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Abstract

The tree width of an alternating finite automaton (AFA) measures
the parallelism in all computations of the AFA on a given input. The
maximal existential (respectively, universal) width of an AFA A on
string w measures the maximal number of existential choices (respec-
tively, of parallel universal branches) in one computation of A on w.

We give polynomial time algorithms deciding finiteness of an AFA’s
tree width and maximal universal width. Also we give a polynomial
time algorithm that for an AFA A with finite maximal universal width
decides whether or not the maximal existential width of A is finite.
Finiteness of maximal existential width is decidable in the general case
but the algorithm uses exponential time. Additionally, we establish
necessary and sufficient conditions for an AFA to have exponential
tree width growth rate, as well as sufficient conditions for an AFA to
have exponential maximal existential width or exponential maximal
universal width.
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1 Introduction

An alternating finite automaton (AFA) extends a nondeterministic finite
automaton by allowing both existential (i.e., nondeterministic) choices and
universal choices [1, 13]. Alternating finite automata recognize only the
regular languages but can be double exponentially more succinct than
deterministic finite automata [1].

Kintala and Wotschke [12] initiated the study of measures of nondeter-
minism for finite automata. Limited nondeterminism and limited ambiguity
of finite automata has received much attention since then [4, 8, 15, 17, 19],
see also the surveys [3, 6].

This paper quantifies existential and universal parallelism in AFAs.
Existential (respectively, maximal existential) width of an AFA A on string w
counts the number (respectively, the maximal number) of existential choices
not followed by A in one computation on w. The universal width and
maximal universal width of an AFA are defined similarly. The measures for
the number of existential and universal choices in computations of an AFA
were previously considered by the authors [10].

Tree width (a.k.a. leaf size) [8, 11, 16] is a commonly used nondetermin-
ism measure for nondeterministic finite automata (NFA) and the definition
extends naturally for AFA. Roughly speaking, the tree width of an NFA
measures the nondeterminism of all possible computations on a given input.
On the other hand, existential width measures the number of existential (or
nondeterministic) choices on a particular computation path and, in this sense,
is similar to the guessing or branching measures [4], although the details of
the definitions are not the same. Similarly, universal width measures the
amount of parallelism in one existentially chosen computation of an AFA.

We consider the decision question whether the maximal existential
or universal width of an AFA is bounded and want to develop efficient
algorithms for this question. With this goal in mind we develop a widget
characterization of AFAs with finite maximal universal width and a set of
widgets that guarantee that the maximal existential width is finite. We give
a polynomial time algorithm to decide (i) finiteness of maximal universal
width, and, (ii) finiteness of maximal existential width under the assumption
that maximal universal width is finite. We give an algorithm to decide
finiteness of maximal existential width also in the general case but the
algorithm requires exponential time.

We note the following concerning the AFA model used here. While
the most general definition of alternating finite automata [1, 7, 14] allows



Maximal Existential and Universal Width 55

general Boolean functions on the states, since we want to measure existential
and universal choices separately in a computation we divide the states
into existential states (corresponding to disjunction) and universal states
(corresponding to conjunction). This alternating finite automaton model
is used also e.g. by Geffert [2] when considering alternation hierarchies,
and the original definition of alternating Turing machines [1] divides states
into existential and universal states. In this paper we focus on the worst
case variants of the existential and universal width, called maximal width
measure. The “best case” existential (respectively, universal) width of an
AFA A on string w is the existential width (universal width) of the “best”
computation of A on w [10]. Decision problems for the “best” case existential
and universal width measure are considered in [5].

2 Preliminaries

We assume that the reader is familiar with basics of finite automata. For
more information see e.g. the textbook [18] or the survey [7]. In this
section we fix notations and recall some basic definitions on alternating finite
automata.

In the following Σ is always a finite alphabet, the set of strings over Σ
is Σ∗ and ε is the empty string. Let f(ℓ) : N → N be a function. If
f(ℓ) ∈ Θ(ℓd) (for some d ∈ N), we say that f(ℓ) has polynomial growth
degree d. If f(ℓ) ∈ 2Θ(ℓ), we say that f(ℓ) has exponential growth.

An alternating finite automaton (AFA) is defined as an extension of a
nondeterministic finite automaton (NFA) that allows also universal states.
Formally, an AFA is a 6-tuple, A = (Qe, Qu,Σ, δ, q0, F ) where Qe is a finite
set of existential states, Qu is a finite set of universal states (Qe∩Qu = ∅), Σ
is the input alphabet, δ : (Qe ∪Qu)×Σ → 2Qe∪Qu is the transition function,
q0 ∈ Qe ∪Qu is the initial state, and F ⊆ Qe ∪Qu is the set of final states.

For q ∈ Qe ∪ Qu, we denote Aq = (Qe, Qu,Σ, δ, q, F ), that is, Aq is
obtained from A by changing the initial state to be q. For strings over Σ,
membership in the language L(Aq) is defined inductively as follows. First
ε ∈ L(Aq) if and only if q ∈ F . Consider a ∈ Σ where δ(q, a) = {p1, . . . , pn}
for n ≥ 1. For w ∈ Σ∗, define:

• If q ∈ Qu, then aw ∈ L(Aq) if and only if w ∈ L(Api) for all 1 ≤ i ≤ n.

• If q ∈ Qe, then aw ∈ L(Aq) if and only if w ∈ L(Api) for some
1 ≤ i ≤ n.
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If δ(q, a) = ∅, then aw /∈ L(Aq). The language of the AFA A is defined as
L(A) = L(Aq0).

In the following, A = (Qe, Qu,Σ, δ, q0, F ) is always an AFA. Unless
otherwise mentioned, we assume that all states of A are reachable from the
initial state q0.

