2,522 research outputs found

    Measuring Spatial Subdivisions in Urban Mobility with Mobile Phone Data

    Get PDF
    Urban population grows constantly. By 2050 two thirds of the world population will reside in urban areas. This growth is faster and more complex than the ability of cities to measure and plan for their sustainability. To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions: areas with over- and under-representation of specific population groups, named hot and cold spots respectively. Using aggregated mobile phone data, we apply this methodology to the city of Barcelona to assess the mobility of three groups of people: women, elders, and tourists. We find that, within the three groups, cold spots have a lower diversity of amenities and services than hot spots. Also, cold spots of women and tourists tend to have lower population income. These insights apply to the floating population of Barcelona, thus augmenting the scope of how inclusiveness can be analyzed in the city.Comment: 10 pages, 10 figures. To be presented at the Data Science for Social Good workshop at The Web Conference 202

    Understanding the Loss in Community Resilience due to Hurricanes using Facebook Data

    Full text link
    Significant negative impacts are observed in productivity, economy, and social wellbeing because of the reduced human activity due to extreme events. Community resilience is an important and widely used concept to understand the impacts of an extreme event to population activity. Resilience is generally defined as the ability of a system to manage shocks and return to a steady state in response to an extreme event. In this study, aggregate location data from Facebook in response to Hurricane Ida are analyzed. Using changes in the number of Facebook users before, during, and after the disaster, community resilience is quantified as a function of the magnitude of impact and the time to recover from the extreme situation. Based on the resilience function, the transient loss of resilience in population activity is measured for the affected communities in Louisiana. The loss in resilience of the affected communities are explained by three types of factors, including disruption in physical infrastructures, disaster conditions due to hurricanes, and socio-economic characteristics. A greater loss in community resilience is associated with factors such as disruptions in power and transportation services and disaster conditions. Socioeconomic disparities in loss of resilience are found with respect to median income of a community. Understanding community resilience using decreased population activity levels due to a disaster and the factors associated with losses in resilience will enable us improve hazard preparedness, enhance disaster management practices, and create better recovery policies towards strengthening infrastructure and community resilience

    On the use of human mobility proxy for the modeling of epidemics

    Get PDF
    Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control policies, but may be hindered by incomplete data in some regions of the world. Here we explore the opportunity of using proxy data or models for individual mobility to describe commuting movements and predict the diffusion of infectious disease. We consider three European countries and the corresponding commuting networks at different resolution scales obtained from official census surveys, from proxy data for human mobility extracted from mobile phone call records, and from the radiation model calibrated with census data. Metapopulation models defined on the three countries and integrating the different mobility layers are compared in terms of epidemic observables. We show that commuting networks from mobile phone data well capture the empirical commuting patterns, accounting for more than 87% of the total fluxes. The distributions of commuting fluxes per link from both sources of data - mobile phones and census - are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is observed. This leads to epidemics that spread faster than on census commuting networks, however preserving the order of infection of newly infected locations. Match in the epidemic invasion pattern is sensitive to initial conditions: the radiation model shows higher accuracy with respect to mobile phone data when the seed is central in the network, while the mobile phone proxy performs better for epidemics seeded in peripheral locations. Results suggest that different proxies can be used to approximate commuting patterns across different resolution scales in spatial epidemic simulations, in light of the desired accuracy in the epidemic outcome under study.Comment: Accepted fro publication in PLOS Computational Biology. Abstract shortened to fit Arxiv limits. 35 pages, 6 figure

