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The size of an accepting computation tree of an alternating Turing machine (ATM) 
is introduced as a complexity measure. We present a number of applications of tree-size 
to the study of more traditional complexity classes. Tree-size on ATMs is shown to 
closely correspond to time on nondeterministic TMs and on nondeterministic auxiliary 
pushdown automata. One application of the later is a useful new characterization of the 
class of languages log-space-reducible to context-free languages. Surprising relationships 
with parallel-time complexity are also demonstrated. ATM computations using at most 
space S(n) and tree-size Z(n) (simultaneously) can be simulated in alternating space S(n) 
and time S(n) * log Z(n) (simultaneously). Several well-known simulations, e.g., Savitch’s 
theorem, are special cases of this result. It also leads to improved parallel complexity 
bounds for many problems in terms of both time and number of “processors.” As one 
example we show that context-free language recognition in time O(log* n) is possible on 
several parallel models. Further, this bound is achievable with only a polynomial number 
of processors, in contrast to all previously known sub-linear time CFL recognizers. 

1. INTRODUCTION 

The alternating Turing machine (ATM) introduced by Chandra and Stockmeyer, 
and by Kozen [6, 14, 71 has proved to be a very useful computational model. Several 
interesting applications are known, e.g., [6, 14, 7, 10, 1, 17, 30, 15, 161. We believe the 
ATM’s convenience and utility may be further extended by careful study of the model’s 
properties. In this paper we will present a simple, natural new complexity measure 
for ATMs, called “tree-size.” Basically the “tree-size” used by an ATM on a given 
input is the size of its smallest accepting computation tree. Tree-size is a useful abstraction 
which provides a spectrum of complexity classes intermediate between nondeterminism 
and full alternation. This should provide a useful tool for investigating problems which 
do not seem to be precisely characterized by either of the later models. 

While tree-size is a mathematically appealing notion, it seems to lack the intuitive 
economic motivation which underlies the common time and space measures. What is the 
cost of a larger tree-size ? In fact, we will show that tree-size has close connections with 
more familar complexity measures. Specifically, we will show that tree-size is equal to 
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time on two nondeterministic models, and is closely related to time on several parallel 
models. The later results are particularly surprising since the parallel algorithms give an 
exponential speed-up with only a modest increase in the required number of “processors.” 
This result also subsumes several previously known simulations, such as Savitch’s 
theorem [28]. 

Our results about context-free languages recognition illustrate the features mentioned 
above. CFL recognition has not been precisely characterized in terms of either space or 
time on Turing machines. We will give such a characterization in terms of tree-size, 
complementing a previously known one given in terms of auxiliary pushdown machines 
[35]. Applying our parallel-time simulation to this result gives an O(log2 n) time CFL 
recognition algorithm for alternating Turing machines and other parallel models. Further- 
more, this time bound is achievable with a polynomial number of “processors,” e.g., 
by a combinational circuit of depth log2 n with a polynomial number of gates. No previous 
solution gave less than log4 n time, even with arbitrarily many processors, and none gave 
a polynomial number of processors with any sub-linear time bound. (This paper deals 
mainly with the relations between tree-size, space, and time on ATMs. Connections 
between ATMs and other parallel models are explained more fully in [26,27].) 

Sections 2 contains several definitions and examples of our models. Section 3 explores 
the relations between tree-size and nondeterministic time. Section 4 gives the relations 
with parallel time, and surveys some related literature, mainly dealing with path systems. 

(Most of these results first appeared in [24].) 

2. DEFINITIONS 

ATMs are a generalization of nondeterministic Turing machines (NTMs), described 
informally as follows. The states are partitioned into “existential” and “universal” 
states. As with an NTM, we can view a computation of an ATM as a tree of configurations. 
A tree is a computation tree of an ATM M on a string w if its nodes are labeled with 
configurations of M on w, such that the descendants of any non-leaf labeled by a universal 
(existential) configuration include all (resp. one) of the successors of that configuration. 
A computation tree is accepting if the root is labeled with the initial configuration, and all 
the leaves are accepting configurations. Note that for ATMs with only existential states, 
acceptance is essentially the same as for NTMs. We assume that ATMs have an end- 
marked, read-only input tape. 

An ATM uses time T(n) ( p s ace S(n)) if for all accepted inputs of length n there is an 
accepting computation tree of height < T(n) (each of whose nodes is labeled by a con- 
figuration using space < s(n)). As usual, we denote the class of languages accepted 
by ATMs within space O(S(n)) by ASPACE(S(n)), and similarly for NSPACE, 
DSPACE, ATIME, NTIME, and DTIME. Likewise, ATISP(T(n), s(n)) denotes 
languages accepted by ATMs running in time 0( T(n)) and space O(S(n)) simultaneously, 
and similarly for NTISP and DTISP. 