A computation tree of A is a tree structure whose internal nodes are
labeled by pairs (p, a), for p ∈ Qe ∪Qu, a ∈ Σ (that is, each internal node is
labeled by a state and a character), and whose leaves are labeled by (p, ε) or
the fail symbol ⊥. We call a node of the computation tree T labeled by (p, a)
a p-node of T , and the leaves of T labeled by (p, ε) are called state leaves.

The computation tree of A on a string w ∈ Σ∗ from state q ∈ Qe ∪Qu,
TA,q,w, is defined inductively as follows. As the base case, TA,q,ε is the
singleton tree where the only node is labeled (q, ε). For c ∈ Σ and v ∈ Σ∗,
TA,q,cv, is defined inductively as the tree where:

• the root is labeled by (q, c), and,

• the trees rooted at the children of (q, c) are

– the computation trees TA,p1,v, . . . , TA,pn,v, if δ(q, c) = {p1, . . . , pn}
– the root has a single child labeled by the failure symbol ⊥ if
δ(q, c) = ∅.

The computation tree of A on w starting from q0 (the initial state of A),
TA,q0,w, is denoted simply as TA,w.

If A is an NFA, the definition yields the computation trees as considered
in [8, 16], since an NFA can be seen as an AFA with no universal states.

Next we define the pruning operation on computation trees. A pruned
computation tree represents one particular computation of an AFA. For
q ∈ Qe ∪ Qu, the pruned computation tree of TA,q,ε is the singleton node
(q, ε). For a string cv, where c ∈ Σ and v ∈ Σ∗, a pruned computation tree
of A on cv from q ∈ Qe ∪ Qu is obtained recursively from TA,q,cv, where
δ(q, c) = {p1, . . . , pk}, as follows:

i) If q is an existential state, then replace k − 1 of the immediate subtrees
by a singleton tree consisting of a node labeled by a new symbol ψ
(representing a pruning of that branch), and the final child TA,pi,v,
1 ≤ i ≤ k, by a pruned computation tree of TA,pi,v.

ii) If q is a universal state, then replace each immediate subtree TA,pi,v by
a pruned computation tree of TA,pi,v, for all 1 ≤ i ≤ k.
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We note that a pruned computation tree represents one specific “run” of
an AFA. The number of existential ψ-leaves in a pruned computation tree
measures the number of existential choices in that computation (strictly,
speaking it will be the number of existential choices that are not followed).

For a computation tree T , we use stateLeaves(T ) to denote the multiset
of all leaves of T labeled by a state-ε pair, and failLeaves(T ) to denote the
multiset of leaves of T labeled by the fail symbol ⊥. In a pruned tree we
call leaves labeled by ψ “cut leaves”, and use cutLeaves(T ) to denote the
multiset of all cut leaves in a pruned tree T .

The set of all pruned trees of a computation tree T is denoted ✂(T ).
A pruned computation tree is accepting if all of its state-ε leaves are labeled
by accepting states, and no leaves are labeled by the fail symbol ⊥. We
denote the set of all accepting pruned computations of a tree T as ✂acc(T ).
Directly from the definition of the language of an AFA and the definition of
pruned computation trees, it follows that a string w is in L(A) if and only if
✂acc(TA,w) ̸= ∅.

By the skeleton of an AFA A we mean the NFA obtained from A
by interpreting all states to be existential. Formally, for an AFA A =
(Qe, Qu,Σ, δ, q0, F ), we define the skeleton of A as the NFA A′ = (Qe ∪
Qu, ∅,Σ, δ, q0, F ). That is, the skeleton of an AFA has the same state set
and transition structure, except all of the states are existential. We note
that the language of the skeleton of an AFA A is not usually the same as
the language of A, however, for any string w, TA,w = TA′,w, that is, the
computation tree of A coincides with the computation tree of A′.

Let q ∈ Qe∪Qu and b ∈ Σ. If δ(q, b) is a singleton set, then for purposes
of the alternating computation it does not make a difference whether the
state q is existential or universal.

For purposes of the width measures we consider, often the relevant
cases are when δ(q, b) has more than one element. For q ∈ Qe (respectively,
q ∈ Qu) and b ∈ Σ, we say that the transition from q on b is properly
existential (respectively, properly universal) if |δ(q, b)| ≥ 2.

2.1 Width Measures of Alternating Finite Automata

The tree width of an AFA A on a string w, denoted tw(A,w), is the number
of state leaves and fail symbols in the computation tree TA,w [10]. If A is
an NFA, then the definition coincides with the tree width (or leaf size) for
NFAs [8, 16].
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The tree width of A on string w measures, roughly speaking, the amount
of the existential and universal choices in all branches of the computation
of A on w. One computation of A corresponds to a pruned tree and we
define universal and existential width in terms of a pruned tree.

Definition 1 Consider a pruned computation tree T p of an AFA. The
universal width of T p, denoted uw(T p), is the number of state leaves and
fail leaves in T p.

The leaves of a pruned tree may be labeled by states or the fail symbol.
Universal width measures the amount of universal branching in a pruned
tree and counts leaves labeled both by states and the fail symbol, that is,

uw(T p) = |stateLeaves(T p)|+ |failLeaves(T p)|.

Next we extend the notion of universal width for strings.

Definition 2 For an AFA A and a string w ∈ Σ∗, the maximal universal
width of A on w, denoted uwmax(A,w), is the greatest number of leaves in
any pruned computation tree of TA,w. Formally, this is

uwmax(A,w) = max{uw(T p) | T p ∈ ✂(TA,w)}.

Intuitively, the maximal universal width of an AFA A on a string w
measures the largest amount of parallelism that can occur in a pruned
computation tree of A on w.