    Revisiting Urban Dynamics through Social Urban Data

    Get PDF
    The study of dynamic spatial and social phenomena in cities has evolved rapidly in the recent years, yielding new insights into urban dynamics. This evolution is strongly related to the emergence of new sources of data for cities (e.g. sensors, mobile phones, online social media etc.), which have potential to capture dimensions of social and geographic systems that are difficult to detect in traditional urban data (e.g. census data). However, as the available sources increase in number, the produced datasets increase in diversity. Besides heterogeneity, emerging social urban data are also characterized by multidimensionality. The latter means that the information they contain may simultaneously address spatial, social, temporal, and topical attributes of people and places. Therefore, integration and geospatial (statistical) analysis of multidimensional data remain a challenge. The question which, then, arises is how to integrate heterogeneous and multidimensional social urban data into the analysis of human activity dynamics in cities?  To address the above challenge, this thesis proposes the design of a framework of novel methods and tools for the integration, visualization, and exploratory analysis of large-scale and heterogeneous social urban data to facilitate the understanding of urban dynamics. The research focuses particularly on the spatiotemporal dynamics of human activity in cities, as inferred from different sources of social urban data. The main objective is to provide new means to enable the incorporation of heterogeneous social urban data into city analytics, and to explore the influence of emerging data sources on the understanding of cities and their dynamics.  In mitigating the various heterogeneities, a methodology for the transformation of heterogeneous data for cities into multidimensional linked urban data is, therefore, designed. The methodology follows an ontology-based data integration approach and accommodates a variety of semantic (web) and linked data technologies. A use case of data interlinkage is used as a demonstrator of the proposed methodology. The use case employs nine real-world large-scale spatiotemporal data sets from three public transportation organizations, covering the entire public transport network of the city of Athens, Greece.  To further encourage the consumption of linked urban data by planners and policy-makers, a set of webbased tools for the visual representation of ontologies and linked data is designed and developed. The tools – comprising the OSMoSys framework – provide graphical user interfaces for the visual representation, browsing, and interactive exploration of both ontologies and linked urban data.  After introducing methods and tools for data integration, visual exploration of linked urban data, and derivation of various attributes of people and places from different social urban data, it is examined how they can all be combined into a single platform. To achieve this, a novel web-based system (coined SocialGlass) for the visualization and exploratory analysis of human activity dynamics is designed. The system combines data from various geo-enabled social media (i.e. Twitter, Instagram, Sina Weibo) and LBSNs (i.e. Foursquare), sensor networks (i.e. GPS trackers, Wi-Fi cameras), and conventional socioeconomic urban records, but also has the potential to employ custom datasets from other sources.  A real-world case study is used as a demonstrator of the capacities of the proposed web-based system in the study of urban dynamics. The case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light festival 2015) on the activity and movement patterns of different social categories (i.e. residents, non-residents, foreign tourists), as compared to their daily and hourly routines in the periods  before and after the event. The aim of the case study is twofold. First, to assess the potential and limitations of the proposed system and, second, to investigate how different sources of social urban data could influence the understanding of urban dynamics.  The contribution of this doctoral thesis is the design and development of a framework of novel methods and tools that enables the fusion of heterogeneous multidimensional data for cities. The framework could foster planners, researchers, and policy makers to capitalize on the new possibilities given by emerging social urban data. Having a deep understanding of the spatiotemporal dynamics of cities and, especially of the activity and movement behavior of people, is expected to play a crucial role in addressing the challenges of rapid urbanization. Overall, the framework proposed by this research has potential to open avenues of quantitative explorations of urban dynamics, contributing to the development of a new science of cities

    Revisiting Urban Dynamics through Social Urban Data:

    Get PDF
    The study of dynamic spatial and social phenomena in cities has evolved rapidly in the recent years, yielding new insights into urban dynamics. This evolution is strongly related to the emergence of new sources of data for cities (e.g. sensors, mobile phones, online social media etc.), which have potential to capture dimensions of social and geographic systems that are difficult to detect in traditional urban data (e.g. census data). However, as the available sources increase in number, the produced datasets increase in diversity. Besides heterogeneity, emerging social urban data are also characterized by multidimensionality. The latter means that the information they contain may simultaneously address spatial, social, temporal, and topical attributes of people and places. Therefore, integration and geospatial (statistical) analysis of multidimensional data remain a challenge. The question which, then, arises is how to integrate heterogeneous and multidimensional social urban data into the analysis of human activity dynamics in cities? To address the above challenge, this thesis proposes the design of a framework of novel methods and tools for the integration, visualization, and exploratory analysis of large-scale and heterogeneous social urban data to facilitate the understanding of urban dynamics. The research focuses particularly on the spatiotemporal dynamics of human activity in cities, as inferred from different sources of social urban data. The main objective is to provide new means to enable the incorporation of heterogeneous social urban data into city analytics, and to explore the influence of emerging data sources on the understanding of cities and their dynamics.  In mitigating the various heterogeneities, a methodology for the transformation of heterogeneous data for cities into multidimensional linked urban data is, therefore, designed. The methodology follows an ontology-based data integration approach and accommodates a variety of semantic (web) and linked data technologies. A use case of data interlinkage is used as a demonstrator of the proposed methodology. The use case employs nine real-world large-scale spatiotemporal data sets from three public transportation organizations, covering the entire public transport network of the city of Athens, Greece.  To further encourage the consumption of linked urban data by planners and policy-makers, a set of webbased tools for the visual representation of ontologies and linked data is designed and developed. The tools – comprising the OSMoSys framework – provide graphical user interfaces for the visual representation, browsing, and interactive exploration of both ontologies and linked urban data.   After introducing methods and tools for data integration, visual exploration of linked urban data, and derivation of various attributes of people and places from different social urban data, it is examined how they can all be combined into a single platform. To achieve this, a novel web-based system (coined SocialGlass) for the visualization and exploratory analysis of human activity dynamics is designed. The system combines data from various geo-enabled social media (i.e. Twitter, Instagram, Sina Weibo) and LBSNs (i.e. Foursquare), sensor networks (i.e. GPS trackers, Wi-Fi cameras), and conventional socioeconomic urban records, but also has the potential to employ custom datasets from other sources. A real-world case study is used as a demonstrator of the capacities of the proposed web-based system in the study of urban dynamics. The case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light festival 2015) on the activity and movement patterns of different social categories (i.e. residents, non-residents, foreign tourists), as compared to their daily and hourly routines in the periods  before and after the event. The aim of the case study is twofold. First, to assess the potential and limitations of the proposed system and, second, to investigate how different sources of social urban data could influence the understanding of urban dynamics. The contribution of this doctoral thesis is the design and development of a framework of novel methods and tools that enables the fusion of heterogeneous multidimensional data for cities. The framework could foster planners, researchers, and policy makers to capitalize on the new possibilities given by emerging social urban data. Having a deep understanding of the spatiotemporal dynamics of cities and, especially of the activity and movement behavior of people, is expected to play a crucial role in addressing the challenges of rapid urbanization. Overall, the framework proposed by this research has potential to open avenues of quantitative explorations of urban dynamics, contributing to the development of a new science of cities