More formal definitions of ATMs, configurations, etc. may be found in [7]. Unlike [7], 
we will not consider “negating” states in this paper. 
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DEFINITION. A language L is accepted by an alternating Turing machine M within 
tree-size bound Z(n) if for every string w EL there is at least one accepting computation 
tree for M on w of size (number of nodes) < Z(n), where n is the length of w. (Further, 
for w $L there is no accepting computation tree.) Similarly, L is accepted within simul- 
taneous tree-size and space bounds Z(n) and S(n) if there is an accepting computation 
tree with < Z(n) nodes, each of which is labeled by a configuration using space .< S(n). 

It is important to note that there may be many distinct accepting computation trees 
of varying sizes for a given machine and input. The tree-size bound in a sense reflects the 
nondeterministic selection of one such tree of minimal size. It may be considered to be 
the size of the shortest “proof” that the ATM accepts its input (in the natural proof 
system implicit in the ATM’s definition). The nondeterministic selection means that 
tree-size is not a measure of the “hardware size” or “number of processors” used by a 
parallel machine which simulates the ATM. We will see instead that it is related to the 
time required by such a parallel simulation. 

One motivation for introducing tree-size bounded computations is to provide a restric- 
tion of the alternating Turing machine which is intermediate in power between non- 
deterministic and (full) alternating computations. Consider an NTM and ATM, both 
operating in space S. Each has at most 2 Ofs) distinct configurations, so their computations 
can be described by trees of height 2 Ots). An accepting computation by the NTM may be 
described by a single root-leaf path in the tree, i.e., 20cs) nodes. In contrast, an accepting 
computation by the ATM may involve essentially the entire tree, i.e., 22o’s’ nodes. If we 
consider ATMs using space S and tree-size 2 for 20cs) < 2 < 22o’s’, we get machines 
which are intermediate between NSPACE(S) and ASPACE( We expect that the classes 
of languages accepted by such machines are properly between NSPACE(S) and 
ASPACE( H owever, a proof of this fact is likely to be very difficult, since it implies 
that NSPACE(S) is properly contained in ASPACE (which is known to equal 
DTIME(20tS’)). F or example, for S = log n this would show that NSPACE(log n) is 
properly contained in p, settling a long-standing open problem. Even if these questions 
remain unresolved, a model of intermediate power can prove very useful in classifying 
problems and in sharpening our intuitions about the relationships between various 
complexity classes. 

We will use the following menumonic (if not euphonious) notation for simultaneously 
space- and tree-size bounded ATMs. 

DEFINITION. ASPSZ(S(n), Z(n)) denotes the class of languages recognized by ATMs 
operating simultaneously in space O(S(n)), and tree-size 0(2(n)). 

EXAMPLE 1. For every context-free language L, L E ASPSZ(log n, n”). To see this, 
let G be a Chomsky normal form grammar for L, and w = a, ... a, a string to be recog- 
nized. Then A 9 aif ... aj if and only if 

(a) i + 1 = j and A -+ aj is a production in the grammar or 
(b) i + 1 < j and there is some integer k, i < k < j and a production A --+ BC 

such that B 3 u,+~ .‘. a, and C 5 aK+1 ... ai . 



BOUNDED ALTERNATION 221 

This procedure is easily performed by an ATM. Part (a) can be directly checked; for 
part (b) the machine can guess K and a rule A -+ BC then recursively verify both B 5 

%+1 
* ... a, and C > ak+l ... aj by using a universal state. To test w EL, test S % a, .. a, 

as above. Note that the machine is log n space bounded since it needs to store only i, j, 
K, A, B and C at any one time. Note that k replaces i orj and B or C replaces A before the 
next stage is entered, so no extra storage is needed in subsequent stages. Further, if w EL, 
there is an accepting computation tree which parallels the parse tree for w. For each 
internal node in the parse tree, there will be log n nodes in the computation tree (to guess 
and write the integer k). For each j between 1 and n, the jth leaf of the parse tree will 
correspond to a sequence of j nodes in the computation tree which moves the input head 
to thejth input letter. Since the parse tree is of linear size, the accepting computation 
tree will be of size O(n . log n + n2). Thus L E ASPSZ(log n, n”). I 

We will be using a variant of the ATM introduced in [7] and herein called an indexing 
ATM, which allows sub-linear time bounds. In this model, the ATM does not read the 
input tape directly. Instead it has a special “index tape”; whenever an integer i is written 
on the index tape, the ith letter of the input is immediately visible to the ATM. Thus 
in log n steps, it can read any position of the input. 

EXAMPLE 2. (zuwR j w E (0, l}*} E ATIME(log n). 
An indexing ATM can recognize palindromes in log n time by 

(i) guess n and verify it by checking that the (n + 1)st position is the endmarker, 

(ii) using universal states, choose all i between 1 and n, 

(iii) for each, see that the ith and (n - i + 1)st positions are equal. 1 

We remark that the classes of languages accepted by ordinary and indexing ATMs 
in space S(n) and/or time T(n) are identical for S(n) > log n and T(n) > n. Thus we 
will generally not need to specify which ATM model we are using. However, the tree- 
size required for a problem does appear to be slightly sensitive to the model, varying by 
a factor of at most O(n). For instance, the tree-size required by the CFL recognition 
algorithm in Example 1 drops from n2 to n log n if an indexing ATM is used, since inputs 
can be directly examined at the leaves. 

