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Abstract

The reduced access conditions present in Minimally Invasive Surgery (MIS) affect the feel of inter-

action forces between the instruments and the tissue being treated. This loss of haptic information

compromises the safety of the procedure and must be overcome through training.

Haptics in MIS is the subject of extensive research, focused on establishing force feedback

mechanisms and developing appropriate sensors. This latter task is complicated by the need to

place the sensors as close as possible to the instrument tip, as the measurement of forces outside

of the patient’s body does not represent the true tool–tissue interaction. Many force sensors have

been proposed, but none are yet available for surgery.

The objectives of this thesis were to develop a set of instruments capable of measuring tool–

tissue force information in MIS, and to evaluate the usefulness of force information during surgery

and for training and skills assessment. To address these objectives, a set of laparoscopic instruments

was developed that can measure instrument position and tool–tissue interaction forces in multiple

degrees of freedom. Different design iterations and the work performed towards the development

of a sterilizable instrument are presented.

Several experiments were performed using these instruments to establish the usefulness of

force information in surgery and training. The results showed that the combination of force and

position information can be used in the development of realistic tissue models or haptic interfaces

specifically designed for MIS. This information is also valuable in order to create tactile maps to

assist in the identification of areas of different stiffness. The real-time measurement of forces allows

visual force feedback to be presented to the surgeon.

When applied to training scenarios, the results show that experience level correlates better with

force-based metrics than those currently used in training simulators. The proposed metrics can be

automatically computed, are completely objective, and measure important aspects of performance.

iii



ABSTRACT iv

The primary contribution of this thesis is the design and development of highly versatile instru-

ments capable of measuring force and position during surgery. A second contribution establishes

the importance and usefulness of force data during skills assessment, training and surgery.

Keywords: Force sensing, mechatronic device design, mechanical design, minimally invasive

surgery, medical mechatronics, surgical training, performance metrics
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Chapter 1

Introduction

Minimally Invasive Surgery and Therapy (MIST) have altered the effect that surgical and therapeu-

tic procedures have on patients by significantly reducing collateral damage. In these procedures,

instruments enter the patient’s body though small incisions, or through the patient’s natural ori-

fices, in order to perform surgery or deliver therapy. This has led to improved outcomes, reduced

recovery time, reduced length of hospital stay, improved cosmesis, and reduced morbidity rates [1].

Technological advances for MIST have significantly progressed in the past 20 years (see [2]);

however, certain limitations still exist. The most limiting factor of MIST, and one that has been the

subject of significant research, is that the reduced access conditions affect the feel of interaction

forces between the instruments and the tissue being treated. The use of master–slave robotic

systems for MIST, e.g., the da Vinci® Surgical System (Intuitive Surgical, Inc.), significantly

improves instrument dexterity, accuracy and control [3]; however, the indirect nature of the system

interface causes clinicians to lose all ability to feel realistic interaction forces between surgical or

therapeutic instruments and tissue.

This loss of tactile and kinesthetic information leads to several limitations [3–6]:

• It is no longer possible to manually palpate tissue to locate certain structures or assess tissue

characteristics.

• Excessive forces can be applied, leading to increased trauma and damage to healthy tissue.

• Insufficient forces might be applied when grasping tissue or sutures leading to slippage, loss

of control, and loose intracorporeal knots.

1
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Since tactile and force information is no longer available, clinicians must compensate by using

visual cues to estimate the amount of force being applied [4]. This requires a completely different

set of perceptual and motor skills, for which extensive training is required [6].

Although some procedures are successfully performed in a minimally invasive manner without

accurate force feedback or without any force information, the loss of haptic information limits the

widespread application of MIST to all fields [7]. Procedures in which dexterous fine movements

need to be performed require accurate control of both the forces applied and instrument positions

[8]. In an effort to overcome these limitations, extensive training requirements are often mandated.

1.1 Motivation

Many research studies have focused on evaluating the need for haptic feedback when performing

different tasks. Other studies have looked at the development of methods that provide force

information to the user through sensory substitution or haptic interfaces, while still others have

aimed to develop sensors that are able to measure kinesthetic or tactile information during surgery.

The latter task is complicated by the need to place the sensors as close as possible to the instrument

tip, as the measurement of forces from outside of the patient’s body is affected by interaction forces

between the instruments and the trocar at the incision point, torques from the abdominal walls or

nearby organs, internal instrument friction and mechanical advantage. This significantly constrains

the size and sterilization requirements of the sensors that may be used. Many force sensors and

sensing methods have been proposed, but none are currently available for accurate measurement

of the tool–tissue interaction forces during surgery. Several research studies have focused on

determining whether force sensing is really necessary, and if so, which degrees of freedom (DOFs)

are most important and which tasks would benefit more from the availability of force information.

In spite of these research efforts, there is still no consensus as to whether surgical procedures or

surgical training can be improved with the availability of haptic information. An in-depth study

that analyzes the need for haptic information in different applications has not yet been performed.

It is necessary to determine the types of procedures that would most benefit from force feedback,

the number of DOFs in which forces need to be sensed for different procedures, the required

resolution and accuracy with which forces need to be measured, and the effect that a lack of force

reflection has on experts and trainees (i.e., which limitations can be overcome by training).
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The search for answers to these questions is complicated by the fact that there are currently no

surgical instruments that are capable of measuring tool–tissue interaction forces. The availability

of such instruments would allow the design of experiments that might be able to address some of

the unknowns, with the ultimate goal of guiding the development of new instruments and devices.

Sensorizing instruments is not an easy or inexpensive solution, so the need for force information

has to be properly justified before committing to the addition of sensors to surgical instruments

and/or training systems. Knowledge of which tasks can be safely and effectively performed without

force feedback will simplify the development of tools and instruments for those procedures. Proper

justification could also be provided for the development of more complex instruments for those

procedures that do benefit from force information. The availability of sensorized instruments

also has an application to the development of simulators for training and skills assessment. The

force profiles obtained from real-tissue experiments could be used to develop virtual-reality based

simulators with increased levels of fidelity and realism for tasks that truly require force feedback.

Procedures that can be safely performed without force feedback, or those for which the addition

of force feedback does not improve the performance of novice trainees, can be taught using lower

fidelity simulators that focus on the development of the required skills.

1.2 General Problem Statement

In an ideal world, a surgeon would perform a surgical procedure by accessing the surgical site with

excellent visualization and direct contact with the tissue being treated, while the patient benefits

from a procedure with no side-effects and minimal invasiveness. Unfortunately, the reduced access

conditions required to minimize the invasiveness to the patient’s body affect the haptic feel of

the tool–tissue interaction. Due to the quick adoption of minimally invasive procedures into

the standard of care, there are many unknowns about the need for haptic feedback that remain

unanswered.

Nevertheless, in order to provide the best patient care, surgeons will have to continue to

deal with these limited conditions. Although it is unknown to what extent the lack of haptic

information impacts the effectiveness of the procedure, many researchers have shown that there

are clear limitations that arise from this lack of information [9, 10].

To address these issues, there is a need to develop instruments and devices that are capable
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of providing haptic information. Once these instruments become available, experiments can be

designed to establish the importance of force information and find answers concerning the im-

portance of haptic feedback. These instruments would also make an important contribution to

the development of instruments for surgical applications that are capable of measuring interaction

forces with tissue.

This work proposes to develop a set of sensorized instruments capable of measuring force

information in all degrees of freedom available during minimally invasive surgery (MIS) with the

best resolution possible, to perform a series of experiments to validate their feasibility and to

establish the importance of force information during minimally invasive surgery and training.

1.3 Research Objectives

The main goal of this thesis is to advance our understanding of the importance of force information

during minimally invasive surgery and training. To achieve this objective, the work has focused

on the following objectives:

• To design, build and test a set of instruments capable of measuring tool–tissue force informa-

tion in all degrees of freedom available during MIS and integrate it with a software platform

capable of allowing the visualization, calibration and recording of the measured data.

• To investigate solutions for the development of sterilizable sensorized elements, and to incor-

porate them into the development of a sterilizable version of the sensorized instruments.

• To investigate the usefulness of force information in surgical applications.

• To investigate the usefulness of force information for training and skills assessment.

1.4 Scope

Haptics is composed of three main categories: kinesthetic feel, tactile feel and proprioception

[11–13]. Kinesthetic information or force feedback refers to the ability to sense position, forces

and movement using muscle receptors, tendons and joints. Tactile feel deals with the sensation of

vibration, shapes and textures relying on mechanoreceptors in the skin. Proprioception deals with

the perception of the position and movement of body segments, and it is rarely taken into account
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when developing haptic interfaces for virtual environments. Its consideration is important when

fully representing haptic interaction between the hands and the objects in contact. A few studies

have concluded that to achieve proper haptic feedback, tactile and force sensing feedback must be

present [8, 14].

Ongoing projects at Canadian Surgical Technologies and Advanced Robotics (CSTAR) have

investigated the importance of tactile information [15,16] in surgical and therapeutical applications.