We measure the number of existential choices present in an alternating
computation by counting the number of cut-leaves in a pruned tree.

Definition 3 Consider a pruned computation tree T p of an AFA. The
existential width of T p, denoted ew(T p), is the number of leaves of T p

labeled by the cut-symbol ψ.

Formally, for a pruned tree T p, ew(T p) = |cutLeaves(T p)|. Again, we
extend the measure for strings.

Definition 4 For an AFA A and a string w ∈ Σ∗, the maximal existential
width of A on w, denoted ewmax(A,w), is the largest number of leaves labeled
by the symbol ψ in a pruned computation tree of TA,w. Formally, this is

ewmax(A,w) = max{ew(T p) | T p ∈ ✂(TA,w)}.
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The maximal existential width of an AFA on a string w measures,
roughly speaking, the largest number of existential branches that are not
followed in an alternating computation of A on w. According to this definition
the existential width of a deterministic finite automaton is zero.

If an AFA does not have any existential branching, then no branches are
removed during the pruning operation. This means that there will be exactly
one pruned computation tree for any string, and the maximal universal
width and tree width will coincide.

Lemma 1 Let A = (Qe, Qu,Σ, δ, q0, F ) be an AFA such that |δ(q, a)| ≤ 1
for all q ∈ Qe and a ∈ Σ. Then for all w ∈ Σ∗, we have ✂(TA,w) = {TA,w},
uwmax(A,w) = tw(A,w) and ewmax(A,w) = 0.

To consider the growth rates of the measures as a function of input
length, we extend the tree width, maximal universal width, and maximal
existential width functions as functions over the natural numbers in the
normal manner. For f ∈ {tw,uwmax, ewmax}:

f(A, ℓ) = max{f(A,w) | w ∈ Σℓ}, and f(A) = sup
ℓ∈N

{f(A, ℓ)}.

The value ewmax(A) (respectively, uwmax(A)) is finite if and only if the
function ewmax(A, ℓ) (respectively, uwmax(A, ℓ)) is bounded.

3 Finite Universal and Existential Width

We want to characterize AFAs that have, respectively, finite tree width,
finite maximal universal width or finite maximal existential width. In the
following, we use the term widget to describe, roughly speaking, subgraphs
of the state graph of an AFA. Similar terminology was used earlier in the
study of ambiguity and tree width of NFAs [11, 19].

By a widget of an AFA A = (Qe, Qu,Σ, δ, q0, F ) we mean a subgraph of
the state graph of A where the vertices are labeled by elements of Qe ∪Qu

and the directed edges are labeled by elements of Σ. As a short hand notation
when drawing widgets we allow edges to be labeled by a string w ∈ Σ∗: this
represents a path where the individual transitions spell out w. For example,
in the widget represented by Figure 1, the state (q, u) is connected to itself
by a cycle where the transitions are labeled by elements of the string av. A
more detailed description of widgets can be found in [9].
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In our figures, if a state q is universal (respectively, existential) then it
is labeled (q, u) (respectively, (q, e)). If a state is labeled e/u, then it can be
either universal or existential.

Since the tree width of an AFA is defined over unpruned computation
trees, directly from the definitions it follows that ewmax(A,w), uwmax(A,w) ≤
tw(A,w) for any string w.

Since only the properly universal transitions increase universal width,
using analogous reasoning as the characterization of NFAs with infinite
tree width [11, 16], we see that uwmax(A) can be infinite only if a properly
universal transition of A is involved in a cycle. Recalling that we assume all
states of an AFA to be reachable, this gives the following characterization.

Theorem 1 An AFA A has infinite maximal universal width if and only if
A has a widget (IUW), as shown in Figure 1.

q, u q′, e/u

av

a

Figure 1: Widget (IUW), for a ∈ Σ, v ∈ Σ∗ [10]

Characterizing finite existential width is not equally simple because the
number of cut-leaves can grow unboundedly due to certain structures on
existential states and/or universal states.

Lemma 2 Let A = (Qe, Qu,Σ, δ, q0, F ) be an AFA where ewmax(A, ℓ) /∈
O(1). Then either

i) A has a cycle containing a properly existential transition, or

ii) For some strings u, v, w ∈ Σ∗, characters a, b ∈ Σ, and states q ∈
Qu, q1, q2 ∈ Qe ∪ Qu, and p ∈ Qe, we have: q ∈ δ(q0, u), {q1, q2} ⊆
δ(q, a), q ∈ δ(q1, v), p ∈ δ(q2, w), |δ(p, b)| ≥ 2, and ew(TA,u(av)iwb) <
ew(TA,u(av)i+1wb) for all i ≥ 1.

Proof: Suppose that A has m states. Let x be the largest number
of transition choices of any existential state, minus one. That is, x =
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max
q∈Qe,a∈Σ

{|δ(q, a)|} − 1. Similarly, let y be the largest number of choices of

any universal transition. That is, y = max
q∈Qu,a∈Σ

{|δ(q, a)|}.

If some computation tree of A contains a branch with at least m+ 1
nodes with cut leaves, then A has a cycle containing a properly existential
transition, and case i) holds.

In the following then, we assume that for any computation tree, each
branch has at most m nodes having cut leaves as children. Since ewmax(A, ℓ)
is unbounded, there must be a pruned tree T p such that

ew(T p) > ym · x ·m. (1)

Since a single branch contains at most m nodes with cut leaves, at most x ·m
cut leaves can be connected to a single branch. By (1), T p must contain more
than ym branches, where any two distinct branches contain cut leaves also
after the two branches separate. Note that, if the cut leaves appeared above
the universal branching, then ew(T p) wouldn’t be able to reach ym · x ·m
because at most x ·m cut leaves can be connected to the same branch. To
produce more than ym universal branches that all eventually lead to a cut
leaf, there must be a branch that has more than m universal branching
points. That is, a universal node must repeat in some branch, and A must
have a cycle containing a properly universal transition. Since we are only
counting branches which eventually lead to a cut leaf, the universal choice
has the property that after exiting the cycle, and possible further symbols,
it leads to a cut leaf. 2

In the converse direction, the following lemma gives a number of suf-
ficient conditions to cause the maximal existential width of an AFA to
be infinite.

