49 research outputs found

    Haptics-Enabled Teleoperation for Robotics-Assisted Minimally Invasive Surgery

    Get PDF
    The lack of force feedback (haptics) in robotic surgery can be considered to be a safety risk leading to accidental tissue damage and puncturing of blood vessels due to excessive forces being applied to tissue and vessels or causing inefficient control over the instruments because of insufficient applied force. This project focuses on providing a satisfactory solution for introducing haptic feedback in robotics-assisted minimally invasive surgical (RAMIS) systems. The research addresses several key issues associated with the incorporation of haptics in a master-slave (teleoperated) robotic environment for minimally invasive surgery (MIS). In this project, we designed a haptics-enabled dual-arm (two masters - two slaves) robotic MIS testbed to investigate and validate various single-arm as well as dual-arm teleoperation scenarios. The most important feature of this setup is the capability of providing haptic feedback in all 7 degrees of freedom (DOF) required for RAMIS (3 translations, 3 rotations and pinch motion of the laparoscopic tool). The setup also enables the evaluation of the effect of replacing haptic feedback by other sensory cues such as visual representation of haptic information (sensory substitution) and the hypothesis that surgical outcomes may be improved by substituting or augmenting haptic feedback by such sensory cues

    The Role of Visualization, Force Feedback, and Augmented Reality in Minimally Invasive Heart Valve Repair

    Get PDF
    New cardiovascular techniques have been developed to address the unique requirements of high risk, elderly, surgical patients with heart valve disease by avoiding both sternotomy and cardiopulmonary bypass. However, these technologies pose new challenges in visualization, force application, and intracardiac navigation. Force feedback and augmented reality (AR) can be applied to minimally invasive mitral valve repair and transcatheter aortic valve implantation (TAVI) techniques to potentially surmount these challenges. Our study demonstrated shorter operative times with three dimensional (3D) visualization compared to two dimensional (2D) visualization; however, both experts and novices applied significantly more force to cardiac tissue during 3D robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery. Subsequently, using an innovative robotics-assisted surgical system design, we determined that direct haptic feedback may improve both expert and trainee performance using robotics-assisted techniques. We determined that during robotics-assisted mitral valve annuloplasty the use of either visual or direct force feedback resulted in a significant decrease in forces applied to cardiac tissue when compared to robotics-assisted mitral valve annuloplasty without force feedback. We presented NeoNav, an AR-enhanced echocardiograpy intracardiac guidance system for NeoChord off-pump mitral valve repair. Our study demonstrated superior tool navigation accuracy, significantly shorter navigation times, and reduced potential for injury with AR enhanced intracardiac navigation for off-pump transapical mitral valve repair with neochordae implantation. In addition, we applied the NeoNav system as a safe and inexpensive alternative imaging modality for TAVI guidance. We found that our proposed AR guidance system may achieve similar or better results than the current standard of care, contrast enhanced fluoroscopy, while eliminating the use of nephrotoxic contrast and ionizing radiation. These results suggest that the addition of both force feedback and augmented reality image guidance can improve both surgical performance and safety during minimally invasive robotics assisted and beating heart valve surgery, respectively

    Sensory substitution for force feedback recovery: A perception experimental study

    Get PDF
    Robotic-assisted surgeries are commonly used today as a more efficient alternative to traditional surgical options. Both surgeons and patients benefit from those systems, as they offer many advantages, including less trauma and blood loss, fewer complications, and better ergonomics. However, a remaining limitation of currently available surgical systems is the lack of force feedback due to the teleoperation setting, which prevents direct interaction with the patient. Once the force information is obtained by either a sensing device or indirectly through vision-based force estimation, a concern arises on how to transmit this information to the surgeon. An attractive alternative is sensory substitution, which allows transcoding information from one sensory modality to present it in a different sensory modality. In the current work, we used visual feedback to convey interaction forces to the surgeon. Our overarching goal was to address the following question: How should interaction forces be displayed to support efficient comprehension by the surgeon without interfering with the surgeon’s perception and workflow during surgery? Until now, the use the visual modality for force feedback has not been carefully evaluated. For this reason, we conducted an experimental study with two aims: (1) to demonstrate the potential benefits of using this modality and (2) to understand the surgeons’ perceptual preferences. The results derived from our study of 28 surgeons revealed a strong positive acceptance of the users (96%) using this modality. Moreover, we found that for surgeons to easily interpret the information, their mental model must be considered, meaning that the design of the visualizations should fit the perceptual and cognitive abilities of the end user. To our knowledge, this is the first time that these principles have been analyzed for exploring sensory substitution in medical robotics. Finally, we provide user-centered recommendations for the design of visual displays for robotic surgical systems.Peer ReviewedPostprint (author's final draft