In contrast, the work presented in this thesis is focused specifically on investigating the importance

and value of kinesthetic information. Furthermore, the emphasis of this work has been on the

development of sensorized instruments and in showing their value and potential. Answers to the

questions stated above require extensive experimentation and the experiments presented herein are

intended as a starting point in the investigation of the effect that the lack of haptic information

has during MIST.

1.5 Overview of the Thesis

The structure of the rest of the thesis is as follows:

Chapter 2 Literature Review: Summarizes the state of the art in force sensing techniques for

medical interventions.

Chapter 3 SIMIS Instruments: Outlines the design and development of the first prototype of

the force sensing instruments, its limitations and preliminary evaluation.

Chapter 4 Modified SIMIS Instruments: Presents how the limitations of the original proto-

type were addressed through three subsequent iterations of the prototype design,

as well as the evaluation of their performance and the lessons learned.

Chapter 5 Sterilizable SIMIS Instruments: Presents the work done towards the development

of a sterilizable version of the instruments. This includes the evaluations performed

to identify the optimal combination of adhesives and coatings for installing strain

gauges on the instruments such that they are able to withstand an autoclave cycle.

The identification of cables and connectors, as well as how the instrument can be

cleaned and sterilized after use are also part of this work.
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Chapter 6 Applications to Surgery: Explains how the instruments can be used for force sens-

ing in surgery and the development of a set of experiments aimed at determining

the usefulness of force information when performing a surgical task. This chapter

includes insights into how the instruments could be used for tissue characteriza-

tion, and to collect data to inform the development of haptic interfaces for surgery

and simulation.

Chapter 7 Applications to Surgical Training: Describes how the instruments can be used for

skills assessment and training and the development of performance metrics based

on force information.

Chapter 8 Concluding Remarks: Highlights the contributions of this thesis and proposes

suggestions for future work.

Appendix I Software Development: Describes the development of the SIMIS software interface.

Appendix II Permissions and Approvals: Presents approval letters for copyrighted material, as

well as proof of ethics approval for the trials that involved human subjects.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a summary of the state of the art in force sensing techniques for medical

interventions in order to identify existing limitations and future directions. Although a significant

amount of work has also been directed towards tactile sensors and haptic interfaces, the focus of this

chapter is on force sensors and sensing techniques. An extensive literature search was performed

during the period of January to July 2009 using Google Scholar and a combination of the following

keywords: force, sensor, sensing, haptics, minimally invasive, surgery and therapy. The resulting

initial list of papers and the references therein were reviewed giving priority to papers published

in the previous 15 years. A total of 126 papers were included in the compiled database. This

literature review resulted in the work presented in [9]. This initial review has been complemented

with an additional literature search performed in June 2012.

Based on the relevant information found in these papers, the remainder of this chapter is

organized as follows: Section 2.2 outlines the need for force sensing and the environmental char-

acteristics that affect force sensing in clinical applications. Section 2.3 describes the technologies

that can be used to measure force, as well as their most critical requirements when used in clinical

applications. Section 2.4 describes the technological developments to date that are commercially

available and those that are still at a developmental stage. Finally, in Section 2.5, the current

state of the art is summarized with an outline of future directions.

7
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2.2 Force Sensing in Clinical Applications

The desire to measure forces in MIST arises from the limitations imposed by minimally invasive

access conditions, which affect the forces that a clinician can feel with respect to tool–tissue

interactions. However, the need to measure these forces is not always obvious and becomes a

balance between cost, equipment complexity and actual benefit.

2.2.1 The Need for Force Sensing

In traditional minimally invasive surgery or therapy, a clinician holds an instrument that enters

the patient’s body through a small incision in which a trocar is placed. The trocar, abdominal

wall and other nearby tissues exert forces on the instrument that, together with the leverage

effect, cause the forces felt at the hand–tool interface to poorly represent the forces arising from

the tip–tissue interaction. Figures 2.1 and 2.2 show the conditions found in minimally invasive

procedures and robotic master–slave procedures and illustrate how force sensing comes into play.

Measurements from tool–tissue force sensors enable the force information to be provided to the

clinician in the form of graphic, auditory, vibratory, or other types of interfaces. In the case of a

master–slave system, the information can also be used to directly provide force feedback through

a haptic interface.

Since the systems represented in Figures 2.1 and 2.2 become more complex and costly with the

introduction of force sensing capabilities, the need for force sensing must be fully justified. Force

sensing information can be useful for robot control, to provide instrument–body interaction infor-

mation to reduce damage and ensure effective manipulation of the tissue, to magnify interaction

forces for enhanced sensation, or to identify tissue characteristics. This could lead to increased

safety and reduced intraoperative time, and could allow less experienced surgeons to perform more

intricate procedures with less practice.

Many procedures, however, are being performed successfully in a minimally invasive manner;

therefore, the question arises as to whether force sensing is necessary and, if so, which procedures

would benefit most from the availability of force information. Those procedures that receive no

benefit from force sensing can then be performed with simpler and more cost-effective tools, while

those procedures that do benefit from force information can be performed with increased safety

and efficiency.
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User Tools

Display Patient

Force 
Sensors

Force Display

Port/
Trocar

ComputerTactile
Display

Video Display

Camera
Image

Distorted Force Feedback

Figure 2.1: Information flow in a conventional minimally invasive procedure. The dashed lines
represent the information that becomes available through force sensing.

User Interface Computer Robot/
Tools

Display Patient

Force 
Sensors

Force
Feedback

Force Display

Port/
Trocar

Video Display

Camera
Image

Figure 2.2: Information flow in a robotics-assisted minimally invasive procedure using a master–
slave system. The dashed lines represent the information that becomes available
through force sensing.

A number of studies have been performed to determine the need for haptic feedback (see Table

2.1 for a summary). These studies show that the benefit of force feedback is very much task, user

and system dependent. Although most results indicate that there is a need for haptic feedback in

MIS, the number of subjects is limited in each study, and there is still no consensus as to when

force sensing is necessary or beneficial [5].

Situations in which direct haptic feedback has been shown to make a difference include: (i)

microsurgery, where the ability to scale forces to perceivable levels can significantly benefit per-
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Table 2.1: Experimental evaluations to assess the need for force feedback in MIST.

Ref. Equipment Compared Task Results Subjects

[17]

Tension measuring

device and the da

Vinci system

VFF

compared to no

feedback

Knot tying

Haptic feedback allows surgeons to

be more precise, more consistent

and to apply greater tensions to

sutures without breaking.

5 expert

surgeons

[18]

2 master, 2 slave

system with

robotic arms and

da Vinci tools. 2

DOF force sensing

FF

0%, 100% and

200%

Suture

breakage ar-

teriosclerosis

detection and

knot tying

FF improved all measures. Lower

forces applied when knot tying,

better approximation of the suture

break force without breaking, and

lower force applied while palpating.

Also shows less fatigue.

25 surgeons

at different

experience

levels

[3]

AESOP arms with

sensorized

instruments and a

PHANToM

controller

Robotic

surgery with

and without

FF (scaled 22,

32, 45, 64%)

Dissection

The use of a robotic system with

force feedback reduced the number

of unintended injuries. High force

scaling caused more injuries.

25 expert

MIS

surgeons

[19]

Surgical Assistant

Workstation and

da Vinci robot

VFF, FF or

both
Palpation

A combination of haptic and

graphical feedback reduced the

number of errors compared to

either one alone or no feedback.

7 surgeons:

experts and

novices

[20]

Tension measuring

device and the da

Vinci system

Robotic vs.

conventional

MIS and VFF

Knot tying

Concludes that user performance

using the robot is worse than

manual, but force feedback did not

always improve the outcome.

6 surgeons:

residents

and

attending

[21]

Customized

master–slave

system with 1 DOF

feedback

Manual vs.

grasper vs. FF

grasper

Stiffness

palpation

FF grasper significantly reduced

the number of errors, but the hand

is still better.

10 subjects:

surgeons

and non-

surgeons

[22]

Customized

master–slave

system with 1 DOF

feedback

FF, VFF+GFF

or both
Suturing

The complement of visual feedback

methods has the potential to

reduce the applied forces when

performing tasks.

8 non-

surgeons

[23]

Customized

master–slave

system with 1 DOF

VFF, FF, GFF

or FF+GFF
Palpation

Rate of success was highest with

graphical feedback.

6 non-

surgeons

[24]

Customized cutting

instrument on a

master–slave

system

VFF, FF or

both
Cutting

The combination of visual and

force feedback was better than

either individually.

20 subjects:

surgeons

and non-

surgeons

[25]
2-Phantom setup

with ATI mini

FF

0%, 75% and

150%

Blunt

dissection

FF reduced RMS force by 30 to

60% and peak force by a factor of

2–6. Also reduced errors.