One technical result about tree-size is worth noting. Like other useful complexity 
measures, log-space reducibilities respect tree-size (to within a polynomial). 

LEMMA 1. 1f L’ <Log L and L E ASPSZ(S(n), Z(n)) for S(n) 3 log n then 
L’ E ASPSZ(S(n), Z’(n)), where Z’(n) = Z(p(n)) . p(n) for some polynomial p(n). 

(Note that, e.g., 2’ is a polynomial if 2 is.) 

Proof. The proof is essentially the same as the analogous proof for &,s and space 
complexity classes [13, 311. W e accept L’ by simulating the acceptor for L, keeping track 
of the position of its input head. Whenever it needs to read another input letter, say the 
ith, we simulate the log-space transducer until it generates the ith output. The polynomial 
p in the lemma is the running time of the transducer. i 
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3. RELATIONS WITH NONDETERMINISTIC TIME 

It is well known that time on a deterministic TM is reflected in the space required by 
an ATM [6, 141. W e will show that time on nondeterministic machines is closely related 
to the tree-size required by ATMs. 

Our first result concerns nondeterministic auxiliary pushdown automata (AuxPDA) 
[5]. Informally, an AuxPDA is a multitape TM having a two-way, end-marked, read-only 
input tape, a pushdown tape, and one or more two-way, read/write work tapes. “Space” 
on an AuxPDA means space on the work tapes only (excluding the pushdown). A more 
formal definition may be found in [5]. We assume without loss of generality that every 
move of the machine either pushes or pops the stack, and that the machine only accepts 
with its stack empty. We let AuxPDA(S(n), T(n)) denote the class of languages accepted 
by nondeterministic AuxPDAs within space 0(5’(n)) and time 0( r(n)). 

Close connections between ATMs and AuxPDAs are suggested by the fact that space S 
ATMs and AuxPDAs accept the same sets, namely, DTIME(2°fS)) [5, 71. Further, 
the proofs of these two results are very similar. We will show that this connection is even 
stronger. Namely, space S and tree-size 2 ATMs are equivalent (to within a polynomial) 
to AuxPDAs using space S and time 2. This result in a sense generalizes the well-known 
equivalence between context-free grammars and pushdown automata. In that case 
having two such disparate characterizations of the same phenomena proved enormously 
useful. We hope our result will be similarly useful. 

THEOREM I. For S(n) = Q(log n), and Z(n) = Q(n) 

ASPSZ(S(n), Z(+“l’) = AuxPDA(S(n), Z(n)“‘l’). 

MorepreciseZy,for any S(n), Z(n), and Y(n) = max(S(n), log n), we have: 
For non-indexing ATMs, 

(1) ASPSZ(S(n), Z(n)) C AuxPDA(S(n), Z(n)), 

(2) AuxPDA(S(n), T(n)) C ASPSZ(S’(n), T(n) (S’(n) + n)), 

For indexing ATMs, 

(1’) ASPSZ(S(n), Z(n)) 2 AuxPDA(S(n), Z(n) . n), 

(2’) AuxPDA(S(n), T(n)) C ASPSZ(S’(n), T(n) . S’(n)). 

Proof. (1) We construct an AuxPDA which simulates an ATM by doing a simple 
“depth first search” of the ATM’s computation tree, using its stack to backtrack through 
the universal nodes. 

The AuxPDA will have the same number of work tapes as the ATM. The AuxPDA 
will directly encode a configiration of the ATM by having the ATM’s work tape contents 
recorded on its own work tapes, with its work tape- and input head positions also the 
same as the ATM. 

The AuxPDA can directly simulate moves of the ATM in unit time. The AuxPDA 
simulates existential moves of the ATM by using its own nondeterminism. It uses its 
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stack to simulate universal moves by backtracking. To do this, for each simulated move 
it pushes onto the stack the information it needs to “undo” the move, i.e., the old state, 
the old contents of the tape cells under the work tape heads, and the direction of each 
head’s motion. For each universal move it also records which alternative is the next to be 
explored. All this information can be pushed onto the stack in unit time. Now whenever 
the simulation reaches an accepting leaf of the ATM’s computation tree, the AuxPDA 
“backtracks” by popping its stack to the last universal move for which there is an unex- 
plored alternative. While it is popping it “undoes” the corresponding moves, using the 
information popped from the stack (which takes unit time per pop). Thus when the last 
universal move with an unexplored alternative is reached, the configuration of the 
AuxPDA’s work- and input tapes has been restored to what it was when the ATM was 
about to execute the universal move. The AuxPDA now continues the simulation, 
following the next alternative for the universal move. If there are no universal moves 
with unexplored alternatives, i.e., the stack is emptied while backtracking, the AuxPDA 
halts and accepts. 

It is easy to see that the AuxPDA accepts if and only if the ATM with the given input 
has an accepting computation tree. Further, the AuxPDA “traverses” each edge in an 
accepting computation tree exactly twice (once to simulate that move and once to undo it), 
and each traversal takes unit time. Thus the AuxPDA’s running time is the same as the 
size of the smallest accepting computation tree for the ATM, i.e., Z(n). 