    A Sensorized Instrument for Minimally Invasive Surgery for the Measurement of Forces during Training and Surgery: Development and Applications

    Get PDF
    The reduced access conditions present in Minimally Invasive Surgery (MIS) affect the feel of interaction forces between the instruments and the tissue being treated. This loss of haptic information compromises the safety of the procedure and must be overcome through training. Haptics in MIS is the subject of extensive research, focused on establishing force feedback mechanisms and developing appropriate sensors. This latter task is complicated by the need to place the sensors as close as possible to the instrument tip, as the measurement of forces outside of the patient\u27s body does not represent the true tool--tissue interaction. Many force sensors have been proposed, but none are yet available for surgery. The objectives of this thesis were to develop a set of instruments capable of measuring tool--tissue force information in MIS, and to evaluate the usefulness of force information during surgery and for training and skills assessment. To address these objectives, a set of laparoscopic instruments was developed that can measure instrument position and tool--tissue interaction forces in multiple degrees of freedom. Different design iterations and the work performed towards the development of a sterilizable instrument are presented. Several experiments were performed using these instruments to establish the usefulness of force information in surgery and training. The results showed that the combination of force and position information can be used in the development of realistic tissue models or haptic interfaces specifically designed for MIS. This information is also valuable in order to create tactile maps to assist in the identification of areas of different stiffness. The real-time measurement of forces allows visual force feedback to be presented to the surgeon. When applied to training scenarios, the results show that experience level correlates better with force-based metrics than those currently used in training simulators. The proposed metrics can be automatically computed, are completely objective, and measure important aspects of performance. The primary contribution of this thesis is the design and development of highly versatile instruments capable of measuring force and position during surgery. A second contribution establishes the importance and usefulness of force data during skills assessment, training and surgery

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    A Device to Measure Tensile Forces in the Deep Fascia of the Human Abdominal Wall

    Get PDF
    Ventral hernias have been found to occur in up to twenty-five percent of all midline abdominal laparotomy cases. In order to decrease the incidence of the development of ventral hernias, a relationship between tensile forces applied along the deep fascia and safety of closure needs to be established. To quantify the tensile forces in the deep fascia, a novel pair of hemostats were designed with hinged arms, rakes for attachment, and equipped with strain gages to be used in clinical studies

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    Thiel embalmed cadaveric tissue : a model for surgical simulation and research

    Full text link
    Le Collège royal des médecins et chirurgiens du Canada met actuellement en place des curriculums basés sur les compétences, plutôt que sur le temps, dans toutes les spécialités médicales et chirurgicales. La transition devrait être complétée en 2022. Les programmes de formation en chirurgie plastique au Canada devront repenser leurs curriculums pour se plier aux directives nationales. La simulation est la pierre angulaire du modèle de formation des résidents basé sur les compétences puisqu'elle permet aux résidents d'apprendre et d'améliorer leurs compétences dans un contexte éthique, sécuritaire, et mesurable objectivement. Un consensus récent des directeurs de programme canadiens en chirurgie plastique a nommé 154 procédures essentielles de bases que les résidents doivent maîtriser avant la fin de leur formation. Nous proposons l'utilisation du modèle cadavérique Thiel pour la simulation haute fidélité des procédures en plastie. Les spécimens Thiel ont déjà été introduits dans une multitude de spécialités, incluant la plastie pour la dissection de lambeaux et la réparation de tendons. Nous nous sommes concentrés sur l'évaluation des spécimens Thiel pour la maîtrise des anastomoses vasculaires, la réparation des nerfs périphériques, et la réparation des tendons fléchisseurs. Par ailleurs, nous avons développé des instruments d'évaluation pour chacun de ces domaines de simulation. Des trois instruments, nous avons validé les échelles d'évaluation des anastomoses vasculaires et nerveuses. Ces deux échelles ont démontré d'excellents degrés de fiabilité et de reproductibilité et sont bien corrélés avec le niveau de formation et d'expérience des sujets. Le modèle de réparation des tendons fléchisseurs a démontré un degré plus élevé de variaiblité inter-évaluateur, et, quoique prometteur, il n'a pas pu être complètement validé basé sur les données actuelles. De plus, nous avons utilisé les vaisseaux Thiel comme un modèle de recherche pour l'investigation de nouvelles techniques microvasculaires. Notre expérience montre que les spécimens cadavériques Thiel sont un excellent modèle de simulation pour la chirurgie microvasculaire et la réparation des nerfs périphériques et des tendons fléchisseurs. Nous proposons des instruments d'évaluation pour assister à l'implémentation de ces modèles de simulation dans les curriculums basés sur les compétences en chirurgie plastique.The Royal College of Physicians and Surgeons is currently implementing a major shift from a time based to a competence based curriculum in all medical and surgical specialties. By 2022 the transition is to be complete. The plastic surgery training programs in Canada will have to rethink their curriculum in order to comply with the national directives. Simulation is a cornerstone of the competence based model of resident training as it not only allows residents to safely learn and hone their skill in a setting that is ethical and promotes patient safety, but it allows for objective evaluation of their performance. A recent consensus statement from the Canadian plastic surgery program directors identified 154 essential core procedures for residents to master by the end of their training. We propose the use of the Thiel cadaveric model for high fidelity simulation of plastic surgery procedures. While Thiel cadaveric specimens have been proposed for use in a multitude of specialties, including in plastic surgery for flap dissection and tendon repair, we focused on evaluating the use of the Thiel embalmed specimens on three core procedures: microvascular anastomoses, peripheral nerve repair, and flexor tendon repair. In addition, we designed evaluation instruments for each of these three simulation areas to help grade performance and aid in the feedback/debriefing process. Of the three evaluation instruments, we successfully validated the microvascular evaluation and micro-neurorrhaphy evaluation scales. Both of these scales showed excellent degrees of reliability and reproducibility and correlated well with the level of training and self-declared experience of the subjects. The flexor tendon evaluation scale showed a higher degree of inter-rater variability and, while it shows promise with a larger cohort of participants and additional calibration, it could not be validated fully based on the available data. Additionally, we used the Thiel embalmed cadaveric vessels as a research model for the investigation of new microvascular techniques. Our experience shows the Thiel cadaveric specimens to provide an excellent model for simulating microvascular, peripheral nerve and flexor tendon repairs. We propose evaluation instruments to assist in the implementation of these simulation models in a comprehensive, competence based curriculum in plastic surgery