Lemma 3 Let A = (Qe, Qu,Σ, δ, q0, F ) be an AFA with at least one of the
widgets from Figure 2. Then ewmax(A, ℓ) /∈ O(1).

Proof: If A has an (IEW)α widget, then we have a cycle of the form
(q, av, q), for some q ∈ Qe, a ∈ Σ, v ∈ Σ∗. Each time we repeat the cycle
(q, av, q), we are adding at least one cut leaf to the pruned computation tree.
Since all states of A are reachable, there exists some prefix u ∈ Σ∗ such that
q ∈ δ(q0, u), and then ewmax(A, u(av)i) < ewmax(A, u(av)i+1) for all i ≥ 0.

If we have an (IEW)β widget, then we have a cycle of the form
(q, avbw, q) for some q ∈ Qu, a, b ∈ Σ, v, w ∈ Σ∗. Note that we do not
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q, e q′, e/u

av

a

(a) Widget (IEW)α

q, u p, e

p′, e/u

p′′, e/u

avbw

av
b

b

(b) Widget (IEW)β

q, u q′, e/u p, e

p′, e/u

p′′, e/u

av

av

av

w
b

b

(c) Widget (IEW)γ

q, u q′, e/u p, e

p′, e/u

p′′, e/u

av

a

v

w
b

b

(d) Widget (IEW)ζ

Figure 2: Widgets causing infinite ewmax(A), where a, b ∈ Σ, v, w ∈ Σ∗

necessarily need a ̸= b, but in the case that state q has a self-loop on charac-
ter a, then the simple cycle is (q, a, q), not (q, aa, q) or (q, ab, q). There is
some prefix string u ∈ Σ∗ such that q ∈ δ(q0, u). Each time we repeat the
cycle (q, avbw, q), we are adding at least one universal branch. Each of these
universal branches leads to at least one additional cut leaf on the pruned
computation tree. So then ewmax(A, u(avbw)i) < ewmax(A, u(avbw)i+1) for
all i ≥ 1. We note that avb must be a prefix of avbw to have both universal
branches continue at least until the b is read, but that there can be a suffix w
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on the cycle because the existential branch on b on the other branch has
already been passed. This means that the existence of an (IEW)β widget
causes that ewmax(A, ℓ) /∈ O(1).

If we have an (IEW)γ widget, then we have a cycle (q, av, q), a cycle
(q′, av, q′), where also q′ ∈ δ(q, av), and there exists a state p ∈ δ(q′, w) with
an outgoing properly existential transition on b ∈ Σ. There is some prefix
string u ∈ Σ∗ such that q ∈ δ(q0, u). Each time we repeat the cycle (q, av, q),
we are adding at least one universal branch. That is, a leaf node labeled by q
will expand to at least two universal branches, one with a leaf node labeled
by q and the other with a leaf node labeled by q′. So then TA,u(av)i will have i
universal branches with nodes labeled by q′. This means that TA,u(av)i+1w

will have at least one more universal branch compared to TA,u(av)iw. When
reading the symbol b this universal branch encounters an existential choice
and, thus, ewmax(A, u(av)iwb) < ewmax(A, u(av)i+1wb) for all i ≥ 0.

If we have an (IEW)ζ widget, then we have a properly universal tran-
sition from state q such that there are two distinct cycles C1 = (q, av, q)
and C2 = (q, av, q), for a ∈ Σ, v ∈ Σ∗. Furthermore, some q′ ∈ δ(q, a)
is able to reach a state p with a properly existential transition on b ∈ Σ.
There is some prefix string u ∈ Σ∗ such that q ∈ δ(q0, u). For a tree TA,u,
there is at least one universal branch with a leaf node labeled by q, and
each repetition of av causes q to expand into two universal branches with
leaf nodes labeled by q and q′. This means that TA,u(av)i+1 will have more
universal branches with leaves labeled by q′ compared to TA,u(av)i . When
reading wb from q′ the computation encounters an existential choice and
therefore ewmax(A, u(av)iwb) < ewmax(A, u(av)i+1wb) for all i ≥ 0.

In every case, we get that ewmax(A, ℓ) /∈ O(1). 2

It remains open whether an AFA A having one of the widgets represented
in Figure 2 is a necessary condition for ewmax(A) to be infinite. In the next
section we give an efficient algorithm to decide finiteness of ewmax(A) in
the case when maximal universal width of A is finite. Without assumptions
on maximal universal width, we can decide finiteness of ewmax(A) but the
algorithm uses exponential time. If an AFA A having one of the widgets
of Figure 2 is both necessary and sufficient for A to have infinite maximal
existential width, this could yield a polynomial time algorithm to decide
the property.
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4 An Algorithm for Deciding Finiteness

The tree width of an NFA is unbounded if and only if there exists a nondeter-
ministic transition involved in a cycle [8, 16]. This yields a low polynomial
time algorithm to decide whether or not the tree width of an m-state NFA is
finite [11]. Since the tree width of an AFA and the tree width of its skeleton
automaton are the same, deciding finiteness of an AFA’s tree width has
the same complexity upper bound. Since the structure of (IUW) widgets
matches closely to the structure of the widgets causing unbounded tree width
in NFAs, we can also decide finiteness of an AFA’s maximal universal width
using the same algorithm [11].