8 non-

surgeons

[26]

2-master, 2-slave

robotic system

with 7 DOF

feedback

VFF, FF or

none

Knot

tightening

VFF increased consistency of

applied forces, FF increased

control.

7 subjects:

experts and

novices

FF: Force Feedback

VFF: Visual Force Feedback: video display of the task site

GFF: Graphical Force Feedback: graphical display of the forces being applied
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formance [25,27,28]; (ii) knot tying, where haptic feedback increases precision and consistency to

ensure the knots are tight while preventing suture breakage [17,29,30]; (iii) palpation, where force

sensing allows for the evaluation of tissue compliance, stiffness and viscosity [31, 32] to identify

abnormal tissue and the location of anatomical features [6]; (iv) robotic applications, where a

robot is controlled through force control to prevent tissue damage and compensate for organ mo-

tion [33] and in general master–slave systems, where force reflection helps position the tools and

reduce applied forces [32]; and (v) in needle-based procedures, where knowledge of the insertion

forces can improve needle placement [34]. Review papers assessing the need for haptic feedback

include [5, 35].

Other benefits of force sensing related to clinical applications include: the measurement of

applied forces for the development of new instruments and devices [36, 37]; determination of the

magnitude of forces that result in damage to different kinds of tissue, allowing for the development

of smart instruments or robots that can limit the amount of force applied to tissue [38]; tissue

modelling [7, 21,39]; and using force profiles as an aid to skills assessment and training [40,41].

2.2.2 Where to Sense?

A first question that might arise when the need for force sensing is identified is where to sense the

forces. To answer this question, it is necessary to consider the configuration of medical instruments

and the forces that act on these instruments. Since there are many different points of contact with

the environment, placement of the sensors must be carefully optimized [14]. A very detailed

description of the forces acting on laparoscopic instruments is presented in [11]. These include:

friction at the trocar, resistance of the abdominal wall, scaling and mirroring of the tip forces,

internal friction within the instrument and inefficiency of the mechanism itself. The forces acting

on the instrument along the access channel also need to be considered in catheter-based procedures

and those that access the surgical site through natural orifices.

Figure 2.3 presents a diagram of the forces that may act on a surgical or therapeutic instrument

when inserted in a minimally invasive manner. Forces at the handle are what the user feels in hand-

held procedures or what the robot applies in master–slave systems. All instruments are affected

by the internal structure of the instrument and by internal instrument friction. Furthermore, it

has been shown that commercially available dissectors for minimally invasive surgery (MIS) have

low mechanical efficiencies (between 8 and 42% [42]) that cause the forces at the handle and at
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the tips of the instruments to be significantly different and nonlinearly related [43, 44]. At the

port location, the forces acting on the instrument are a combination of the friction caused by the

trocar and the moments generated by the abdominal wall when tilting the instrument [45, 46].

Other forces could be generated by nearby organs acting on the instrument shaft. These latter

forces are significant in procedures that use flexible instruments, such as natural orifice procedures,

single-port access procedures or catheter-based therapies.

Mpx

τpz

Fpx

Mpy

Fpy

Fpz

τhz

Fhx

Fhy

Fhz

τtz

Ftx

Fty

Ftz

Internal friction
of mechanism

d1

d2

Forces from
nearby organs

Forces at the handle are 2 to 6 times
greater than tip forces [44].

Friction at the trocar: 0.25–3 N [45,46].

Torques created by the abdominal wall:
up to 0.7 Nm [45].

Internal instrument friction losses: 58%
to 92% [42].

Forces and torques at the tip: 0.5–10 N,
0–0.1 Nm [45].

Figure 2.3: Forces acting on minimally invasive instruments.

Table 2.2 presents a summary of the different places where forces can be sensed [4]. Depending

on the need for force sensing, it might be necessary to measure the hand–tool interaction forces,

(for example, to determine the forces required to insert needles, for the development of training

simulators or to determine the requirements of surgical robotic systems), or the forces applied by a

robotic system on the tool (for example, for force feedback control [47]). Measuring the tool–tissue

interaction forces at the trocar or through the access channel might be desirable if the purpose is to
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Table 2.2: Locations for force sensing.

Location Advantages Limitations Examples

On or near

actuation

mechanism

Some of the information is readily

available, no need for sterilization or

miniaturization of additional sensing

elements.

Affected by friction, mechanism play, backlash,

gravity, and inertia within the instrument.

Sensing is taking place far away from where the

forces are being applied. Indirect force

measurement can overestimate the grasping

forces [50].

[50–52]

On shaft

outside

entry port

No constraint with respect to size. Does

not necessarily need to be sterilizable. The

information is useful for the design of

robotic devices or when calculating the

amount of force the hand needs to apply.

Measurements are affected by forces at the

trocar so they are not a good estimate of

tool–tissue interaction forces.

[41, 53]

On the

access

channels

Can measure interaction forces between

the instrument and the tissue surrounding

the instrument as it enters the body in

order to minimize tissue damage.

Entering the body requires the sensing elements

to be sterilizable and to work in warm and

humid environments. The size of the elements

is limited to the size of the access channels.

[54–56]

On shaft

inside the

body

Capable of measuring kinesthetic forces

acting at the tip of the instrument.

Must be sterilizable and must work in warm

and wet environments. The size of the elements

is also limited to the size of the port. Affected

by mechanism friction distal to the sensor

placement.

[48]

On tool

tip

Capable of measuring kinesthetic and

tactile forces acting at the tip of the

instrument. Not affected by mechanism

friction.

Must be sterilizable and must work in warm

and wet environments. Severe space

limitations, as the size of the elements is

limited to the tool tip.

[50]

minimize damage to the abdominal wall when twisting the instrument to reach difficult areas, or to

minimize damage when inserting flexible instruments through vessels or through natural orifices.

In most applications, the goal is to obtain the tip–tissue interaction forces in order to assess tissue

trauma or provide feedback during surgery.

The measurement of forces is simplified by placing the sensors outside of the body, since size and

sterilization constraints are not involved. However, using this information to estimate forces acting

at the instrument tip is inaccurate. The effect of friction at the trocar, abdominal wall forces, and

the leverage effect make it such that tool–tissue interaction forces can only be accurately sensed

by placing the sensors as close as possible to the instrument tip [48, 49]. The forces at the tip are

sometimes so delicate that other forces acting on the instruments can easily mask them [35].

Owing to the difficulties inherent in placing sensors inside the body, researchers have been

trying to address the discrepancy between handle and tip forces. The design of a mechanically

efficient instrument for sensing grip forces at the handle is presented in [57]. This instrument uses

rolling mechanisms to create an instrument that is 96% efficient. The results of their experiments
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show a significant improvement in the ability to detect grip forces based on handle forces (stiffness

of tissue and arterial pulse). To address the frictional forces introduced at the trocar, it was shown

in [46] that friction within a trocar could be significantly reduced with a proper design of the sealing

mechanism or by using lubricants. Finally, [58] developed a model for friction compensation, in

their case using the da Vinci instruments. They show that a “friction compensator with multiple

single-state elastic friction models” is reasonably effective at cancelling the Coulomb friction of

the joints of the slave manipulator in unidirectional motion. These solutions, however, do not deal

with the effect of the abdominal wall on the instrument, or the scaling that occurs due to the

fulcrum location on the instrument.

Sensing for needle-based procedures presents unique challenges. It has been shown that knowing

the forces that act on the needle during insertion can lead to improved placement precision [34].

Due to the small size of the needles, placement of sensors anywhere within the needle shaft is

extremely difficult and most systems measure the forces outside of the body [59]; however, novel

sensor designs have been capable of estimating needle tip force and sidewall friction in 7 DOFs

[60,61].

2.2.3 What to Sense?

Another consideration when dealing with force sensing in MIST is to identify which forces need

to be measured. Full representation of the instrument interaction can only be achieved by simul-

taneously measuring three orthogonal forces, three orthogonal moments, and the actuation force

(grip or cut depending on the instrument). For telemanipulators to be completely transparent,

sensing and display of all 7 DOFs of haptic information are needed [14], in addition to tactile

information [62]. Furthermore, asymmetry between the number of DOFs in force sensing and the

number of DOFs in a haptic device can affect stability in bilateral teleoperation.

For some applications and tasks, however, sensing forces in some of the degrees of freedom

might be sufficient to achieve the desired results. Identification of which degrees of freedom need

to be sensed for particular tasks still remains an open area of research. Considerations include the

differences arising from the use of different instruments and instrument configurations, the task

being performed, the level of expertise of the subjects, and the type of procedure.

Some limited studies have tried to identify the benefit of measuring forces in different directions.

The asymmetry in bilateral haptics-enabled teleoperation was assessed in [63], where it is shown
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that feeding back forces in just two degrees of freedom for certain tasks is a significant improvement

over no force feedback, while adding the axial direction does not make a significant difference in

terms of applied forces. Another study, presented in [62], concludes that grip forces and Cartesian

forces are decoupled; in other words, providing feedback in translational forces does not help with

grip force control and vice versa.

