181 research outputs found

    Experimental evaluation of flexible duplexing in multi-tier MIMO networks

    Get PDF
    In this paper, we present an experimental evaluation of the performance benefits provided by flexible duplexing, an access technique that allows uplink and downlink cells to coexist within the same time-frequency resource blocks. In order to replicate a wireless multi-tier network composed of 1 macro-cell and 2 small cells, a measurement campaign has been conducted using an indoor wireless testbed comprised of a total of 6 multiple-input multiple-output (MIMO) software-defined radio (SDR) devices. Since each cell has a single active user, each uplink/downlink configuration can be identified with a different interference channel, over which interference alignment (IA) is used as an inter-cell interference management technique and compared to other existing methods. The obtained results show that flexible duplexing clearly outperforms the conventional time-division duplex (TDD) access approach, where all cells operate synchronized either in uplink or dowlink mode. Additionally, interference alignment consistently provides better results in most of the interference regimes when compared to minimum means quare error (MMSE)-based schemes. The impact of channel estimate quality on the different communication strategies is also studied. It is worth highlighting that the presented over-the-air (OTA) experiments represent the first implementation of IA with real-time precoding and decoding.The work of Jacobo Fanjul, Jesús Ibáñez and Ignacio Santamaria has been supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, and AEI/FEDER funds of the E.U., under grant TEC2016-75067-C4-4-R (CARMEN), grant PID2019-104958RB-C43 (ADELE), and FPI grant BES-2014-069786. The work of José A. García-Naya has been funded by the Xunta de Galicia (ED431G2019/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R, RED2018-102668-T), and ERDF funds of the E.U. (AEI/FEDER, UE)

    Joint Beamforming Optimization and Power Control for Full-Duplex MIMO Two-Way Relay Channel

    Get PDF
    In this paper, we explore the use of full-duplex radio to improve the spectrum efficiency in a two-way relay channel where two sources exchange information through an multi-antenna relay, and all nodes work in the full-duplex mode. The full-duplex operation can reduce the overall communication to only one phase but suffers from the self-interference. Instead of purely suppressing the self-interference, we aim to maximize the end-to-end performance by jointly optimizing the beamforming matrix at the relay which uses the amplify-and-forward protocol as well as the power control at the sources. To be specific, we propose iterative algorithms and 1-D search to solve two problems: finding the achievable rate region and maximizing the sum rate. At each iteration, either the analytical solution or convex formulation is obtained. We compare the proposed full-duplex two-way relaying with the conventional half-duplex two-way relaying, a full-duplex one-way relaying and a performance upper bound. Numerical results show that the proposed full-duplex scheme significantly improves the achievable data rates over the conventional scheme

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    • …
    corecore