Proposition 1 Let A be an m-state AFA over a fixed alphabet Σ.3 We can
decide whether or not tw(A, ℓ) ∈ O(1) and whether or not uwmax(A, ℓ) ∈ O(1)
in time O(m4).

On the other hand, unbounded maximal existential width in AFAs can
result from a number of different structures (cf. Figure 2), and consequently
we cannot use the same algorithm without modification.

The interrelationship of existential and universal width is illustrated also
by considering bounds for the largest finite existential width of an AFA with a
given number of states. We know that, if the maximal existential width of an
m-state NFA is finite, then it is at most (m−1)·(m−2)

2 [16]. However, in AFAs
the addition of universal branching allows the finite maximal existential width
to be exponential as a function of the number of states. More specifically, for
m ≥ 6 there exist AFAs Am such that ewmax(Am) = 5 · 2m−5 [10]. Figure 3
depicts a 7-state AFA meeting this lower bound. The construction requires at
least 1 universal state at the beginning of the chain, followed by 5 existential
states, where all states are maximally connected. Note that, strictly speaking,
the final two states can be existential or universal, since they both have
exactly one outgoing transition on a given symbol. We believe this to be the
greatest finite maximal existential width among m-state AFAs but do not
have a proof for the claim.

Conjecture 1 Let A be an m-state AFA such that ewmax(A) is finite. Then
ewmax(A) ≤ 5 · 2m−5.

Now we continue with the question of deciding finiteness of maximal
existential width of an AFA. The following lemma characterizes an AFA A

3That is, the decision algorithm considers the size of the alphabet to be a constant.
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1, u 2, u 3, e 4, e 5, e 6, e 7, e

Figure 3: An AFA with 2 universal states, 5 existential states, and a maximal
existential width of 5 · 22. Dashed edges are labeled by both a and b, and
solid edges are labeled by a.

having infinite tree width in terms of A having infinite maximal existential
width or infinite maximal universal width.

Lemma 4 Let A be an AFA. The tree width of A is infinite if and only if
ewmax(A) is infinite or uwmax(A) is infinite.

Proof: If tw(A) is infinite then also the tree width of the skeleton
automaton A′ of A is infinite, and the NFA A′ must have a nondeterministic
transition from a state q occurring in a cycle [11]. If q is a universal state
of A, then A has a widget (IUW) and has infinite maximal universal width.
If q is an existential state in A, then A has a widget (IEW)α and has infinite
maximal existential width.

We note that since existential and universal width are defined in terms
of pruned computation trees, for any string w, ewmax(A,w) ≤ tw(A,w) and
uwmax(A,w) ≤ tw(A,w). This gives the converse implication. 2

Now we get a polynomial time algorithm for deciding finiteness of an
AFA’s maximal existential width, provided that the number of universal
branches in a computation is guaranteed to be bounded.

Theorem 2 Let A be an m-state AFA such that uwmax(A) is finite. Then
we can decide in time O(m4) whether or not ewmax(A) is finite.

Proof: Since maximal universal width of A is finite, by Lemma 4, ewmax(A)
is finite if and only if tw(A) is finite. Proposition 1 provides an algorithm
with the required time bound to decide finiteness of tw(A). 2
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4.1 Decidability of Finiteness of Maximal Existential Width

Since we don’t know whether the widgets of Lemma 3 exactly characterize
AFAs with infinite maximal existential width, we don’t have an efficient
algorithm to decide this property. In this subsection we show that finiteness
of maximal existential width is at least decidable albeit the algorithm is
based on subset construction and uses exponential time. The following
definition provides in Lemma 5 below an “if and only if” condition for an
AFA to have infinite maximal existential width.

Definition 5 Let A be an AFA and consider a pruned computation tree T p

of A on input w. The ith level of T p, i = 0, 1, . . . consists of nodes reached
by reading a prefix of w of length i.

We say that level i of T p increases the existential width if either

(i) a transition on level i is properly existential, or,

(ii) level i contains a universal computation step where the subcomputations
starting from at least two of the children both use a properly existential
transition.

The correctness of the algorithm will be based on the following observa-
tion. Note that the number of levels that (according to Definition 5) increase
the existential width of a pruned tree T p does not determine the existential
width of T p and the following lemma just gives a necessary and sufficient
condition for the existential width of an AFA to be infinite.

Lemma 5 The maximal existential width of an AFA A is infinite if and
only if for all m ∈ N there exists a pruned computation tree of A where at
least m levels increase the existential width of the tree.

Proof: Let maxA be the maximum number of existential or universal
choices in one computation step of A. If in all pruned trees at most kA
levels increase the existential width, any pruned computation tree of A has
existential width at most (maxA)

kA . Conversely, if for all m ∈ N there exists
a pruned computation tree where at least m levels increase the existential
width, ewmax(A) must be greater than m for all m ∈ N. 2

In the following, for an AFA A we construct an NFA B that keeps
track of all the states of A occurring at the current level of a pruned
computation tree of A and, when simulating a universal step of A, the
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NFA B nondeterministically guesses which subcomputations will later use a
properly existential transition. The acceptance conditions of B verify that
the guesses have been correct.

More formally, consider an AFA A = (Qe, Qu,Σ, δ, q0, F ) and denote
Q = Qe ∪Qu, and Q

wait = {qwait | q ∈ Q}. (Qwait is a marked copy of Q.)
The state set of the NFA B is

P = 2Q∪Qwait∪{psink,pfail}

and the set of final states of B is FB = {X ∈ P | X ⊆ Q ∪ {psink}}. Since
maximal existential width of A is defined based on arbitrary (not necessarily
accepting) pruned trees, the computation of B does not verify that the
simulated computation of A accepts and the final states of B do not depend
on final states of A. In fact, accepting states of B may contain also the
symbol psink that represents failure of the computation of A. The purpose of
the final states of B is just to verify that in a universal step that is guessed to
increase the existential width in the sense of Definition 5 (ii), the appropriate
subcomputations really contain an existential transition and the failure state
pfail indicates a violation of this condition.

