19,640 research outputs found

    Optimal measurement of visual motion across spatial and temporal scales

    Full text link
    Sensory systems use limited resources to mediate the perception of a great variety of objects and events. Here a normative framework is presented for exploring how the problem of efficient allocation of resources can be solved in visual perception. Starting with a basic property of every measurement, captured by Gabor's uncertainty relation about the location and frequency content of signals, prescriptions are developed for optimal allocation of sensors for reliable perception of visual motion. This study reveals that a large-scale characteristic of human vision (the spatiotemporal contrast sensitivity function) is similar to the optimal prescription, and it suggests that some previously puzzling phenomena of visual sensitivity, adaptation, and perceptual organization have simple principled explanations.Comment: 28 pages, 10 figures, 2 appendices; in press in Favorskaya MN and Jain LC (Eds), Computer Vision in Advanced Control Systems using Conventional and Intelligent Paradigms, Intelligent Systems Reference Library, Springer-Verlag, Berli

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Regional diversity in the murine cortical vascular network is revealed by synchrotron X-ray tomography and is amplified with age

    Get PDF
    Cortical bone is permeated by a system of pores, occupied by the blood supply and osteocytes. With ageing, bone mass reduction and disruption of the microstructure are associated with reduced vascular supply. Insight into the regulation of the blood supply to the bone could enhance the understanding of bone strength determinants and fracture healing. Using synchrotron radiation-based computed tomography, the distribution of vascular canals and osteocyte lacunae was assessed in murine cortical bone and the influence of age on these parameters was investigated. The tibiofibular junction from 15-week- and 10-month-old female C57BL/6J mice were imaged post-mortem. Vascular canals and three-dimensional spatial relationships between osteocyte lacunae and bone surfaces were computed for both age groups. At 15 weeks, the posterior region of the tibiofibular junction had a higher vascular canal volume density than the anterior, lateral and medial regions. Intracortical vascular networks in anterior and posterior regions were also different, with connectedness in the posterior higher than the anterior at 15 weeks. By 10 months, cortices were thinner, with cortical area fraction and vascular density reduced, but only in the posterior cortex. This provided the first evidence of age-related effects on murine bone porosity due to the location of the intracortical vasculature. Targeting the vasculature to modulate bone porosity could provide an effective way to treat degenerative bone diseases, such as osteoporosis

    Particular object retrieval with integral max-pooling of CNN activations

    Get PDF
    Recently, image representation built upon Convolutional Neural Network (CNN) has been shown to provide effective descriptors for image search, outperforming pre-CNN features as short-vector representations. Yet such models are not compatible with geometry-aware re-ranking methods and still outperformed, on some particular object retrieval benchmarks, by traditional image search systems relying on precise descriptor matching, geometric re-ranking, or query expansion. This work revisits both retrieval stages, namely initial search and re-ranking, by employing the same primitive information derived from the CNN. We build compact feature vectors that encode several image regions without the need to feed multiple inputs to the network. Furthermore, we extend integral images to handle max-pooling on convolutional layer activations, allowing us to efficiently localize matching objects. The resulting bounding box is finally used for image re-ranking. As a result, this paper significantly improves existing CNN-based recognition pipeline: We report for the first time results competing with traditional methods on the challenging Oxford5k and Paris6k datasets

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    The Developmental Plasticity of Fruit Fly Vision

    Get PDF
    In this dissertation we explore the morphological and neural plasticity underlying vision at different scales—within and between species of Drosophila—to elucidate the role of eye development in the evolution of vision. In chapter 2, we offer a tool to accelerate large-scale research into compound eye morphology, and validate it on the eyes of several insect orders and image media. Then, in chapter 3 we demonstrate the developmental plasticity of eye morphology and neural summation in fruit flies, finding an interesting interplay between the two systems. In chapter 4, we elucidate the role of visual plasticity and neural summation in the evolution of vision by comparing vinegar and desert flies. Finally, in chapter 5, we show how future and ongoing work is diving into the mechanisms underlying this visual plasticity by measuring the effect of early temperature, exploring regional differences across the visual field, and detecting light-induced circadian activity

    Detection of a pair density wave state in UTe2

    Get PDF
    Spin-triplet topological superconductors should exhibit many unprecedented electronic properties, including fractionalized electronic states relevant to quantum information processing. Although UTe2 may embody such bulk topological superconductivity1,2,3,4,5,6,7,8,9,10,11, its superconductive order parameter Δ(k) remains unknown12. Many diverse forms for Δ(k) are physically possible12 in such heavy fermion materials13. Moreover, intertwined14,15 density waves of spin (SDW), charge (CDW) and pair (PDW) may interpose, with the latter exhibiting spatially modulating14,15 superconductive order parameter Δ(r), electron-pair density16,17,18,19 and pairing energy gap17,20,21,22,23. Hence, the newly discovered CDW state24 in UTe2 motivates the prospect that a PDW state may exist in this material24,25. To search for it, we visualize the pairing energy gap with μeV-scale energy resolution using superconductive scanning tunnelling microscopy (STM) tips26,27,28,29,30,31. We detect three PDWs, each with peak-to-peak gap modulations of around 10 μeV and at incommensurate wavevectors Pi=1,2,3 that are indistinguishable from the wavevectors Qi=1,2,3 of the prevenient24 CDW. Concurrent visualization of the UTe2 superconductive PDWs and the non-superconductive CDWs shows that every Pi:Qi pair exhibits a relative spatial phase δϕ ≈ π. From these observations, and given UTe2 as a spin-triplet superconductor12, this PDW state should be a spin-triplet PDW24,25. Although such states do exist32 in superfluid 3He, for superconductors, they are unprecedented

    Detection of a pair density wave state in UTe2

    Get PDF
    Spin-triplet topological superconductors should exhibit many unprecedented electronic properties, including fractionalized electronic states relevant to quantum information processing. Although UTe2 may embody such bulk topological superconductivity1,2,3,4,5,6,7,8,9,10,11, its superconductive order parameter Δ(k) remains unknown12. Many diverse forms for Δ(k) are physically possible12 in such heavy fermion materials13. Moreover, intertwined14,15 density waves of spin (SDW), charge (CDW) and pair (PDW) may interpose, with the latter exhibiting spatially modulating14,15 superconductive order parameter Δ(r), electron-pair density16,17,18,19 and pairing energy gap17,20,21,22,23. Hence, the newly discovered CDW state24 in UTe2 motivates the prospect that a PDW state may exist in this material24,25. To search for it, we visualize the pairing energy gap with μeV-scale energy resolution using superconductive scanning tunnelling microscopy (STM) tips26,27,28,29,30,31. We detect three PDWs, each with peak-to-peak gap modulations of around 10 μeV and at incommensurate wavevectors Pi=1,2,3 that are indistinguishable from the wavevectors Qi=1,2,3 of the prevenient24 CDW. Concurrent visualization of the UTe2 superconductive PDWs and the non-superconductive CDWs shows that every Pi:Qi pair exhibits a relative spatial phase δϕ ≈ π. From these observations, and given UTe2 as a spin-triplet superconductor12, this PDW state should be a spin-triplet PDW24,25. Although such states do exist32 in superfluid 3He, for superconductors, they are unprecedented
    • …
    corecore