2.3 Force Sensing

After assessing the need to sense forces and the characteristics of the environment that affect force

sensing in clinical applications, consideration must be given to determine which type of sensor can

best meet the design constraints. This section outlines existing technologies for force sensing and

how these different technologies can be applied to achieve sensing in multiple degrees of freedom.

2.3.1 Technologies

The most commonly used technologies for sensing forces are strain gauges, piezoelectric sensors,

capacitive-based sensors, and optical sensors. These technologies and other more novel methods

are summarized in Table 2.3 and discussed below.

Strain gauges: The most common technology employed for force sensing uses thin metal

foils applied to the surface of an instrument to measure the deformation caused by the applied

force. These foils, when attached to a thin plastic backing material and oriented in a particular

arrangement, are called strain gauges [64]. Strain gauges have been successfully used in instruments

for medical applications [23, 36, 65, 66] (more details on these instruments are provided in Section

2.4.2). Figure 2.4 shows examples of strain gauges applied to MIST instruments.

To achieve multi-axis measurements using strain gauges, special structural elements are com-

monly used on which strain gauges are placed at different locations to allow the different forces and

moments to be measured. A review of force sensing structures found in the literature is presented

in [67]. The Stewart Platform [68], the Maltese Cross [69], and Junyich’s configuration [70, 71]

and their variations are the most commonly used structures. Other novel structures for multi-axis

sensing are presented in [67, 72–74]. The selection of one of these structures for force sensing

purposes depends on the desired balance between signal noise levels, measurement isotropy, signal

coupling, the number of sensing elements and the size of the structure.
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Table 2.3: Force sensing technologies.

Technology Advantages Limitations

Strain gauges

Small size and can be sealed in a waterproof

environment. Multi-axis measurement is easily

achieved.

Sensitive to electromagnetic noise and

temperature changes leading to drift and

hysteresis. Tradeoff between the sensitivity of the

measurement and the stiffness of the structure [4].

Optical

sensors

Forces can be measured in as many as 6

DOFs [75]. They can be used inside Magnetic

Resonance Imaging (MRI) scanners [76]. Also,

they can detect changes with high sensitivity and

reproducibility with no hysteresis [75].

Limitations include sensitivity to noise, and that

optical fibres cannot typically achieve small

bending radii [4].

Measurement

of actuator

input

The system is no longer limited by the sensor

bandwidth (which can make a control or feedback

system unstable), and it is not necessary to incur

the cost of force sensors [77]. Does not rely on force

sensors, which often do not operate properly when

exposed to high temperatures and humidity [78].

Very sensitive to uncertainties [78]; if the system

cannot be properly modelled (due to high joint

friction, for example), the estimation error can be

significant.

Capacitive-

based

sensing

Limited hysteresis, better stability and increased

sensitivity compared to strain gauges [4, 79].

Require more complex signal processing and are

more expensive than other methods [4, 79].

Resonance-

based

sensing

High signal to noise ratio and digital processing is

possible.
Affected by nonlinearities and hysteresis [79].

Piezoelectric

sensing

Since these materials generate their own voltage,

no additional power supply is needed [4]. They

have high bandwidth, high output force, compact

size and high power density [79].

Very temperature dependent and subject to

charge leakages [4]). This results in a drifting

signal when static forces are applied, thus making

them suitable for the measurement of dynamic

loads only.

(a) (b)

Figure 2.4: Examples of strain gauges used in instruments to measure forces during natural orifice
procedures [37] (left) and during laparoscopic procedures [80](right).
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Optical sensors: Another technology often used for sensing force is based on measuring the

change in intensity or phase of a light signal as it passes through a flexible structure. When forces

are applied to the structure, the way in which the structure flexes creates a change in the intensity

of the light or causes the phase of the light signal to vary proportionally, making it possible to

estimate the amount of force or pressure being applied. The design of 6-DOF optical force sensors is

presented in [75,76], while the development of optical force sensors for MIST is discussed in [81,82].

Measurement of actuator input: When actuators are used to drive the joints of a manipu-

lator, the input to the motor (for example, the current drawn by electrical motors or the variation

in the pneumatic pressure in pneumatic actuators), can be directly related to the amount of force

or torque generated. Since these signals are affected by internal joint friction and actuator nonlin-

earities [4], knowledge of the mechanism kinematics and friction dynamics is critical for force and

torque measurements to be accurate. Measurement of actuator input is mostly used in master–slave

(teleoperation) systems for force or torque control or for haptic feedback.

In order to use the input to the actuators as a means of estimating applied forces, an observer-

based control system is commonly used. For this purpose, a model of the system needs to be

developed and the uncertainties of the model compensated for or measured. Observer-based sensing

compares the difference between the output of the nominal model and the actual system output. If

the uncertainties are known, the disturbance observer can estimate the amount of force generated at

the output based on the actuator input [83]. To measure uncertainties, [84] uses neural networks

to estimate friction, inertia, and gravity, while [78] uses a modified extended Kalman filter to

compensate for the modelling error, sensing bias and measurement noise. A Nicosia state observer

is utilized in [85] together with a general bilateral control law that ensures matching of the forces

at the master and the slave. Examples of these types of controllers are presented in [77,78,83,84],

while only the latter has actually been used in MIST.

Capacitive-based sensing: This type of sensing is commonly used to measure tactile infor-

mation. It depends on the use of a membrane, which when deflected, causes the distance between

two electrodes separated by a dielectric material to change. Examples of instruments based on

this concept include [86,87].

Resonance-based sensing: This type of sensing is also membrane based. A change of force

and pressure can be detected by measuring the change in the resonant frequency of the membrane.

Piezoelectric sensing: In piezoelectric materials, a change in mechanical stress results in
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a voltage change across the material [79]. The most commonly used piezomaterials for sens-

ing and actuation purposes include a piezoceramic called Lead Zirconate Titanate (PZT) and a

piezopolymer called Polyvinylidene Fluoride (PVDF) (see [88] for more details on these and other

piezomaterials).

Other technologies: It is possible to find in the literature other technologies for measuring

forces that still have not been used in MIST applications. Deflection sensors are one of these

technologies, which are based on the ability to measure the deflection of a component with known

material properties to estimate the amount of force being applied on it. The key for these sensors

to be effective is to be able to properly measure displacement. Displacement sensors include

potentiometers, Linear Variable Differential Transformers (LVDTs), and encoders [89]. A 3-DOF

force sensor based on measuring beam deflection using LVDTs is presented in [90].

Some force sensors utilize piezomagnetic materials, in which a change in the stress applied can

be detected as a change of permeability in the presence of a magnetic field [79]. In [91], a 6-DOF

force sensor has been designed using ultrasound transducers. The sensor measures the amount of

time it takes for an ultrasound pulse to travel from the emitter to the sensor. As forces are applied

to the object, an elastomer layer deforms, changing the distance that the ultrasound pulse needs

to travel. A series of transducers are placed in a particular pattern to measure multi-axial forces

and torques. The authors claim that these sensors are highly accurate, robust and inexpensive

compared to other modalities.

2.3.2 Requirements of Force Sensors in Medicine

In order to select the appropriate technology for clinical applications, it is necessary to consider

the particular requirements that force sensors must meet when used in minimally invasive medical

instruments. The most critical requirements are as follows:

Range and Resolution: Force sensors need to be properly designed to measure the range

of forces commonly found in MIST, with sufficient resolution to obtain meaningful information.

Ultimately, the force sensors must be able to sense the forces that are commonly applied during

clinical procedures. The range can be determined based on the maximum and minimum forces

expected. In order to reduce the effect of quantization error, the sensor resolution should be one

order of magnitude less than the force difference that needs to be resolved [92]. In [81], it is stated

that for common MIST procedures, a force range of ±10 N with a resolution of 0.2 N is desired.
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In [82], it is determined that a force range of ±2.5 N with a 0.01 N resolution was optimal for

needle driving tasks. Similarly, [92] showed that a 0 to 2 N range with 0.01 N resolution was

required for lung tumour localization using kinesthetic feedback.

Size and weight: Applications of force sensors in MIST are also limited by constraints on

the size and weight of the sensors. Regardless of location, sensors must be lightweight [93], as they

need to be maneuvered with the instrument without significantly increasing its inertia. For sensors

placed inside of the body, they must be smaller than the size of the trocar being used [81, 93]. In

most cases, this limits the diameter of the sensor to 10 mm, while the length can be up to several

centimetres.

Biocompatibility: When force sensors need to enter the patient’s body, they must be made

from biocompatible materials. Any system that treats, augments or replaces any tissue or organ

needs to be made from biocompatible materials [94]. The requirements for the selection of the

materials to be used for force sensors are not as stringent as for devices that are implanted within

a body, nonetheless, the effect that the material has on the body, as well as the effect that the

body has on the material, must still be considered [95]. Appropriate materials must be nontoxic,

must not produce an immune response in the body and must not react with the body in any way.