    Analyzing urban mobility paths based on users' activity in social networks

    Full text link
    [EN] This work presents an approach to model how the activity in social media of the citizens reflects the activity in the city. The proposal includes a gravitational model that deforms the surface of the city based on the intensity of the activity in different zones. The information is extracted from geolocated tweets (n = 1.48 x 10(6)). Furthermore, this activity affects how people move in a city. The path a user follows is calculated using the geolocation of the tweets that he or she publishes along the day. Several models are evaluated and compared using the Hausdorfs distance (d(H)). The combination of gravitational potential with attraction to the destination points provides the best results, with d(H) = 1176 against the Manhattan (d(H) = 1203) or the geodesic (d(H) = 1417) alternatives. Finally, the analysis is repeated with the data segmented by gender (n=2,826 paths, men=1,910, women=916). The results validate (p=0.000334) the studies that affirm that men travel longer distances (d(M) = 4.73 km, alpha(m) = 26.1 degrees) with rectilinear trajectories, whereas women have shorter and more angled paths (d(w) = 4.5 km, alpha(w) = 32.2 degrees), obtaining p values in path lengths and p=0.006 in the angles. (C) 2019 Elsevier B.V. All rights reserved.This work is partially supported by Spanish Government Project TIN2015-65515-C4-1-R and the Post-doc grant Ref. SP20170057.Rodríguez, L.; Palanca Cámara, J.; Del Val Noguera, E.; Rebollo Pedruelo, M. (2020). Analyzing urban mobility paths based on users' activity in social networks. Future Generation Computer Systems. 102:333-346. https://doi.org/10.1016/j.future.2019.07.072S33334610

    Mapping urban socioeconomic inequalities in developing countries through Facebook advertising data

    Get PDF
    Ending poverty in all its forms everywhere is the number one Sustainable Development Goal of the UN 2030 Agenda. To monitor the progress toward such an ambitious target, reliable, up-to-date and fine-grained measurements of socioeconomic indicators are necessary. When it comes to socioeconomic development, novel digital traces can provide a complementary data source to overcome the limits of traditional data collection methods, which are often not regularly updated and lack adequate spatial resolution. In this study, we collect publicly available and anonymous advertising audience estimates from Facebook to predict socioeconomic conditions of urban residents, at a fine spatial granularity, in four large urban areas: Atlanta (USA), Bogotá (Colombia), Santiago (Chile), and Casablanca (Morocco). We find that behavioral attributes inferred from the Facebook marketing platform can accurately map the socioeconomic status of residential areas within cities, and that predictive performance is comparable in both high and low-resource settings. Our work provides additional evidence of the value of social advertising media data to measure human development and it also shows the limitations in generalizing the use of these data to make predictions across countries
    • …
    corecore