    Design and Development of a Selectively Absorbable Multiphasic Hernia Mesh an In Vivo Performance as it Relates to Biocompatibility

    Get PDF
    Hernia repair is one of the most frequently performed surgical operations, with the vast majority of these surgeries employing a “tension-free” repair technique with synthetic surgical meshes. Traditionally, meshes for hernia repair have been designed with high strength in order to produce a robust repair; unfortunately, current designs are unable to respond to the dynamic biological needs of the wound healing process. As a result, patients undergoing mesh hernioplasty often suffer from mesh contraction, reduced wound site compliance, fibrosis, and/or chronic pain. The aim of this dissertation was to design and assess a novel, selectively absorbable mesh system for soft tissue repair which exhibits initially interdependent load-bearing components that transition to independent in situ functional properties. More specifically, the mesh design was constructed to provide (1) a short-term stability phase to protect the developing tissue, (2) a mechanical load transitioning phase for support as the selected absorbable component begins to lose mechanical strength, and (3) a long-term compliant phase to allow mechanical sharing of loads between the deposited tissue and implanted construction. The designed mesh system was evaluated in a chronic ventral hernia model in rabbits and compared to the clinically relevant predicate, UltraPro™ mesh (a partially absorbable mesh currently marketed by Ethicon). Mechanical evaluation of the resulting mesh/tissue complex at 4, 8, and 12 weeks indicated that, while the designed mesh system resulted in a stiffer repair site initially (as compared to UltraPro™), the mesh transitioned into a significantly more compliant repair by 12 weeks. Furthermore, the mechanical contribution of the deposited collagen increased at each time point for UltraPro™, but decreased for the designed constructions. The UltraPro™ result suggests a possible cause for the increased long-term abdominal wall stiffness seen in mesh hernioplasty today (i.e. a cycle of constantly stiffening scar plate). Histopathological assessment indicated that the designed constructions triggered a statistically more intense foreign body response for the novel mesh constructions which allowed rapid integration into abdominal wall. This also led to a lower ratio of Type I/III collagen, although the results are limited due to the longest time point of 12 weeks, at which point the abdominal wall has not reached complete remodeling and maturity and all absorbable portions of the mesh are not completely absorbed.. Overall, the results of this study show the capacity of the developed constructions to modulate the tissue response of the healing abdominal wall based on temporal dynamic mesh mechanics. In addition, the novel meshes studied as part of this dissertation have the potential of reducing common complications associated with mesh hernioplasty, including mesh contraction, loss of tissue compliance, and reduction in severity of visceral adhesions. Collectively, these results provide justification for further development and assessment of multi-phasic meshes as those described within this body of work
    corecore