Biocompatible materials include certain polymers, ceramics, carbons and metals. See [94] for a

detailed description of these materials and the international standards that they must meet.

Sterilizability: All sensors that enter the patient’s body must be able to withstand a steril-

ization procedure. Sterilization of medical instruments refers to “the use of a physical or chemical

procedure to destroy all microbial life, including those microorganisms that exist on inanimate ob-

jects” [96]. Sterilization is necessary to prevent infections caused by fungi, bacteria, and viruses [4].

The most common sterilization methods include steam (autoclave), ethylene oxide, and gamma

and electron beam irradiation [97]. The procedure for sterilization and disinfection is specific to

each application and must be developed according to the infection risk of the medical device being

used.

In hospitals, the most widely available method is the autoclave: steam sterilization reaching

105–135 °C at high pressure for at least 15 minutes. It is difficult to design electronic components

that can withstand these conditions. In order to meet sterilizability requirements, sensors must be

able to withstand at least one sterilization method.

Sealed: In order to work in environments that are wet and warm, sensors must be waterproof
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and sealed [81]. Small crevices and cracks within the sensors must be avoided, as biomatter and/or

fluids may infiltrate into them. If this is not possible, a proper cleaning and sterilization procedure

must be developed to remove the contaminants without causing damage to sensing elements or

associated electronics.

Sensitivity: For force sensors to be effective, design considerations must include the required

accuracy, bandwidth, hysteresis, creeping [98], sensitivity to noise, and sensitivity to temperature

and humidity variations.

Other requirements: Ideal sensors should be inexpensive [14], especially if they are to be

integrated into disposable or limited use devices. A modular design is also desirable [55], allowing

sensors to be integrated into different instruments for multiple applications.

2.3.3 Calibration

Once an appropriate technology has been selected to meet the design constraints presented above,

design engineers must consider how the data from the sensing modality selected will be used in

order to obtain meaningful information. To achieve this, it is necessary to establish a relationship

between the signals being measured and the actual forces or torques being applied. For this

purpose, a calibration procedure needs to be performed.

In most cases, the calibration procedure consists of applying known forces throughout the

operating range of the sensor and measuring the resulting change in the output signal. A calibration

equation or matrix can then be developed and used to estimate sensor accuracy, reproducibility

and hysteresis. Examples of calibration methods for different types of sensors are presented in

[66,75,99].

2.3.4 Interface Requirements

Once the force sensing information is acquired, it must be transferred back to the user in a manner

that is useful and effective. Most of the time the signals produced by the technologies presented

above are very small with some degree of noise. Thus, to be useful, these signals must often be

filtered and amplified prior to use (see Figure 2.5 [64]). The signals must then be digitized for

acquisition by a computer, where subsequent processing and/or recording may be performed [100].

There are many different ways of processing this information in order to present it to the user

through haptic interfaces or other graphical force representations.
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UserInterfaceComputerFilter Amplifier A/D 
ConverterSignal

Figure 2.5: Signal processing flow.

(a) (b)

Figure 2.6: Examples of haptic interfaces for MIST applications: reference [111] (left) and reference
[103] (right).

Haptic interfaces refer to input devices that incorporate actuators that may be used to move or

to prevent motion in certain directions [101]. This creates the impression that forces are acting on

the device as the user manipulates the handle. 3-DOF devices, which provide “single point interac-

tion,” have been shown to produce a significant improvement in performance over no force feedback;

however, the limitations of the 3-DOF interface impair the ability to determine shape, stiffness,

size and other characteristics [102]. Feedback provided in all 6-DOF might be better, especially

when combined with tactile information. Examples of haptic interfaces designed for MIST include

a system for surgery and therapy [103] (see Figure 2.6), haptic forceps for microsurgery [104], a

force reflection scheme for a master system using actuated and sensorized forceps [32], and a haptic

interface device that provides kinesthetic feedback as well as tactile information via an array of

pins [105,106]. Examples of master–slave systems with force feedback include [49,85,101,107–111].

An alternative to haptic interfaces is to use sensory substitution to relay force information.

The data can be presented to the user in the form of graphical or auditory signals. The benefits

of sensory substitution, apart from avoiding the cost of haptic interfaces, include the ability to
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Figure 2.7: ATI Nano-17 force sensor.

increase haptic resolution and magnify forces while not conveying force information to the user that

could result in misleading or erroneous conclusions. However, there is a fundamental difference

between direct force feedback and various types of sensory substitution in that when the senses

are substituted, cognitive attention is required to respond [112]. This means that people can

respond to direct force feedback more quickly than to sensory substitution. Studies that focused

on determining how sensory substitution compares to haptic feedback have been presented in

Section 2.2.

2.4 Force Sensing Technologies and New Developments

Using the technologies presented above, a significant amount of research has been done in order

to develop adequate force sensors for different applications. Several force sensors are available

commercially but most are still at an experimental stage. The most significant contributions to

the field, with details on the technologies used, are presented in the following sections.

2.4.1 Commercially Available Force Sensors

A list of commercially available force sensors and their main characteristics is presented in Table

2.4. This table shows that there are no force sensors available that can sense forces in multiple

DOFs and that are small enough to fit through minimally invasive surgical ports. The closest

commercial sensor is the Nano-17 (ATI, Industrial Automation), which measures forces in 6 DOF,

is 17 mm in diameter and can be sterilized with ethylene oxide or formaldehyde, see Figure 2.7.
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Table 2.4: Summary of small commercially available force sensors.

Company Website Smallest size (mm) DOF Sterilization Technology

Vishay www.vishay.com 5.8 × 3.0 × 0.02 1 A No SG

Futek www.futek.com 30.5 × 6.4 × 0.0762 1 A No SG

Sensy www.sensy.com 40 OD × 11 1 C No SG

PCB
Piezotronics

www.pcb.com 16.5 OD × 7.9 1 C No SG

HBM www.hbm.com 17 OD × 6 1 A/T No SG

Sherborne www.sherbornesensors.com 17 OD × 53 1 A No SG

Gefran www.gefran.com 31.75 OD × 17 1 C No SG

Flintec www.flintec.com 150 × 40 × 25 1 A No SG

Haehne www.haehne.de
40 OD × 60 or
55 OD × 24

1 C No SG

TME www.tme-france.com 24 OD × 21 1 A No SG

Dytran
Instruments

www.dytran.com 19 OD × 45 1 A No
Piezo electric
crystals

Statek www.statek.com
tine width is 7.1
thickness 7–8

1 A No
Quartz crystal
resonators

Kistler www.kistler.com
7 OD × 3 or
6.3 OD × 43.3

1 A/T No
Piezo electric
quartz

Interlink
Electronics

www.interlinkelectronics.com 5 × 5 × 0.2 1 C No
Customized
resistors

SensorTechnics www.sensortechnics.com 9 × 4 × 3 1 A No Piezo resistors

Honeywell sensing.honeywell.com
17.15 OD or
3.25 × 5.6 × 11.7

1 A

Fully sealed,
sterilizable with
isopropyl
alcohol

Piezo resistors

Femto Tools www.femtotools.com 36.4 × 15.9 × 5.3 1 A
Sterilization of
the silicon tip of
the instrument

Capacitive
sensors

Strain
Measurement
Devices

www.smdsensors.com 66.04 × 6.35 × 0.46 1 C
Autoclave,
radiation or
diluted bleach

Thin film SG

MicroStrain www.microstrain.com 5 × 1.4 × 1.8 1 A
Alcohol,
radiation or gas
sterilization

SG

Omega www.omega.com 9.6 OD × 3 1 C

Alcohol
sterilization of
stainless steel
products

SG

Tekscan Inc.
www.tekscan.com
Flexiforce sensors

0.208 × 51 × 14 1 C
Gamma
radiation; some
autoclaveable

Piezo resistors

Bokam
Aura/Supra www.bokam.com 36.3 × 24 × 18 3 F No SG

BL Autotec www.bo-autotec.co.jp
18 OD × 32.78
25 OD × 22

6 M, F No SG

ATI www.ati-ia.com 17 OD × 14.5 6 M, F
Ethylene oxide,
formaldehyde Silicon SG

OD: outer diameter
C: compression, unidirectional
A: axial, tension and compression
T: torque
F: three orthogonal forces, x, y and z
M: three orthogonal moments about the three main axes
SG: Strain gauges.
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2.4.2 Novel Force Sensors in Clinical Applications

A summary of force sensing technologies that have been proposed in the literature is presented in

Table 2.5. Of note is a novel method of force sensing proposed in [113], which uses nonintrusive

biofeedback sensors incorporated into standard surgical tools to quantify oxygen levels in tissue.

Tissue oxygen levels can be directly related to the magnitude of the force exerted on them, and the

information can be used to warn the clinician if oxygen levels drop below acceptable levels. Also,

the system presented in [48,114] is able to sense forces in all DOFs available in surgery. The distal

end of the instrument is sterilizable in an autoclave. The electronics are packaged in a thermally

stable material and covered with a synthetic resin for insulation [114]. Information from these

types of instruments can be combined with tactile information for full haptic feedback.

