552 research outputs found

    Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Get PDF
    The MANTRA (Middle Atmosphere Nitrogen TRend Assessment) 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W) from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs) that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change) standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%). NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%)

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability

    Validation of ACE and OSIRIS Ozone and NO2 Measurements Using Ground Based Instruments at 80° N

    Get PDF
    The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80◦ N, 86◦ W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2 %. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5 %. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80◦ N. Satellite 14–52km ozone and 17–40km NO2 partial columns within 500km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0±0.2% and −0.2±0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52km satellite and 0–14km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1–7.3 %. For NO2, partial columns from 17km upward were scaled to noon using a photo-chemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20 %. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25–52 %. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007–2009 spring-time mean relative difference improved from−5.0±0.4%to−3.1±0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a±1◦ latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well

    Depletion of Ozone and Reservoir Species of Chlorine and Nitrogen Oxide in the Lower Antarctic Polar Vortex Measured from Aircraft

    Get PDF
    Novel airborne in situ measurements of inorganic chlorine, nitrogen oxide species, and ozone were performed inside the lower Antarctic polar vortex and at its edge in September 2012. We focus on one flight during the Transport and Composition of the LMS/Earth System Model Validation (TACTS/ESMVal) campaign with the German research aircraft HALO (High-Altitude LOng range research aircraft), reaching latitudes of 65°S and potential temperatures up to 405 K. Using the early winter correlations of reactive trace gases with N2O from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), we find high depletion of chlorine reservoir gases up to ∼40% (0.8 ppbv) at 12 km to 14 km altitude in the vortex and 0.4 ppbv at the edge in subsided stratospheric air with mean ages up to 4.5 years. We observe denitrification of up to 4 ppbv, while ozone was depleted by 1.2 ppmv at potential temperatures as low as 380 K. The advanced instrumentation aboard HALO enables high-resolution measurements with implications for the oxidation capacity of the lowermost stratosphere. ©2017. American Geophysical Union

    Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80 degrees N

    Get PDF
    The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80A degrees N, 86A degrees W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80A degrees N. Satellite 14-52 km ozone and 17-40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 +/- 0.2% and -0.2 +/- 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14-52 km satellite and 0-14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1-7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25-52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007-2009 spring-time mean relative difference improved from -5.0 +/- 0.4% to -3.1 +/- 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a +/- 1A degrees latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well

    Improving Ozone Measurements from Ground and Space-Based Instruments

    Get PDF
    Three topics that are outstanding issues in ozone research were discussed in this study. First, physical models of two primary standard instruments for total ozone measurements (the Dobson and Brewer ozone spectrophotometers) were developed to help better understand the effect of stray light on ozone measurements. The models showed that the error caused by stray light for a typical single Brewer at large ozone slant paths can be up to 5%, and up to 25% for a typical Dobson instrument. For the first time, new ozone absorption coefficients were calculated for the Brewer and Dobson instruments taking into account the effect of stray light. MAESTRO is a moderate-resolution spectrometer onboard SCISAT satellite since 2003. The O2 absorption bands are used by the MAESTRO retrieval to retrieve pressure and temperature profiles. In this study the MAESTRO p-T retrieval software was updated using the improved O2 spectroscopic parameters from HITRAN (high-resolution transmission molecular absorption database) 2012 database. The MAESTRO preliminary p-T retrievals were reprocessed using the updated software and compared with the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) profiles and the processed results with HITRAN 2004. The analyses showed promising improvements to the p-T profiles below 50 km from the use of HITRAN 2012 parameters. New p-T profiles are capable to be used for the MAESTRO tangent height determination which makes the MAESTRO products independent from ACE-FTS pointing information and also leads to an improvement of the retrievals of other atmospheric constituents from the MAESTRO instrument. Finally, a unique objective method (The Differential Back Trajectory (DBT) method) was developed using the data collected at a network of ozonesonde sites to evaluate the contribution of fire ozone to the tropospheric ozone budget. Fire ozone accounted over 18 sites, located across Canada and the U.S, using the DBT method and more than 1000 ozonesonde profiles collected during summer time of 2006, 2008, 2010 and 2011. The analysis showed that ozone amounts at sites nearer to the large fires were less influenced by the fires

    Simultaneous atmospheric measurements using two Fourier transform infrared spectrometers at the Polar Environment Atmospheric Research Laboratory during spring 2006, and comparisons with the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer

    No full text
    International audienceThe 2006 Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign collected measurements at the Polar Environment Atmospheric Research Laboratory (PEARL, 80.05° N, 86.42° W, 610 m above sea level) at Eureka, Canada from 17 February to 31 March 2006. Two of the ten instruments involved in the campaign, both Fourier transform spectrometers (FTSs), were operated simultaneously, recording atmospheric solar absorption spectra. The first instrument was an ABB Bomem DA8 high-resolution infrared FTS. The second instrument was the Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the ground-based version of the satellite-borne FTS on the ACE satellite (ACE-FTS). From the measurements collected by these two ground-based instruments, total column densities of seven stratospheric trace gases (O3, HNO3, NO2, HCl, HF, NO, and ClONO2 were retrieved using the optimal estimation method and these results were compared. Since the two instruments sampled the same portions of atmosphere by synchronizing observations during the campaign, the biases in retrieved columns from the two spectrometers represent the instrumental differences. These differences were consistent with those seen in previous FTS intercomparison studies. Partial column results from the ground-based spectrometers were also compared with partial columns derived from ACE-FTS version 2.2 (including updates for O3, HDO and N2O5 profiles and the differences found were consistent with the other validation comparison studies for the ACE-FTS version 2.2 data products. Column densities of O3, HCl, ClONO2, and HNO3 from the three FTSs were normalized with respect to HF and used to probe the time evolution of the chemical constituents in the atmosphere over Eureka during spring 2006

    A case study of a transported bromine explosion event in the Canadian high arctic

    Get PDF
    Ozone depletion events in the polar troposphere have been linked to extremely high concentrations of bromine, known as bromine explosion events (BEE). However, the optimum meteorological conditions for the occurrence of these events remain uncertain. On 4–5 April 2011, a combination of both blowing snow and a stable shallow boundary layer was observed during a BEE at Eureka, Canada (86.4°W, 80.1°N). Measurements made by a Multi-Axis Differential Optical Absorption Spectroscopy spectrometer were used to retrieve BrO profiles and partial columns. During this event, the near-surface BrO volume mixing ratio increased to ~20 parts per trillion by volume, while ozone was depleted to ~1 ppbv from the surface to 700 m. Back trajectories and Global Ozone Monitoring Experiment-2 satellite tropospheric BrO columns confirmed that this event originated from a bromine explosion over the Beaufort Sea. From 30 to 31 March, meteorological data showed high wind speeds (24 m/s) and elevated boundary layer heights (~800 m) over the Beaufort Sea. Long-distance transportation (~1800 km over 5 days) to Eureka indicated strong recycling of BrO within the bromine plume. This event was generally captured by a global chemistry-climate model when a sea-salt bromine source from blowing snow was included. A model sensitivity study indicated that the surface BrO at Eureka was controlled by both local photochemistry and boundary layer dynamics. Comparison of the model results with both ground-based and satellite measurements confirmed that the BEE observed at Eureka was triggered by transport of enhanced BrO from the Beaufort Sea followed by local production/recycling under stable atmospheric shallow boundary layer conditions
    corecore