50 research outputs found

    Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis

    Get PDF
    This study describes a new method for analyzing microcirculatory videos. It introduces algorithms for quantitative assessment of vessel length, diameter, the functional microcirculatory density distribution and red blood-cell (RBC) velocity in individual vessels as well as its distribution. The technique was validated and compared to commercial software. The method was applied to the sublingual microcirculation in a healthy volunteer and in a patient during cardiac surgery. Analysis time was reduced from hours to minutes compared to previous methods requiring manual vessel identification. Vessel diameter was detected with high accuracy (>80%, d > 3 pixels). Capillary length was estimated within 5 pixels accuracy. Velocity estimation was very accurate (>95%) in the range [2.5, 1,000] pixels/s. RBC velocity was reduced by 70% during the first 10 s of cardiac luxation. The present method has been shown to be fast and accurate and provides increased insight into the functional properties of the microcirculation

    A comparison of the quality of image acquisition between the incident dark field and sidestream dark field video-microscopes

    Get PDF
    BACKGROUND: The 'Cytocam' is a third generation video-microscope, which enables real time visualisation of the in vivo microcirculation. Based upon the principle of incident dark field (IDF) illumination, this hand held computer-controlled device was designed to address the technical limitations of its predecessors, orthogonal polarization spectroscopy and sidestream dark field (SDF) imaging. In this manuscript, we aimed to compare the quality of sublingual microcirculatory image acquisition between the IDF and SDF devices. METHODS: Using the microcirculatory image quality scoring (MIQS) system, (six categories scored as either 0 = optimal, 1 = acceptable, or 10 = unacceptable), two independent raters compared 30 films acquired using the Cytocam IDF video-microscope, to an equal number obtained with an SDF device. Blinded to the origin of the films, the raters were therefore able to score between 0 and 60 for each film analysed. The scores' distributions between the two techniques were compared. RESULTS: The median MIQS (95 % CI) given to the SDF camera was 7 (1.5-12), as compared to 1 (0.5-1.0) for the IDF device (p < 0.0001). Of the six categories assessed by the MIQS, nearly one fifth of the SDF videos were scored as unacceptable for pressure (20 %), content (20 %), and stability (17 %), with focus scoring deficiently 13 % of the time. High agreement between the two raters scoring values was evident, with an intra-class correlation coefficient (ICC) of 0.96 (95 % CI: 0.94, 0.98). CONCLUSIONS: These results demonstrate that the quality of sublingual microcirculatory image acquisition is superior in the Cytocam IDF video-microscope, as compared to the SDF video-microscope

    Why Rudolph's nose is red: Observational study

    Get PDF
    Objective: To characterise the functional morphology of the nasal microcirculation in humans in comparison with reindeer as a means of testing the hypothesis that the luminous red nose of Rudolph, one of the most well known reindeer pulling Santa Claus's sleigh, is due to the presence of a highly dense and rich nasal microcirculation. Design: Observational study. Setting: Tromsø, Norway (near the North Pole), and Amsterdam, the Netherlands. Participants: Five healthy human volunteers, two adult reindeer, and a patient with grade 3 nasal polyposis. Main outcome measures: Architecture of the microvasculature of the nasal septal mucosa and head of the inferior turbinates, kinetics of red blood cells, and real time reactivity of the microcirculation to topical medicines. Results: Similarities between human and reindeer nasal microcirculation were uncovered. Hairpin-like capillaries in the reindeers' nasal septal mucosa were rich in red blood cells, with a perfused vessel density of 20 (SD 0.7) mm/mm2. Scattered crypt or gland-like structures surrounded by capillaries containing flowing red blood cells were found in human and reindeer noses. In a healthy volunteer, nasal microvascular reactivity was demonstrated by the application of a local anaesthetic with vasoconstrictor activity, which resulted in direct cessation of capillary blood flow. Abnormal microvasculature was observed in the patient with nasal polyposis. Conclusions: The nasal microcirculation of reindeer is richly vascularised, with a vascular density 25% higher than that in humans. These results highlight the intrinsic physiological properties of Rudolph's legendary luminous red nose, which help to protect it from freezing during sleigh rides and to regulate the temperature of the reindeer's brain, factors essential for flying reindeer pulling Santa Claus's sleigh under extreme temperatures