A review of tactile sensors for industrial applications can be found in [98]. The development

of a compliant tactile microsensor for a multi-fingered hand is presented in [115]. Similarly, [2]

presents the design of a robot for arterial pulse palpation that utilizes a sensorized finger based on

custom capacitance-based technology and strain gauges on the finger joints. Finally, the tactile

sensing and feedback system presented in [105] uses a tactile sensor developed by [87] and a tactile

array based on a series of pins to provide feedback. However, some researchers have determined

that tactile sensing is not particularly beneficial [12]. A study presented in [15] identified that

tactile information alone cannot be fully interpreted unless paired with force information.

2.5 Discussion

The sections above have presented a thorough review of what has been accomplished in the field of

force sensing in general and more specifically for clinical applications. In summary, the science of

force sensing has come very far through the introduction of novel technologies and configurations

that allow sensing to be performed in small spaces and in multiple directions. Many researchers are

actively engaged in developing methods to restore the force information that is currently impaired

or missing from the tools, instruments, and systems used for MIST.

Many studies have focused on determining if force sensing is really necessary, and if so, which

degrees of freedom are most important and for which tasks. Force sensing information has been

shown to be useful in situations where the applied forces are extremely small and cannot be detected

by the human hand, when tissue characteristics need to be determined through palpation, and
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in robot control. Particular tasks like knot tying and tissue manipulation could benefit from the

availability of force information to ensure that sufficient forces are applied to avoid slippage but that

no damaging forces are exerted on the tissue. It has been suggested that knowing the mechanism

by which force feedback improves performance can help in the design of proper interfaces and to

identify those tasks in which force feedback is needed [112].

The availability of quality force information requires the development of properly designed

force sensors. The requirements of force sensors depend significantly on what information needs to

be collected, which determines where the sensors need to be located on the instrument. For most

applications, the goal is to place the sensors as close as possible to the point at which the instru-

ments interact with the tissue—this significantly constrains the size and sterilization requirements

of the sensors. Commercially available sensors can be used in customized configurations to sense

forces in multiple degrees of freedom and within the patient’s body. However, none of the sensors

available commercially can sense forces in 6 DOFs (let alone 7 DOFs), in a package small enough

to enter the patient’s body in a minimally invasive manner.

Researchers aiming to circumvent the constraints imposed by MIST have come up with some

ingenious solutions. The development of a mechanically efficient instrument to reduce internal

friction is a great solution to the inability to sense gripping forces directly. Master–slave systems

that compensate for instrument friction in dexterous instruments are aiming to achieve a similar

goal, with benefits that could extend to multiple degrees of freedom.

The force sensor presented in [48,114] is the closest design to an ideal force sensor for detecting

tool–tissue interaction forces in MIST. The commercial availability of this sensor would aid in

the development of systems capable of providing force feedback in 6 DOFs and can be integrated

with other sensors to provide 7 DOFs. Once the force information is available, determining the

best way of processing and displaying the information is another active area of research. The

development of haptic interfaces ensures that the forces are presented to the user in an intuitive

manner. Alternatively, sensory substitution allows the force information to be merged with other

sensing and imaging modalities and could prove to be more beneficial for certain tasks.

Filling in the gaps in the current state of the art is the focus of this work. The first step was to

develop instruments capable of sensing forces and torques in all 5 DOFs available in laparoscopic

MIS. The following chapter presents the design of the first prototype of the sensorized instruments.



Chapter 3

First-Generation SIMIS Instruments

3.1 Introduction

As presented in the previous chapter, a significant amount of work has been done to address the

issue of degraded haptics in MIS. However, there is still a need for an independent force sensing

system that can be used in any surgical or training scenario (laparoscopic trainer, animal labs

or real surgery) for the purpose of measuring kinesthetic forces applied at the instrument–tissue

interface. To address this need, the Sensorized Instrument-based Minimally Invasive Surgery

(SIMIS) system was developed. This chapter describes the design, development and assessment of

the first prototype. This chapter is based on reference [80].

3.2 Design Specifications

The goal of this work was to design and develop a highly versatile system that can be used in

real surgical procedures and that provides force and position information through novel design

features. Such an instrument offers several benefits to practitioners of MIS: force information can

warn of excessive forces being applied on delicate tissue or insufficient forces applied when grasping

or cutting; force data can aid in characterizing tissue stiffness and identifying diseased areas such

as tumours or calcifications; force and position information can be used to provide warnings about

the application of damaging forces while the instruments are out of the field of view; force and

position trajectories recorded when performing standardized tasks can be used for training and

skills assessment; instrument position data can be used to provide warnings when entering high

28
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risk areas; or available force and position data could be merged with preoperative or intraoperative

images to provide additional guidance to the surgeon. The specifications for the instrument were

then outlined as follows:

1. The instrument must fit through a standard minimally invasive surgery port (maximum outer

shaft diameter is 10 mm).

2. It must be capable of measuring forces and torques acting in all 5 DOFs available dur-

ing laparoscopic MIS. These include the 3D forces acting at the tip, the torque about the

instrument axis and the gripping or cutting force, depending on the instrument.

3. It must allow measurement of instrument tip position and orientation in 6 DOFs.

4. The overall appearance and weight must be similar to traditional hand-held laparoscopic

instruments. This requirement is critical for the development of proper techniques when

used in training. If the instrument is restricted at the entry point, or heavy cables are

pulling down on the handle, the normal movement of the instrument will be compromised,

and surgical skills might not be developed properly.

5. In order to increase versatility and reduce overall cost, it must allow attachment of inter-

changeable tips and handles according to the different tasks that must be performed.

6. The software interface must allow the force and position data to be recorded while trainees

perform a series of standardized tasks.

3.3 Presentation of the Mechanical Design

A first prototype of the sensorized laparoscopic instrument has been designed to noninvasively

measure the interaction of the instrument with tissue in the form of forces or torques acting in all

five DOFs available during MIS. The instrument is composed of three concentric shafts. An inner

shaft (2.50 mm in diameter) controls the opening and closing of the tip and is directly connected to

the handle. A middle shaft (4.76 mm in diameter) provides rigidity to the instrument and connects

the static components of the handle and the tip. An outer shaft (9.53 mm in diameter) “floats”

over the middle shaft, providing a sealed environment for the sensing elements and protecting them

from moisture and wear. Figure 3.1 shows the overall design of the instrument in two different
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Figure 3.1: Instrument design with needle driver handle and tip (top) and with traditional handle
and gripper attachment (bottom).

Figure 3.2: Detail of the instrument design showing the o-ring location for attachment of the outer
shaft. The rotating wheel shown in the top image allows the user to rotate the distal
end of the instrument in order to reorient the tip with respect to the handle.

configurations: a typical scissor-like handle with a gripper attachment (41.8 cm long) and a needle

driver handle and tip (49.1 cm long). The outer shaft is held by two o-rings as shown in Figure

3.2. These o-rings seal the inside of the instrument from moisture and ensure that the outer shaft

is held firmly in place. For ease of use, a rotating wheel allows the user to reorient the tip with

respect to the handle to optimize ergonomic conditions. The instrument has been designed in a

cost-effective and versatile manner with the addition of interchangeable tips and handles. The

sensors are all attached to the middle and inner sections of the instrument. This way, the same

sensorized elements can be used to perform the wide variety of tasks encountered during endoscopic

surgical procedures by attaching different tips and handles.
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Figure 3.3: Coordinate frame associated with the instrument.

3.4 Force Sensing

A survey of suitable force sensors was performed prior to the design of the instruments, as presented

in Section 2.4.1. It was found that none of the commercially available force sensors were adequate

for measuring forces at the tip of laparoscopic instruments due to their large size. Previous

experience with strain gauges [49] demonstrated that they would be appropriate for measuring the

deformation of the instrument shaft in order to determine the associated forces at the tip. A large

number of resources, including books and websites, provide information and guidelines on gauge

selection and placement in order to measure strain in different directions.

The specific placement and configuration of the gauges was selected based on a finite element

model analysis to determine the areas of increased stress concentration, as detailed in the following

sections. For reference, Figure 3.3 shows how the coordinate frames have been assigned to the

instrument.