(1’) If we are simulating an indexing ATM, there is an extra cost of O(n) per step to 
update the input head position. Otherwise the argument is the same. 

(2) The ATM simulation of an AuxPDA is by a generalization of the DTM simulation 
of AuxPDAs given by Cook [5], w IC h’ h in turn generalizes the classic proof that PDAs 
accept only context-free languages [3,29]. 

We begin by summarizing some relevant concepts from Cook’s proof. Full details 
may be found in [5]. Th e simulation deals with “surface configurations” of the AuxPDA. 
A surface configuration specifies the state, the contents and head positions of the work 
tapes, the head position (but not the contents) of the input tape, and the topmost symbol 
(but no other) of the stack. Note that space S(n) is sufficient to encode a surface configura- 
tion. With a given input w, a pair (P, Q) f o surface configurations is called realizable 
if the AuxPDA can move from P to Q ending with its stack at the same height as in P, 
and without popping its stack below its level in P at any point in this computation. It’s 
easy to see that the AuxPDA accepts w if and only if there is an accepting pair: a realizable 
pair (PO, Q,), where P,, is the initial configuration, and Qa contains a final state.Thus, 
the heart of the simulation is finding an accepting pair, which in turn hinges on the 
following simple characterization of the set of realizable pairs. See Fig. 1. A pair (P, Q) 
is realizable iff (a) P = Q, or (b) there are realizable pairs (P, U) and (I’, IV) with a move 
from U to V pushing some symbol and a move from W to Q popping the same symbol. 
(This is actually a slightly simplified version of Cook’s characterization which is possible 
since we assumed that every move of the AuxPDA either pushes or pops the stack.) 

We now have the necessary machinery to complete our proof. We will give an ATM 
which verifies the existence of an accepting pair within the required space and tree-size 
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FIG. I. Characterizing “realizable pairs.” 

bounds. Not surprisingly, the procedure is similar to the context free recognition proce- 
dure given in Example 1 above. 

wk construct a subroutine which given a pair of surface configurations (P, Q) accepts 
if and only if (a) P = Q or (b) th ere exist surface configurations U, V, W with a move 
from U to I/ pushing some symbol, a move from W to Q popping the same symbol, and 
(P, U) and (V, W) are both realizable pairs. The later facts are verified recursively in 
parallel (i.e., splitting at a universal state); the other facts are easily verified directly. 
Finally, to test whether the input is accepted, the ATM guesses an accepting pair (P,, , QJ, 
then verifies its guess using the routine above. 

Correctness of the simulation is immediate from Cook’s characterization and a simple 
induction. The space bound of S’(n) is also immediate since the routine never keeps more 
than five surface configurations at a time (P, Q, U, V, IV). The tree-size bound is 
derived from the AuxPDA’s running time as follows. Let R(t) be the number of recursive 
calls generated while verifying a realizable pair (P, Q) representing a t-step computation 
of the AuxPDA. Then 

R(t) = 0, ift =O 

= 2 -+ qt,) + W,), otherwise, 

where t, and t, are the running times of the subcomputations (P, U) and (V, W) resp. 
Note that t = 2 + t, + t, , hence the recurrence has the solution R(t) = t. The number 
of nodes generated by each call exclusive of recursive calls is O(S’(n)) (to compare P to Q 
or to guess U, V, W, etc.) plus O(n) (to read the two necessary input letters when verifying 
that U can move to V and W to Q). The total tree-size is thus 0(2’(n) . (S’(n) + n)) as 
claimed. 

(2’) For indexing ATMs, the O(n) cost for reading inputs is eliminated, giving 
tree-size T(n) . S(n). [ 
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Two slight improvements on the theorem are possible. First, note that the factor of n 
in the upper bound of (1’) could be eliminated if we define “indexing” AuxPDAs, 
analogous to indexing ATMs. Second, we observe that the tree-size upper bounds in 
both (2) and (2’) can be improved by a factor of s(n) as follows. The AuxPDA can be 
altered so that it pushes and pops blocks of exactly p(n) characters, with at least ,S’(n) 
non-stack moves between these bursts of pushes or pops. This is done by keeping the 
top 1 to 2 . s’(n) - 1 characters of the simulated stack on a work tape, and popping or 
pushing a block of 1 . S(n) characters from/to the real stack only when the worktape 
contains 0 or 2 . s’(n) characters, resp. The ATM simulation of the modified AuxPDA 
is similar to that given in the proof above, except that each of the T(n)/S’(n) blocks of 
S’(n) stack moves is simulated as a unit using time and tree-size s(n), and each of the 
T(n)/S’(n) blocks of s’(n) non-stack moves is simulated in unit time per move, plus n per 
block for the non-indexing case. The details are left to the reader. Note that these 
observations give tree-size and AuxPDA time equal within a constant factor for indexing 
machines, or for non-indexing machines with s(n) = Q(n). 

One easy corollary of Theorem 1 is the previously cited result that without a concurrent 
tree-size limit, ATM space is equivalent of AuxPDA space. More interestingly, without 
a concurrent space limit, tree-size is equivalent to nondeterministic TM time. 