The transition relation γB ofB is defined for b ∈ Σ andX = {x1, . . . , xm}
belonging in P as follows. The set γ(X, b) consists of all sets

{ϕ(x1, b), . . . , ϕ(xm, b)}

where each ϕ(xi, b) is a sequence of elements of Q ∪ Qwait ∪ {psink, pfail}
selected nondeterministically as follows:

(i) If xi ∈ Qe, then if δ(xi, b) ̸= ∅, ϕ(xi, b) is one of the elements of δ(xi, b)
and otherwise ϕ(xi, b) = psink.

(ii) If xi ∈ Qu and δ(xi, b) = {q1, . . . , qk}, k ≥ 1, then ϕ(xi, b) can be any
sequence

q′1, . . . , q
′
k, where q′j = qj or q′j = qwaitj , j = 1, . . . , k.

If δ(xi, b) = ∅, then ϕ(xi, b) = psink.

(iii) If xi = qwait, q ∈ Qe and δ(q, b) = {q1, . . . , qk} where k ≥ 2, then
ϕ(xi, b) is one of the elements qj , 1 ≤ j ≤ k.

(iv) If xi = qwait, q ∈ Qe and δ(q, b) = {q1}, then ϕ(xi, b) = qwait1 .
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(v) If xi = qwait, q ∈ Qe ∪Qu and δ(q, b) = ∅, then ϕ(xi, b) = pfail.

(vi) If xi = qwait, q ∈ Qu and δ(q, b) = {p1, . . . , pk}, k ≥ 1, then ϕ(xi, b)
can be any sequence

q′1, . . . , q
′
k, where q′j = qj or q′j = qwaitj , j = 1, . . . , k, and (∃j)q′j = qwaitj .

(vii) If xi = psink, then ϕ(xi, b) is the empty sequence (that is, the transition
of γ erases psink from the set of B).

(viii) If xi = pfail, then ϕ(xi, b) = pfail (that is, after pfail appears in a state
of B, the transitions of γ cannot remove it).

Roughly speaking, the NFA B operates as follows. States of B consist
of sets of states of A where some states may be labeled as “wait”. If B is
in state X, and we ignore the wait-superscripts of the states of A in X, for
each element of X that is existential in A, B simulates one existential choice
of A and for a universal state of A, B simulates all choices. Assume B is
in state X ∈ P after reading a string w. If we ignore the “wait”-labels the
elements of X are states of A that occur on the ith level, i = |w|, of a pruned
computation tree of A. If the pruned tree contains the failure symbol ⊥
on the ith level, this is represented in X by the element psink. Note that
cut-symbols ψ are not stored in states of B.

The wait-superscripts introduced by transitions (ii) mark subcompu-
tations that are required to simulate a properly existential transition of A
before they can reach an accepting state in B. Note that only transitions
(iii) remove the wait-superscript and “wait-elements” cannot occur in final
states of FB. If, according to (v), a state with wait-superscript encounters
an undefined transition of A, the corresponding transition in B adds pfail to
the state set and, according to (viii), the element pfail cannot be removed
from a state of B.

The construction guarantees that a transition of B, occuring in an
accepting computation of B, on a state {x1, . . . , xm} on input b simulates
transitions of A that, according to Definition 5, increase the width of the
pruned computation tree of A if and only if

INC(a) some xi ∈ Qe and |δ(xi, b)| ≥ 2, or,

INC(b) some xj ∈ Qu and, according to (ii) in the definition of γ, at least
two of the successor states are labeled “wait”, or,
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INC(c) some xj ∈ Qwait
u and, according to (vi) in the definition of γ, at least

two of the successor states are labeled “wait”.

Note that this “if and only if”-characterization requires that the resulting
state of B eventually reaches a final state of B as the “wait”-superscripts
can be erased only by simulating a properly existential transition of A.

Computations of the NFA B can have an unbounded number of transi-
tions of types INC(a), INC(b) or INC(c) only if one of them occurs inside a
cycle. Thus, by Lemma 5, to decide infiniteness of the existential width of A
it is sufficent to check whether in B a transition of type INC(a), INC(b),
or INC(c) occurs inside a cycle and, furthermore, that cycle is reachable
from the start state and reaches a state of FB. Roughly speaking, this
corresponds to finding an occurrence of the widget (IEW)α in the NFA B
and with the additional condition that the computation of B must eventually
accept. This gives a decision algorithm for finiteness of existential width
of A but the algorithm is not polynomial time because B is obtained from A
by a modified subset construction.

Theorem 3 For an AFA A it is decidable whether or not the existential
width of A is finite.

5 Growth Rate of the Measures

The tree width of an NFA is either finite, or it has polynomial or exponential
growth rate [8]. The different NFA tree width growth rates can be char-
acterized using widgets and this leads to efficient algorithms to decide the
growth rate [11]. Since an AFA and its skeleton automaton have the same
tree width, we can leverage existing NFA algorithms to decide the growth
rate of an AFA’s tree width.

Proposition 2 ([11]) Let A be an m-state AFA over a fixed alphabet.4 We
can decide in O(m4) time whether tw(A, ℓ) is finite, or if it has polynomial
or exponential growth.

