2,020 research outputs found

    Alternation bounds for tree automata

    Get PDF

    Asymptotically near-optimal RRT for fast, high-quality, motion planning

    Full text link
    We present Lower Bound Tree-RRT (LBT-RRT), a single-query sampling-based algorithm that is asymptotically near-optimal. Namely, the solution extracted from LBT-RRT converges to a solution that is within an approximation factor of 1+epsilon of the optimal solution. Our algorithm allows for a continuous interpolation between the fast RRT algorithm and the asymptotically optimal RRT* and RRG algorithms. When the approximation factor is 1 (i.e., no approximation is allowed), LBT-RRT behaves like RRG. When the approximation factor is unbounded, LBT-RRT behaves like RRT. In between, LBT-RRT is shown to produce paths that have higher quality than RRT would produce and run faster than RRT* would run. This is done by maintaining a tree which is a sub-graph of the RRG roadmap and a second, auxiliary graph, which we call the lower-bound graph. The combination of the two roadmaps, which is faster to maintain than the roadmap maintained by RRT*, efficiently guarantees asymptotic near-optimality. We suggest to use LBT-RRT for high-quality, anytime motion planning. We demonstrate the performance of the algorithm for scenarios ranging from 3 to 12 degrees of freedom and show that even for small approximation factors, the algorithm produces high-quality solutions (comparable to RRG and RRT*) with little running-time overhead when compared to RRT

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations---restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that, in cases where the combined complexity is of relevance, approaching CTL model checking by parallelism cannot be expected to result in any significant speedup. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL+, and ECTL+

    On space efficiency of algorithms working on structural decompositions of graphs

    Get PDF
    Dynamic programming on path and tree decompositions of graphs is a technique that is ubiquitous in the field of parameterized and exponential-time algorithms. However, one of its drawbacks is that the space usage is exponential in the decomposition's width. Following the work of Allender et al. [Theory of Computing, '14], we investigate whether this space complexity explosion is unavoidable. Using the idea of reparameterization of Cai and Juedes [J. Comput. Syst. Sci., '03], we prove that the question is closely related to a conjecture that the Longest Common Subsequence problem parameterized by the number of input strings does not admit an algorithm that simultaneously uses XP time and FPT space. Moreover, we complete the complexity landscape sketched for pathwidth and treewidth by Allender et al. by considering the parameter tree-depth. We prove that computations on tree-depth decompositions correspond to a model of non-deterministic machines that work in polynomial time and logarithmic space, with access to an auxiliary stack of maximum height equal to the decomposition's depth. Together with the results of Allender et al., this describes a hierarchy of complexity classes for polynomial-time non-deterministic machines with different restrictions on the access to working space, which mirrors the classic relations between treewidth, pathwidth, and tree-depth.Comment: An extended abstract appeared in the proceedings of STACS'16. The new version is augmented with a space-efficient algorithm for Dominating Set using the Chinese remainder theore

    Maximal Existential and Universal Width

    Get PDF
    The tree width of an alternating finite automaton (AFA) measures the parallelism in all computations of the AFA on a given input. The maximal existential (respectively, universal) width of an AFA A on string w measures the maximal number of existential choices (respectively, of parallel universal branches) in one computation of A on w. We give polynomial time algorithms deciding finiteness of an AFA’s tree width and maximal universal width. Also we give a polynomial time algorithm that for an AFA A with finite maximal universal width decides whether or not the maximal existential width of A is finite. Finiteness of maximal existential width is decidable in the general case but the algorithm uses exponential time. Additionally, we establish necessary and sufficient conditions for an AFA to have exponential tree width growth rate, as well as sufficient conditions for an AFA to have exponential maximal existential width or exponential maximal universal width

    Tree-size bounded alternation

    Get PDF
    AbstractThe size of an accepting computation tree of an alternating Turing machine (ATM) is introduced as a complexity measure. We present a number of applications of tree-size to the study of more traditional complexity classes. Tree-size on ATMs is shown to closely correspond to time on nondeterministic TMs and on nondeterministic auxiliary pushdown automata. One application of the later is a useful new characterization of the class of languages log-space-reducible to context-free languages. Surprising relationships with parallel-time complexity are also demonstrated. ATM computations using at most space S(n) and tree-size Z(n) (simultaneously) can be simulated in alternating space S(n) and time S(n) · log Z(n) (simultaneously). Several well-known simulations, e.g., Savitch's theorem, are special cases of this result. It also leads to improved parallel complexity bounds for many problems in terms of both time and number of “processors.” As one example we show that context-free language recognition in time O(log2 n) is possible on several parallel models. Further, this bound is achievable with only a polynomial number of processors, in contrast to all previously known sub-linear time CFL recognizers
    • …
    corecore