3.4.1 Actuation Force

Actuation of the instrument tip is achieved by sliding the inner shaft of the instrument as the

handle is opened and closed. The applied force when gripping or cutting is therefore directly

related to the axial forces acting on this inner shaft. Preliminary calculations showed that the

maximum expected forces produced very little strain on the initial design of the inner shaft,

thereby requiring the ability to sense extremely small changes in resistance. In order to increase
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Figure 3.4: Type III full Wheatstone bridge (left) and the corresponding placement of gauges on
the inner shaft (right).

the axial strain, the cross-sectional area of the shaft was locally reduced by machining a 1 mm

thick flat section, 12.7 mm long, about 70 mm from the tip. This not only provided a better

surface for gauge placement, but also increased the axial strain by 140%. Furthermore, in order to

maximize the signal in the axial direction, a type III full Wheatstone bridge was used (see Section

A.2). This typical configuration for measuring axial forces is characterized by the use of four active

strain gauge elements. Two are mounted in the direction of the axial strain on opposite sides of

the shaft. The other two are mounted perpendicular to the first two gauges. When the four strain

gauges are connected in a type III configuration, the axial forces are maximized while rejecting

bending strain, compensating for the effects of changes in temperature, and compensating for lead

resistance. The details of the gauge placement and their connections are shown in Figure 3.4.

3.4.2 Bending Forces

The forces acting at the tip of the instrument in the x and y directions produce bending moments

that are proportional to the distance from the tip to where the strain is being measured. In order to

measure these moments, linear strain gauges were used. Two sets of two gauges were mounted on

opposite sides of the shaft in a half bridge type II configuration (Section A.2), as shown in Figure

3.5. This configuration rejects axial strain and measures only bending strain while compensating

for the effects of changes in temperature. Also shown in Figure 3.5 is the von Mises maximum

distortion strain energy distribution caused by a 3 N force acting at the tip of the instrument.

3.4.3 Axial Force and Torsion

Preliminary analysis indicated that the strain caused by forces acting in the x and y directions

was several orders of magnitude higher than the strain caused by forces acting in the z direction or
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Figure 3.5: Type II half Wheatstone bridge (left); placement of the gauges measuring bending
moment (gauges labeled A1 and B1 are wired together, while A2 and B2 are wired as
the other half bridge (centre) and stress concentration caused by a 3 N force acting at
the tip of the instrument (right).

Figure 3.6: Type I quarter Wheatstone bridge (left); placement of the two-element rosettes mea-
suring torsion and axial forces (each element is wired independently to a quarter bridge
(centre) and stress concentration caused by a compression force of 5 N in the axial di-
rection (right).

by torques about the z -axis. Thus, two 2.5 mm holes were drilled through the shaft in orthogonal

directions to locally increase the strain caused by axial forces and torsion.

Isolation of these two forces required the placement of two two-element rosette strain gauges on

opposite sides of the shaft (see Figure 3.6). Each rosette contains two gauges placed at 90 degrees

with respect to each other, at a 45 degree angle from the centre axis of the gauge. The rosette

elements were wired independently in a type I quarter bridge configuration, also called a 3-wire

connection. Figure 3.6 also shows the von Mises maximum distortion strain energy distribution

caused by a 5 N compression force acting in the z direction.

Connecting each of the four elements separately allows both the axial and the torsional forces

to be isolated. There are three main sources of stress acting on the material below the gauges:

1. Shearing stress caused by torsional forces: τ = T · r/J , where T is the torque acting about

the z -axis, r is the radius of the shaft, and J is the polar moment of inertia of the cross

section of the shaft;
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2. Axial stress: σa = F/A, where F is the axial force and A is the cross sectional area of the

shaft; and

3. Bending stress: σm = M · r/I , where M is the maximum moment acting about an axis

perpendicular to the gauge plane and I is the moment of inertia of the cross section of the

shaft.

Assuming symmetry, the rosettes located on the opposite sides of the shaft are subject to the

same shear stress. However, due to the orientation of the sensing elements on each rosette, the

shear stress is equal in magnitude, but opposite in sign, on each element of the same rosette. If the

rosettes are located with their central axis perfectly aligned with the axis of the shaft, the axial

force produces the same stress on all four elements. The bending moment, on the other hand,

produces stresses on the top and bottom rosettes that are equal in magnitude but opposite in sign.

These differences in how the stresses affect the four elements of the rosettes allow the desired force

or torque to be isolated by adding or subtracting the appropriate signals. Therefore, if the four

elements are labeled using numbers 1 to 4, with 1 and 2 being on the same side, and 3 and 4 being

on the opposite side, the stresses acting on these elements are:

σ1 = −τ + (σa + σm) · cos(45◦), (3.1)

σ2 = τ + (σa + σm) · cos(45◦), (3.2)

σ3 = −τ + (σa − σm) · cos(45◦), (3.3)

σ4 = τ + (σa − σm) · cos(45◦). (3.4)

It is straightforward to prove that adding all four stress signals (σ1 + σ2 + σ3 + σ4) allows the

stress caused by the axial forces to be isolated, while adding 1 and 3 and subtracting 2 and 4

(σ1 − σ2 + σ3 − σ4) isolates the stress caused by the torsional forces.

Table 3.1 provides the details of the strain gauges selected to measure the different forces

acting on the instrument. These gauges were selected based on the analysis presented above and

the specifications and recommendations of the manufacturer.

Once the system is set up to measure strain on the instrument shaft, it is possible to determine

the magnitude of the forces and torques acting in all 5 DOFs available during MIS. A calibration
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Table 3.1: Details of the strain gauges used for force sensing.

Location
Gauge Number (Vishay

Micro-Measurements)
Gauge Factor Resistance (Ω)

Inner—axial strain EA-06-031DE-350 2.12 350 ± 0.2%

Inner—Poisson only MA-06-060PB-350 2.095 350 ± 0.2%

Middle—bending moments J2A-06-S033P-350 2.10 350 ± 0.3%

Middle—two-element rosettes EA-13-062TV-350 2.055 350 ± 0.2%

(a) (b)

Figure 3.7: Examples of interchangeable tips (a) and handles (b) that can be attached to the
instrument.

procedure can be followed to establish an accurate correlation between the signal being measured

and the actual forces acting at the tip of the instrument, see Section 3.7.

3.5 Instrument Prototype

Two identical prototypes of the instruments were constructed from 316 stainless steel. The scissor

handles were constructed of ABS plastic. The needle driver handles used were obtained from

commercially available laparoscopic needle drivers (models 8393.941 and 8393.0005, R. Wolf, Inc.).

The instrument tips include the Raptor Grasper tip (ML-3291-E), the Endocut Scissor tip (ML-

3141E) and the Super-Atrau Raptor Grasper (ML-3632, Microline Pentax, Inc.). The needle driver

tips were designed and constructed of stainless steel. Figure 3.7 shows the tips and handles that

can be attached to the same sensorized shafts. Figure 3.8 shows the strain gauges mounted on the

inner and middle shafts.
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(a) (b)

Figure 3.8: Placement of gauges on the middle (a) and inner shafts (b).

Figure 3.9: Cable wiring to allow the inner shaft to slide inside the middle shaft in order to
accommodate the different tips.

Due to the configuration of the different handles, the inner shaft needs to slide with respect

to the middle shaft when the handles are replaced, while still maintaining the ability to open and

close the gripper without the cables getting tangled. Figure 3.9 shows how the cables have been

wired to allow the inner shaft to slide inside the middle shaft and accommodate the different tips

and handles. The inner shaft can slide with respect to the middle shaft without causing the cable

to get tangled or pinched.

3.6 Additional Hardware and Software Interface

The equipment used to capture force and position information in real time is shown in Figure 3.10.

It includes three major components: a personal computer (PC), the position sensing system, and

the force sensing elements.

The microBIRD™ Electromagnetic Tracking System (EMTS) is used for position sensing. This

system connects directly to the PC through a PCI card, through which the signals from the two

electromagnetic sensors are captured.

The strain gauges attached to each instrument are connected to seven Quanser strain gauge
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Figure 3.10: Experimental setup.

amplifiers that are powered by a Quanser Universal Power Module (model UPM-1503). The gain

from these amplifiers ranges between 40 and 2000 depending on the potentiometer setting. Two

Quanser Q8 Hardware-in-the-Loop boards (one for each instrument) are responsible for capturing

the signals from the amplifiers.

The personal computer used is an HP xw4100 workstation with an Intel 2.8 GHz Pentium 4 HT

Processor, 1 GB RAM, and running Windows XP. Customized software running on this computer

serves to capture, process and record the information from the electromagnetic sensors and the

strain gauges. The computer also facilitates the acquisition of video streams from an RS-170A

compatible endoscope or camera connected to an installed Matrox Meteor II PCI frame grabber.

A customized software interface (see Figure 3.11(a)) was developed in C++ by a research

engineer. The graphical user interface (GUI) presents real-time plots that display the force and

position data as indicated by the user. On another window, an interface facilitates force calibration

(see Figure 3.11(b)). All of the data displayed and computed by the software, as well as the video,

can be recorded into a database for offline processing and analysis. See Appendix A for more

details on the software.
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(a)

(b)

Figure 3.11: Customized software interface including real-time plots (a) and the calibration inter-
face (b).
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3.7 Calibration

In order to determine the relationship between the voltage changes measured by the strain gauges

and the actual forces and torques being applied at the instrument tip, a calibration procedure was

performed using the setup shown in Figure 3.12. The instrument was placed in different positions

and orientations in order to apply forces in each of the individual axes during calibration. To

calibrate the inner shaft, which measures actuation forces, weights were applied to the moving

gripper while the instrument shaft was supported along its entire length. Preloading of the gripper

was necessary to remove any play within the actuation system. The x and y moments were

calibrated by applying forces at the tip while the instrument was cantilevered, supported at the

rotating wheel (Figure 3.12(a)).