For AFAs with finite existential width, we can use the same algorithm,
with slightly worse complexity, to decide the growth rate of maximal universal
width. This is based on the following simulation result. In the following by
an UFA we mean an AFA with only universal states.

4That is, all input AFAs for the algorithm have that same alphabet and when deter-
mining time complexity alphabet size is a constant.
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Proposition 3 Let A be an m-state AFA such that ewmax(A) is finite. Then
there exist O(m2) UFA’s, B1, . . . , Bz, each having m states, such that L(A)
is the union of the languages L(B1), . . . , L(Bz).

Proof: Let q1, . . . , qk be the existential states of A. We define the
“branching destinations” of each of these states as follows:

Pi =
⋃

a∈Σ,|δ(qi,a)|>1

δ(qi, a), for 1 ≤ i ≤ k.

We note that |Pi| ≤ m− 1 because A has finite maximal existential width
and this means that no properly existential transition can be a self-loop.
Let χ = P1 × P2 × · · · × Pk, yielding all unique combinations by choosing
one destination state from each properly existential transition. That is, χ
is the set of all unique combinations of states obtained by choosing one
state from each of P1, . . . , Pk. Since each Pi has at most m − 1 elements,
|χ| ≤ (m− 1) ·m.

We can represent A’s language as the union of |χ| languages, each rec-
ognized by an UFA with m states. We define UFAs B1, . . . , B|χ|, where each
Bj = (∅, Qe ∪Qu,Σ, δj , q0, F ), and the δj ’s are defined as follows: for each
combination 1 ≤ j ≤ |χ|, which “keeps” destination states {pj,1, . . . , pj,k},
and for each a ∈ Σ we define

δj(q, a) = δ(q, a) if q /∈ {q1, . . . , qk}, or else

δj(qi, a) =


δ(qi, a) if |δ(qi, a)| = 1, or

{pj,i} if pj,i ∈ δ(qi, a), or

∅ otherwise.

That is, δj will have transitions leading from state qi to state pj,i
that simulate properly existential transitions from qi, remove the original
properly existential transitions from qi, and δj has the original non-branching
transitions leading out from state qi.

Since all transitions in δj are present in the original transition function,
then L(Bj) ⊆ L(A), j = 1, . . . , k. For all w ∈ L(A), since each pruned
computation tree of ✂(TA,w) is represented across the Bj ’s, then at least

one of the Bj ’s will accept w. So then we get the equality L(A) =
|χ|⋃
j=1

L(Bj).

2

Using Proposition 3 we get the following:
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Theorem 4 Let A be an m-state AFA such that ewmax(A) is finite. Then
we can decide whether the growth rate of uwmax(A, ℓ) is bounded, polynomial,
or exponential in O(m6) time.

Proof: According to Proposition 3 we can write L(A) as the union
of O(m2) languages recognized by m-state UFAs. For an UFA B and
string w, uwmax(B,w) is the same as tree width of B on w. According
to Proposition 2 the tree width of B can be decided in time O(m4) and
uwmax(A, ℓ) is bounded if all UFAs have bounded growth rate, uwmax(A, ℓ)
grows exponentially if at least one of the UFAs has exponential growth rate
and, otheriwse, uwmax(A, ℓ) grows polynomially. 2

5.1 Exponential Growth

The tree width of an NFA grows exponentially if and only if the NFA has
a widget (ECOMP) [11]. Roughly speaking, this means that there exists a
state involved in two cycles over the same string, see Figure 4(b).

Since the tree width of an AFA is the same as the tree width of it’s
skeleton automaton we can, essentially, characterize exponential growth of
the tree width of an AFA using the same widget. However, in order to
discuss existential and universal width separately, we define two new widgets,
(EEW) and (EUW), as shown in Figure 4.

q, e

av

a

v

(a) Widget (EEW)

q, u

av

a

v

(b) Widget (EUW)

Figure 4: Widgets for AFAs derived from (ECOMP), for a ∈ Σ, v ∈ Σ+. In
the figures the unlabeled states can be either existential or universal.

The following characterization is obtained by considering the skeleton
automaton of the AFA A.

Theorem 5 For an AFA A, tw(A, ℓ) ∈ 2Θ(ℓ) if and only if A has an (EUW)
widget or A has an (EEW) widget.
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Since the maximal universal width counts the number of parallel
branches, the presence of an (EUW) widget is sufficient to cause expo-
nential growth.

Lemma 6 Let A be an AFA with an (EUW) widget. Then
uwmax(A, ℓ) ∈ 2Θ(ℓ).

In addition to (EUW) widgets being sufficient to cause exponential
maximal universal width, we also believe that they are necessary but do
not have a complete proof for this conjecture. All AFAs with exponential
universal width we have managed to construct have one of these widgets.

Conjecture 2 Let A be an AFA such that uwmax(A, ℓ) ∈ 2Θ(ℓ). Then A
has an (EUW) widget.

Even though (EEW) widgets are sufficient to cause exponential tree
width, they do not cause exponential growth for the maximal existential
width. Note that while tree width measures the parallelism of the entire
computation tree, existential width measures choices only on one branch of
the computation and thus, even for NFAs, tree width and existential width
are very different measures. The following example considers the smallest
AFA having widget (EEW).

Example 1 Consider the AFA A = ({q1, q2}, ∅, {a}, δ, q1, {q1}), where δ is
defined as δ(q1, a) = {q1, q2} and δ(q2, a) = {q1}. In the computation tree
TA,aℓ , for any ℓ ∈ N, every non-leaf node labeled by q1 will have two children,
and every non-leaf node labeled by q2 will have one child. Since there are
no universal states in A, then any pruned tree T p ∈ ✂(TA,aℓ) will have
one branch. Since the branch consists of ℓ + 1 nodes, and each node has
at most 1 cut leaf attached to it, then ew(TA,aℓ) ≤ ℓ+ 1. This means that
ewmax(A, ℓ) ∈ O(ℓ).