COROLLARY 1. 

NTIME( T(n)) = ASPSZ( T(n), T(n)) (for non-indexing ATMs). 

Proof. 

NTIME(T) C ASPSZ(T, T) C AuxPDA(T, 7’) C NTIME(T). 1 

It is interesting to note that DTIME(T(n)) = ASPSZ(log T(n), 20(T(12))), thus giving 
a space/tree-size trade-off view of the PUS NP question. 

Another interesting corollary of theorem 1 provides a new characterization of LOGCFL, 
the class of languages log-space reducible to context-free languages. Sudborough has 
shown LOGCFL = AuxPDA(log n, woo)) [35]. Thus by Theorem 1: 

COROLLARY 2. 

LOGCFL = ASPSZ(log 11, no(i)). 

That NSPACE(log n) C LOGCFL follows from [32]; the characterization in [35] 
suggests that the containment is proper, which would imply that CFL g NSPACE(log n). 
Our Corollary 2 provides further intuitive support for this conjecture. In view of Corollary 
2 (or [351) CFL C NSPACE(log n) only if no power is gained by extending nondeter- 
ministic log-space bounded TMs by adding alternation (or a pushdown), but retaining 
the polynomial tree-size (or time) bound inherent in log-space NTMs. 

One reason for interest in LOGCFL is that we have fairly efficient recognition algorithms 
for the class, e.g., polynomial time, deterministic space log2 n [18], and log2 n parallel 
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time (cf. Section 4). Corollary 2 also gives a new tool for showing membership and 
completeness in LOGCFL. Several non-context-free languages are known to be in the 
class [8, 33, 341. Use of log-space-and-polynomial tree-size ATMs seems to simplify 
some of these constructions, and will probably facilitate future ones also. 

4. RELATIONS WITH PARALLEL TIME 

Our next result relates space-and-tree-size bounds to parallel space-and-time bounds. 
It seems to be at least as general as, and more efficient than similar previously known 
simulations. The proof of the theorem provides a uniform translation of tree-size bounded 
ATMs into time bounded ATMs, which can give a nearly exponential reduction in the 
time used in the computation. Surprisingly, this dramatic speedup costs very little in 
other resources. The space required is increased by only a constant factor, and the tree- 
size by only a polynomial. 

ATMs may seem to be an unreasonably abstract model to have much relevance to 
parallel complexity in practice. However, recent results [26, 271 have demonstrated close 
connections between ATM complexity and complexity on two more concrete parallel 
models, namely, vector machines [22,23] and combinational circuits [23. In particular, 
we have shown that ATM time T is contained in vector machine time T. For circuits, 
the result is even sharper-simultaneous ATM time T and space S is equal to uniform 
circuit depth T and size 2*(S) (cf. [26] for definitions). In view of the very fundamental 
nature of the combinational circuit model with respect to all computational devices, we 
expect similar results will apply to any reasonable model of parallel computer. Our result 
below gives, e.g., CFL recognition in time (depth) loga tl on these models, versus log4 n 
in [22, 23,2]. viewed another way, this extends the class of languages known to be recog- 
nizable in time (depth) log2 n on these models from NSPACE(log n) to ASPSZ(log n, 
n*(r)). Surprisingly, this extension is not at the expense of increasing the “number of 
processors” (i.e., the vector length or circuit size) from a polvnomial, as in the earlier 
simulations of NSPACE(log n), to a superpolynomial, as in [22,23,2]. This follows from 
the correspondence between circuit size and ATM space [26], and the fact that the simula- 
tion below does not increase space by more than a constant factor. We know of no other 
CFL recognition algorithm which achieves sub-linear time without also using a super- 
polynomial number of processors. More generally, Theorem 2 below and [26] give a 
characterization of NC, the class of problems solvable in parallel using a polynomial 
number of processors in time log*(l) n. Namely, NC is equal to ASPSZ(log n, 210s0’1’n). 
This class is of significant practical interest since it probably encompasses all those 
problems for which dramatic speedups are possible on feasible parallel computers. 

One other aspect of our theorem is noteworthy. When combined with Theorem 1, 
it connects a purely sequential time complexity measure (AuxPDA time) and a parallel 
time complexity measure (ATM time) with an exponential speedup in the parallel case. 
Several results translating sequential space to parallel time are known (see e.g., Corollary 3a 
below or [12]). We know of only a few similar sequential time to parallel time translations, 
e.g., Corollary 3b below, Pippenger’s interesting work on reversal bounded DTMs [21], 
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and its precursors on finite automata [20, 91. There is some hope that results of this kind 
may be of significant practical utility in simplifying the process of discovering and 
implementing efficient parallel algorithms. 

THEOREM 2. Fot S(n) > log n, 

ASPSZ(S(n), Z(n)) C ATISP(S(n) . log Z(n), S(n)) 

Further, the tree-size required by the simulation is 

WI4 . W) for indexing ATMs, or 

0(2(n) * (S(n) + n)) for non-indexing ATMs. 