    A new complimentary web-based tool for manual analysis of microcirculation videos: validation of the capillary mapper against the current gold standard AVA 3.2

    Get PDF
    OBJECTIVE: The aim of the current study was to compare a newly developed web-based freely accessible software program for manual analysis of the microcirculation, the Capillary Mapper (CM), with AVA 3.2 software (AVA; MicroVision Medical B.V., Amsterdam, The Netherlands), which is the current gold standard for analysis of microcirculation videos. METHODS: A web-based software program was developed, which enables manual analysis of videos of the microcirculation to be carried out according to recommendations of the 2018 consensus conference. A set of 50 high quality microcirculation videos was analyzed with AVA and CM with respect to total vessel density, perfused vessel density, proportion of perfused vessels, and the microvascular flow index. RESULTS: Comparison of the mean values derived from manual analysis with CM and AVA revealed no significant differences in microcirculatory variables. Analysis according to Bland and Altman revealed an acceptable bias between manual analysis with the CM and AVA for all variables tested with sufficient limits of agreement. The analysis of intraclass correlation showed "excellent" agreement for all microcirculatory variables analyzed. CONCLUSIONS: The newly developed CM was successfully validated for manual analyses of microcirculation videos against the current gold standard, the software AVA 3.2

    Comparison of Different Methods for the Calculation of the Microvascular Flow Index

    Get PDF
    The microvascular flow index (MFI) is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0), intermittent (1), sluggish (2), or normal (3). There are three approaches to compute MFI: (1) the average of the predominant flow in each of the four quadrants (MFIby quadrants), (2) the direct assessment during the bedside video acquisition (MFIpoint of care), and (3) the mean value of the MFIs determined in each individual vessel (MFIvessel by vessel). We hypothesized that the agreement between the MFIs is poor and that the MFIvessel by vessel better reflects the microvascular perfusion. For this purpose, we analyzed 100 videos from septic patients. In 25 of them, red blood cell (RBC) velocity was also measured. There were wide 95% limits of agreement between MFIby quadrants and MFIpoint of care (1.46), between MFIby quadrants and MFIvessel by vessel (2.85), and between MFIby point of care and MFIvessel by vessel (2.56). The MFIs significantly correlated with the RBC velocity and with the fraction of perfused small vessels, but MFIvessel by vessel showed the best R2. Although the different methods for the calculation of MFI reflect microvascular perfusion, they are not interchangeable and MFIvessel by vessel might be better

    Ultrafiltration rate is an important determinant of microcirculatory alterations during chronic renal replacement therapy

    Get PDF
    Background: Hemodialysis (HD) with ultrafiltration (UF) in chronic renal replacement therapy is associated with hemodynamic instability, morbidity and mortality. Sublingual Sidestream Dark Field (SDF) imaging during HD revealed reductions in microcirculatory blood flow (MFI). This study aims to determine underlying mechanisms. Methods: The study was performed in the Medical Centre Leeuwarden and the Lithuanian University of Health Sciences. Patients underwent 4-h HD session with linear UF. Nine patients were subject to combinations of HD and UF: 4 h of HD followed by 1 h isolated UF and 4 h HD with blood-volume-monitoring based UF. Primary endpoint: difference in MFI before and after intervention. During all sessions monitoring included blood pressure, heartrate and SDF-imaging. Trial registration number: NCT01396980. Results: Baseline characteristics were not different between the two centres as within the HD/UF modalities. MFI was not different before and after HD with UF. Total UF did not differ between modalities. Median MFI decreased significantly during isolated UF [2.8 (2.5-2.9) to 2.5 (2.2-2.8), p = 0.03]. Baseline MFI of each UF session was correlated with MFI after the intervention (r s = 0.52, p = 0.006). Conclusion: During HD with UF or isolated HD we observed no changes in MFI. This indicates that non-flow mediated mechanisms are of unimportance. During isolated UF we observed a reduction in MFI in conjunction with a negative intravascular fluid balance. The correlation between MFI before and after intervention suggests that volume status at baseline is a factor in microvascular alterations. In conclusion we observed a significant decrease of sublingual MFI, related to UF rate during chronic renal replacement therapy
    corecore