However, much like how (IEW)α widgets are able to cause the maximal
existential width to be unbounded (cf. Lemma 3), (EUW) widgets also have
the potential to cause exponential growth for the maximal existential width,
provided that the cycle has possibility for other existential choices. We recall
the widgets of Figure 2, and note that the (IEW)ζ widget has an (EUW)
widget as part of its structure, followed by a properly existential transition.
We use this observation to show that the existence of widgets (IEW)ζ gives
a sufficient condition for exponential growth rate.
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Lemma 7 Let A be an AFA with an (IEW)ζ widget. Then

ewmax(A, ℓ) ∈ 2Θ(ℓ).

Proof: Suppose A = (Qe, Qu,Σ, δ, q0, F ) has an (IEW)ζ widget. Using
the notations of the widget from Figure 2, this means that there exists an
(EUW) widget over a state q ∈ Qu and a string av, for a ∈ Σ and v ∈ Σ+.
Furthermore, there exists a state p ∈ Qe such that p ∈ δ(q, aw) for some
w ∈ Σ∗ and |δ(p, b)| ≥ 2 for some b ∈ Σ. Adding on repetitions of the cyclical
string av will expand each leaf node of the tree labeled by q into two leaf
nodes labeled by q. That is, TA,u(av)i has at least 2

i universal branches, for

i ≥ 1, each with leaf nodes labeled by q. By extending the string from u(av)i

to u(av)iawb, it is clear that TA,u(av)iawb has a pruned computation tree that
after reading w reaches the state p and uses an existential transition when
reading b. So then ewmax(A, u(av)iawb) ∈ 2Θ(i). 2

To conclude this section we note the following. Recall that maximal
existential width counts the cut-leaves in one pruned tree. This means that
the number of cut-leaves can grow exponentially as a function of the height
of the tree only if the number of universal branches grows exponentially as a
function of the length of the input.

Corollary 1 Let A be an AFA. If ewmax(A, ℓ) ∈ 2Θ(ℓ), then
uwmax(A, ℓ) ∈ 2Θ(ℓ).

5.2 Polynomial Growth

By Theorem 1, the maximal universal width of an AFA is infinite if and
only if the AFA has an (IUW) widget. Since the presence of an (IUW)
widget forces at least linear growth, and any AFA with unbounded maximal
universal width has an (IUW) widget, there can be no growth rates for an
AFA’s maximal universal width between finite and linear.

Corollary 2 Let A be an AFA. If uwmax(A, ℓ) /∈ O(1), then
uwmax(A, ℓ) ∈ Ω(ℓ).

If the tree width of an NFA is bounded by a polynomial, then we can
decide what degree bounds the polynomial by, roughly speaking, determining
how many successive (IEW)α widgets over the same string can appear in a
computation [11]. However, for AFAs this process is not so simple, as an
(IUW) widget appearing before an (IEW)α widget will increase the growth
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rate of the maximal existential width, but an (IEW)α widget appearing
before an (IUW) widget will not increase the growth rate of the maximal
universal width. We demonstrate this difference in the following example.

Example 2 In Figure 5, there are two AFAs, B1 and B2, each of which
have an (IUW) widget and an (IEW)α widget; the only difference is which
one comes first. Figure 5(a) has linear growth rate for both the maximal
universal width and the maximal existential width, whereas Figure 5(b)’s
ordering of these widgets means that the number of pruned branches grows
both because of the properly universal transition in the cycle and because of
the properly existential transition.

0, e 1, u

a

a

a

a

(a) uwmax(B1, ℓ), ew
max(B1, ℓ) ∈ O(ℓ)

0, u 1, e

a

a

a

a

(b) uwmax(B2, ℓ) ∈ O(ℓ), ewmax(B2, ℓ) ∈
O(ℓ2)

Figure 5: Importance of widget ordering for polynomial growth. The
unlabeled state can be either existential or universal.

It seems plausible that the maximal universal width of AFAs can have
polynomial growth in a similar fashion to the polynomial tree width of NFAs.
That is, an AFA with 1 ≤ d ≤ m consecutive universally branching cycles
(and also no (EUW) widgets) would have at most O(ℓd−1) universal branches
in any pruned computation tree over strings of length ℓ.

Conjecture 3 Let A be an m-state AFA with no (EUW) widgets. Then
uwmax(A, ℓ) ∈ O(ℓm−1).

Unfortunately, it is not exactly clear how to determine the polynomial
upper bound for maximal universal/existential width in AFAs with inter-
leaved (IUW) and (IEW)α widgets. However, since interleaved (IUW) and
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(IEW)α widgets require that the computation alternates between existential
and universal states, it seems likely that the polynomial growth rates of
maximal universal/existential width are related to the number of alternations
an AFA is allowed to make, as studied by Geffert [2].

6 Conclusion

We have characterized necessary and sufficient conditions for an AFA to
have unbounded tree width or exponential tree width by reducing the
problem to the corresponding question for NFAs. A similar widget-condition
characterizes AFAs with infinite maximal universal width and this yields an
efficient algorithm to decide finiteness of maximal universal width. We have
identified a set of widgets (Figure 2) that guarantee maximal existential width
to be infinite but it remains open whether this is an exact characterization.

We have shown that when universal width is bounded, the finiteness
of maximal existential width of an AFA can be decided in polynomial time
but without the assumption the algorithm requires exponential time. The
question of obtaining an efficient algorithm is related to getting a widget
characterization of this property. In the last section we have initiated a
study of possible growth rates of maximal universal and existential width.
This topic has many questions for further research.
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