Before giving the proof, we will examine a few of its consequences, some of which are 
quite unexpected. These results should serve to highlight the strength of the theorem and 
put it in perspective with related results in the literature. 

Intuitively, the theorem says that tall but sparse computation trees may be transformed 
into short, bushy ones. For example, for S(n) = log n a tree of polynomial height and 
polynomial size (verses a potential size of 2no’11) can be transformed to one with height 
log2 n (and still of polynomial size and log space). Thus, contrary to the usual situation 
where more time gives more power, within the class ASPSZ(log n, no(l)) any increase 
in time beyond log2 n is useless. Similarly, (alternating) time o(n) suffices for computations 
using S(n) = log n and Z(n) = 2°(n110sn). 

Theorem 2 immediately gives alternating time upper bounds on several well-known 
problems. 

COROLLARY 3. 

(a) NSPACE( S(n)) C ATIME(S2(n)), Fi 141, 
(b) NTISP(T(n), S(n)) C ATIME(S(n) . log T(n)), [6, 141, 
(c) LOGCFL C ATIME(log2 n), 

(d) AuxPDA(S(n), T(n)) C ATIME(S(n) . log T(n)). 

Further, since ATIME(T(n)) is contained in DSPACE(T(n)), this also gives deter- 
ministic space upper bounds. The following well-known simulations can be obtained 
as corollaries in this way. 

COROLLARY 4. 

(a) NSPACE(S(n)) C DSPACE( S(n)2), P81, 
(b) NTISP(T(n), S(n)) C DSPACE(S(n) . log T(n)), [28], 
(c) LOGCFL C DSPACE(log2 n), El819 
(d) AuxPDA(log n, no(l)) C DSPACE(log2 n), [41* 
(e) AuxPDA(S(n), T(n)) C DSPACE(S(n) . log T(n)), [19]. 
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Although we cannot prove smaller deterministic space upper bounds for these problems, 
our theorem does provide easy proofs of some interesting results which refine (in a 
technical sense) these bounds. We believe these results, coupled with those mentioned 
following Corollary 2, give strong evidence that, e.g., LOGCFL is properly between 
NSPACE(log n) and DSPACE(log2 n). For simplicity we will confine our discussion to 
LOGCFL, although similar remarks also apply to the other problems above, Figure 2 
summarizes the relationships discussed below. 

Gurari and Ibarra [ 1 l] have observed that the simulation of [ 181 makes only a restricted 
use of the space available to it. Specifically it can be implemented on a log n space deter- 
ministic auxiliary stack automaton whose stack height is bounded by O(log2 n). This 
result also follows easily from our Corollary 3 and the observation that the deterministic 
space simulation of a time-bounded ATM given in [7] can also be done on a stack auto- 
maton. Harju [37] has recently shown that languages in LOGCFL admit an even more 
restricted use of space. Namely, it suffices to use a log2 height pushdown, rather than a 

P - AuxPDA(-, 2" 
O(l) 

) 

O(l) 
= ASPSZ(-, 2" ) 

NC = ATISP(log O(l)", -) 

= AuxPUA(-, ZIOg 
O(1) 

") 

1% 
O(1) 

= ASPSZ(-, 2 ") 

DSPACE(log*n) vector 
Machine 

I time lL$" 

D.Aux.Stack Aut. 

height log*n 

/ 
/ 

NCc3) = ATISP(log3n, -) 

I 
DAuxPDA height log*" 

I Nd2) = ATISP(log'", -) 

I 
LOGCFL = AuxPDA(-, n'(l)) 

= ASPSZ(-, n'(l)) 

N&ACE(-) 

I 
DSPACE(-) 

FIG. 2. Some complexity relationships pertinent to CFL recognition. (‘I-” means log n space.) 
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stack. Harju’s proof is a rather complicated direct construction, but the result follows 
easily from Theorem 2: 

COROLLARY 5. LOGCFL C deterministic AuxPDA space log n and pushdown he@ht 
log2 72 [37]. 

Proof. We simply observe that the simulation of an ATM by an AuxPDA given in 
the proof of Theorem 1 part (1) uses pushdown height equal to the running time of the 
ATM. Further, the AuxPDA can be made deterministic at the cost of increasing its 
running time (to explore both subtrees of existential as well as universal nodes). The result 
follows since Theorems 1 and 2 imply Corollary 6 below. 1 

COROLLARY 6. LOGCFL C ATISP(log2 n, log n). 

We remark that Corollary 5 is apparently not as strong as Corollary 6, since the best 
ATM time and space upper bound we can give for such deterministic AuxPDAs is 
ATISP(log3n, log n)-a result which itself depends on Theorems 1 and 2. 

The proof of C orollary 5 leads us to one final observation about AuxPDAs, which 
we believe has not appeared in the literature. 

COROLLARY 7. L is accepted by a nondeterministic AuxPDA in log n space and poly- 
nomial time, if and only L is accepted by such a machine which, furthermore, uses at most 
log2 n pushdown height. 

In view of Corollary 5, such machines may be made deterministic without loss of 
space or pushdown height, but at the cost of increasing their running time to a super- 
polynomial (2°(10s2n)). 

