particles and MCP display viscoelastic characteristics with clear strain-rate hardening behaviour, and that the rate of compression therefore influences the initiation of cracks and their propagation direction. Selective particle deposition using electrophoretic deposition (EPD) and magnetic deposition (MD) of Ni/Au-MCPs have been evaluated and a fine or ultra-fine pitch deposition has been demonstrated, followed by a subsequent assembly process. The MCPs were successfully positively charged using metal cations and this charging mechanism was analysed. A new theory has been proposed to explain the assembly mechanism of EPD of Ni/Au coated particles using this metal cation based charging method. The magnetic deposition experiments showed that sufficient magnetostatic interaction force between the magnetized particles and pads enables a highly selective dense deposition of particles. Successful bonding to form conductive interconnections with pre-deposited particles have been demonstrated using a thermocompression flip-chip bonder, which illustrates the applicable capability of EPD of MCPs for fine or ultra-fine pitch interconnection

    MICROELECTRONICS PACKAGING TECHNOLOGY ROADMAPS, ASSEMBLY RELIABILITY, AND PROGNOSTICS

    Get PDF
    This paper reviews the industry roadmaps on commercial-off-the shelf (COTS) microelectronics packaging technologies covering the current trends toward further reducing size and increasing functionality. Due tothe breadth of work being performed in this field, this paper presents only a number of key packaging technologies. The topics for each category were down-selected by reviewing reports of industry roadmaps including the International Technology Roadmap for Semiconductor (ITRS) and by surveying publications of the International Electronics Manufacturing Initiative (iNEMI) and the roadmap of association connecting electronics industry (IPC). The paper also summarizes the findings of numerous articles and websites that allotted to the emerging and trends in microelectronics packaging technologies. A brief discussion was presented on packaging hierarchy from die to package and to system levels. Key elements of reliability for packaging assemblies were presented followed by reliabilty definition from a probablistic failure perspective. An example was present for showing conventional reliability approach using Monte Carlo simulation results for a number of plastic ball grid array (PBGA). The simulation results were compared to experimental thermal cycle test data. Prognostic health monitoring (PHM) methods, a growing field for microelectronics packaging technologies, were briefly discussed. The artificial neural network (ANN), a data-driven PHM, was discussed in details. Finally, it presented inter- and extra-polations using ANN simulation for thermal cycle test data of PBGA and ceramic BGA (CBGA) assemblies
    corecore