Finally we will give the proof of Theorem 2. It generalizes constructions in [l&4, 191 
(cf. Corollary 4c, d, e above). Careful application of those techniques is sufficient to 
establish Corollary 3 above [24,25], but not sufficient to establish the theorem, since the 
resultant ATM uses as much space as time. Thus the principal novelty in the proof below 
is in reducing the space required. Harju [37] seems to have overcome a similar barrier 
in the construction of [18], although as noted above his result is not as strong as ours. 

Proof of Theorem 2. The proof is similar in outline to the proof of Theorem 1, part 2. 
We will define a set of “fragments” which may be part of the simulated ATM’s computa- 
tion; those fragments which are part of that computation are called “realizable”; we 
characterize the realizable fragments in a way which allows an efficient recognition 
procedure. 

Let M be an S(n)-space- and Z(n)-tree-size bounded ATM, and let w be an input to M 
of length n. WLOG assume each of M’s configurations has at most two successors. A 
computation fragment of M on w is an ordered pair (r, L), where r is a configuration of M 
using space < s(n), and L is a set of such configurations. A fragment is reaZizabZe if there 
is a computation tree of M with root r whose leaves are either accepting or in L. The size 
of a realizable fragment is the size of the smallest associated tree. Note that the fragment 
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(Y,, , a), where Y,, is the initial configuration of M on w is realizable (and of size Z(n)) 
if and only if A4 accepts w (within tree-size Z(n)). 

LEMMA 2. (I, L) is realizable zf and only if either: 

(a) there is a computation tree of size < 3 which demonstrates that (I, L) is realizable, OY 

(b) there are realizable fragments (Y, L’ u {s}) and (s, L”) of strictly smaller size than 
(Y, L) with L = L’ u L”. (See Fig. 3.) 

Proof. “if”: computation trees demonstrating the realizability of (Y, L’ u (s}) and 
(s, L”) can be grafted together to get a tree for (Y, L) by replacing all “s” leaves in the tree 
for (I, L’ u {s]) by the tree for (s, L”). 

“only if”: Pick a computation tree demonstrating the realizability of (Y, L). If it has < 3 
nodes, we are done by case (a). Otherwise it must have some node s which is neither 
the root nor a leaf. Split the tree at s. Let L’ be the subset of L which labels leaves not 

(r,L) , L = f a. b, c. d 1 

(r,L’ubl) , L’ * f a, d) (s L-1 L” - ( B b c I * , , I 

FIG. 3. Characterizing “realizable fragments.” 
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having that node s as an ancestor, and L” the subset of L having s as an ancestor. Then 
(T, L’ u (s}) and (s, L”) are realizable, and smaller than (I, L). 1 

Lemma 2 immediately gives a correct ATM algorithm for simulating M. The major 
component is a procedure for verifying that a given fragment (T, L) is realizable. This is 
done by guessing if the size of (Y, L) is < 3. If so, the desired computation tree is con- 
structed by directly simulating M starting in configuration Y. If the size is > 3, we guess 
s, L’, L” with L = L’ u L”, then recursively verify both (Y, L’ u {s}) and (s, L”) in parallel 
(splitting at a universal state). We decide whether M accepts w by testing whether 
(Y,, , ia) is realizable, where r. is the initial configuration. 

All that remains is to analyze the time and space requirements of this algorithm. First 
we claim that the number of levels of recursion needs to be no more than O(log Z(n)). 
This follows from the simple lemma below which shows that “s” in case (b) of Lemma 
2 can be chosen so that both subproblems (r, L’ u (s}) and (s, L”) have size bounded by 
a fixed fraction of the size of (r, L). Since the two subproblems formed by splitting are of 
roughly equal size, after about log Z splits the subproblems will all be of size < 3 which 
can be directly checked (case (a)). 

LEMMA 3. Let T be a tree having z > 3 nodes, with each node having at most two 
descendants. Then there is a node s in T such that z/12 < a1 , za < lls/12, where z, is the 
number of descendants of s (including s), and z2 is the number of nodes which are not proper 
descendants of s (again including s, so z, + z2 = z + 1). 

Proof sketch. Consider a path from the root of T which follows the edge into the 
larger subtree at each step. The number of descendants of a node on this path differs from 
the number for the next node on the path by at most a factor of two. Thus the z, , za 
values cannot jump over the l/12-11/12 interval. In particular, it suffices to chose s to be 
the first node on the path with no more than 1 lx/12 descendants. The algebraic details 
are left to the reader. 1 

Next we claim our procedure need never deal with fragments (Y, L) whose corresponding 
computation trees have more than three non-accepting leaves. (In particular 1 L / < 3.) 
In any tree with three non-accepting leaves, there is a node s which is an ancestor of 
exactly two of them. If our procedure splits at this node s, then both subproblems will 
have exactly two non-accepting leaves. This node s may not give a l/12-11/12 split as 
discussed above, but since neither subproblem has three non-accepting leaves, we are 
free to chose such a split in the next level of the recursion. Thus we get a balanced split 
at least every other time, so the maximum depth of recursion is still O(log Z(n)). 

Total space required is 0(8(n)) to hold r, s, L, L’, L”. Total time is O(S(n) * log Z(n)): 
log Z levels of recursion, each of which takes time 5’ to manipulate r, s, L, L’, L”, etc. 

We omit the proof that the simulation above uses tree-size < S(n) . Z(n). The analysis 
is very similar to that for Theorem 1, part 2. 

This completes the proof of Theorem 2. 1 

Results similar to our Theorem 1 and its proof have been independently discovered by 
researchers investigating path systems, introduced by Cook in [4]. We will close with a 
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brief survey of these related results. (Some familiarity with path systems is assumed.) 
Path systems and ATMs are closely related. One can easily “solve” path systems with 

an ATM, or conversely map an ATM and its input into a path system which is “solvable” 
iff the ATM accepts its input. Furthermore, these constructions preserve space, time, 
tree-size, and other parameters in a straightforward way. The main difference between 
the models is that path systems are not uniform. That is, to “solve” a problem with an 
ATM, we give O~XZ ATM which works for all problem instances, whereas to “solve” it via 
path systems we give a difjreerent path system for each problem instance. For applications 
of path systems to computational complexity, uniformity is usually introduced by giving 
an easy-to-compute transformation from problem instances to path systems, e.g., a 
log-space reduction. With ATMs, of course, the uniformity is built in. 

Path system work related to tree-size stems from Cook’s original paper on the subject [4] 
which introduced the notion of a tree-like path system, and showed that CFLs and 
AuxPDA(log n, no(l)) were reducible to solution of tree-like path systems. A path system 
is tree-like if each node in some solution tree is distinctly labeled. It is “easy” to solve 
such systems, but seemingly much harder to decide whether a system is tree-like. Sud- 
borough [33] alleviated this problem by dropping the distinctness requirement from 
Cook’s definition, introducing “Z(n)-tree-solvable” path systems. Z(n) is a bound on the 
size of the solution trees, closely analogous to the notion of tree-size presented in this 
paper. Tree-like systems are a subset of the n-tree-solvable systems. Sudborough [33] 
sharpened Cook’s result, showing the set of encodings of n O(l)-tree-solvable systems is a 
&,,z-complete language in LOGCFL or, equivalently in AuxPDA(log n, no(l)). This is 
the analog of our Corollary 2. Sudborough [36] and Gurari and Ibarra [I l] extended this 
result to show Z(n)-tree-solvable systems are &s-hard (but not -complete) for 
AuxPDA(log n, Z(n)), which corresponds to our Theorem 1, part (2). (The results in [ 1 l] 
are derived for “parameterized” path systems, a generalization which adds a measure 
of uniformity to path systems, giving a computational model somewhat more general 
(and somewhat more complex) than an alternating Turing machine.) Sudborough [36] 
also gives a simulation of path systems by AuxPDAs which corresponds to our Theorem 1, 
part (1). (For technical reasons related to the non-uniformity of path systems this gives 
&,a-completeness only for Z(n) = .O(l); cf. [36].) 

Cook’s original paper and much of the subsequent work cited above seems to have 
been motivated by the clever DSPACE(log2 n) CFL recognition algorithm of [18]. 
Most of these papers also give analogous DSPACE upper bounds as in our Corollary 4; 
[I l] also gives the stack automaton bound discussed earlier. 

While this work is technically very similar to ours, we believe the use of the ATM, 
a natural, uniform computational model, has provided us with a much more intuitively 
appealing formulation of the concepts, techniques, and results. As one small example, 
our Theorem 1 states the equivalence of two classes of machines, where the path system 
results only give a (superficially) weaker &,,s- hardness (not even -completeness) result. 
In fact, the path system result is technically as strong as ours, but difficulties arising 
from the non-uniformity of path systems have obscured this clean correspondence. Our 
Theorem 2 is perhaps a more significant although more subjective example of the 
advantages we perceive for our approach. So far as we know, this theorem is not implied 
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by any other in the literature, nor is it easily provable using techniques given elsewhere. 
Further, the theorem and some of its consequences were quite unexpacted. In spite of 
this, we feel its proof is simpler than that of [18] or any of its other ancestors. We believe 
the simplicity of our model contributed directly to the simplicity of the proof, and even 
more importantly, to its discovery. We hope others will find this model equally useful, 
but we have no doubt that the continued study of path systems, AuxPDAs, and other 
models will also yield useful insights. 

5. CONCLUSION 

In summary, we feel that tree-size-bounded alternating Turing machines have proven 
to be a useful new tool in the study of computational complexity. They have helped 
clarify the relationships between different automata classes (ATMs and AuxPDAs), given 
a new characterization of an important class of languages (LOGCFL), and facilitated 
proofs of membership in that class. A result which seems to be of even more general 
interest was a powerful new simulation theorem which unified and improved several 
well-known simulation results, and gave improved upper bounds on the parallel-time 
required for several classes of problems, while simultaneously reducing the number of 
processors required. We hope that this new tool will be equally useful in the future. 
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