A special tip was designed to allow the application of pure torque and pure axial forces to the

instrument (see Figures 3.12(b) and 3.12(c)). During the torque calibration, the instrument shaft

was fully supported. When calibrating the z axis, the instrument was mounted on a gimbal that

ensured that the forces were applied axially (Figure 3.12(d)). In each case, the forces and torques

were calibrated by measuring the voltage increase when weights were applied in 100 g increments

from 0 to 1000 g. The calibrated values obtained are as follows: Sii = -.0022, corresponding to

the slope of the actuation force; Sxx = -.0295, corresponding to the slope of the x forces; Syy =

-.0297, corresponding to the slope of the y forces; Stt = -.0051, corresponding to the slope of the

torsional forces; and Saa = -.00051, corresponding to the slope of the axial forces.

In an ideal situation, the strain gauges would be completely decoupled from each other and

would only sense forces applied in the direction they were designed to measure. This, unfortunately,

is not the case in practice and so a method for decoupling the different signals was developed. It

was observed that the forces applied in the x and y directions were decoupled from the torsional

forces and from the axial forces. The only coupling present was caused by the grip. The coupling

factor in this case was determined by trial and error, adjusting it until actuation of the gripper

produced no observable force in the x and y directions.

To decouple the actuation force from the other signals, data were recorded for about 1 minute,

during which time forces were applied in all directions except for actuating the gripper. The data

were then run through an optimization process using the fminimax function in MATLAB. The

goal of the optimization was to find the optimal parameters (Pix, Piy, Pit and Pia) that minimized
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(a) (b)

(c) (d)

Figure 3.12: Instrument placement for calibration for: x and y moments (a), axial (b); and torsion
(c) . (d) Shows a close up of the gimbal designed for the application of axial forces.
Note that in these pictures, the stainless steel outer shaft was replaced by an ABS
plastic shaft. Photo credit: Meg Woodhouse.
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the maximum value of the following expression:

(1/Sii) · Ei + Pix · Ex + Piy · Ey + Pit · Et + Pia · Ea, (3.5)

where Ei is the strain measured by the gauges on the inner shaft, Ex and Ey are the strains caused

by bending moments in the x and y directions respectively, Et is the strain caused by torsional

forces and Ea is the strain caused by the axial force in the z direction. Considering that when this

data were recorded, no actuation forces were being applied, evaluation of this expression should in

theory be zero. Finding the parameters that minimize the maximum value of the equation would

then represent the best way to compensate for the coupling of the signals.

The same process was repeated for each of the axial and torsional forces using these expressions:

Pti · Ei + Ptx · Ex + Pty · Ey + (1/Stt) · Et + Pta · Ea, (3.6)

Pai · Ei + Pax · Ex + Pay · Ey + Pat · Et + (1/Saa) · Ea. (3.7)

3.8 Performance Assessment

Assessment of the strain gauge calibration process was performed as detailed in the following

sections:

3.8.1 Accuracy, Repeatability and Hysteresis

To assess the accuracy and repeatability of each signal, the instrument was placed in the same

setup used during calibration. Weights were applied to each of the axes in 100 g increments from

0 to 600 g. This process was repeated 3 times. The accuracy was calculated as the RMS of the

differences between the measured signal and the theoretical force applied by the weights. The

total error percentage was also calculated. Repeatability is presented as the maximum standard

deviation (σ) observed during all of the trials. To assess hysteresis, weights were applied to each

of the axes from 0 to 600 g and then back to 0 g in 100 g steps. The values at each weight were

then compared and the RMS error was computed. The results are summarized in Table 3.2.
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Table 3.2: Summary of the strain gauge calibration assessment.

Direction Typical
range

Noise/drift
(10 min)

RMS
error

Max error
(%)

Repeatability
(max σ)

Hysteresis

Actuation 0 to 50 N 0.05/0.26 N 0.35 N 22* 0.78 N 0.352 N

x axis ± 5 N 0.0041/0.02 N 0.07 N 2.3 0.032 N 0.016 N

y axis ± 5 N 0.0034/0.026 N 0.03 N 1.12 0.031 0.019 N

Torsion ± 80 N·mm 1.2/3.3 N·mm 1.5 N·mm 2.34 2.7 N·mm 3.65 N·mm

Axial ± 25 N 1.12/6.5323 N ** ** ** **

* A very high error was obtained for low grip values. For grip forces higher than 3 N, the maximum error was less than 4.5%.

** For these factors, the influence of noise, signal drift and coupling was too great to allow proper measurement.

3.8.2 Gravity Compensation

Gravity has a small effect on the forces in the x and y directions. Ideally, the effect of gravity

can be eliminated by using compensation terms that drive the measured forces to zero under no-

load conditions. To determine the value of the compensation terms, the instrument was rotated

in free space while recording the raw force and position data. An optimization script was then

generated using the MATLAB function fminsearch to determine the term that minimized the

error caused by gravity as a function of the rotation and elevation angles. The compensation term

was then incorporated into the calibration equations. The maximum error obtained when rotating

the instrument in free space with and without gravity compensation is shown in Table 3.3.

Table 3.3: Effect of gravity compensation on the bending moments: maximum error measured
when moving in free space.

Direction No gravity compensation (N) With gravity compensation (N) Reduction of error (%)

x 0.007284 0.003021 58.5

y 0.007244 0.002557 64.7

3.8.3 Signal Drift and Noise

To measure the amount of signal noise and drift, the instrument was placed within the workspace

without any forces applied at the tip. Data were recorded for 10 seconds to measure signal noise

and for 10 minutes to measure total drift. The results of this analysis are presented in Table 3.2.

Figure 3.13 shows a representative graph of the drift observed in the 5 signals. As shown, the drift

present in the axial signal dominates the other signals.
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Figure 3.13: Signal drift observed in the five measured directions.

3.8.4 Coupling

To assess the coupling of the signals, the effect on all of the signals of applying forces in each

individual direction was measured. The maximum deviation from theoretical zero values was

recorded. The results are presented in Table 3.4.

3.9 Validation of Force Calibration

Since the calibration of the instrument and the assessment were performed using the same setup,

alternate methods were used to validate the instrument. Different methods were used to validate

the actuation forces and the forces acting in the other directions, as presented below.

3.9.1 Actuation Force

To validate the calibration of the actuation force, the calibrated instrument was compared to

the estimated forces applied when compressing a small spring. To measure the compression of
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Figure 3.14: Sample image of the instrument compressing a spring for calibration validation.

Table 3.4: Maximum deviation from a theoretical zero value caused by coupling.

Effect on the
actuation
force (N)

Effect on the
x forces (N)

Effect on the
y forces (N)

Effect on
torsional

forces (N·mm)

Effect on
axial forces

(N)

Caused by actuation Range: 0–66 0.45 0.14 10.6 23.9

Caused by x -y forces 2.5 Range: ±6 Range: ±6 11.8 69

Caused by torsional forces 0.26 0.27 0.54 Range -120–80 11.9

Caused by axial forces 0.42 0.79 0.29 19.4 Range: -25–25

the spring, images were acquired using a Flea2 digital camera (Point Grey Research, model FL2

14S3C) with a varifocal lens (Computar, model T4Z2813CS, 2.8–12 mm, f/1.3, CS Mount) and

the PGR FlyCapture software. Measurements of the spring length were performed using ImageJ

software (US National Institutes of Health) [135]. An initial assessment of the spring was performed

by applying known weights to determine the spring constant. After the spring constant was

determined, the instrument was used to compress the spring by different amounts, as shown in

Figure 3.14. The results show an RMS error of 0.31 N.

3.9.2 Moments, Torsion and Axial Force

To validate the calibration of the other forces, the forces measured by the sensorized instrument

were compared to those measured by a Nano-17 6-DOF force sensor (ATI Industrial Automation).

A customized attachment was designed to ensure that the forces applied by the instrument were

aligned with those applied to the force sensor. Comparisons were made between the x -y force
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Figure 3.15: Comparison of the measured forces by a force sensor and by the strain gauges on the
sensorized instrument: x, y force vector (a), torsion (b), and axial forces (c).

vector applied to the instrument and the x -y force vector measured by the force sensor, between

the torque applied to the instrument and to the force sensor in the z direction, and between the

axial forces applied to the instrument and to the force sensor about the z axis. The results of

these comparisons are shown in Figure 3.15 and correspond to a total RMS error of 0.26 N for the

moments, 3.8 N·mm for torsion and 4.3 N for the axial forces. A correlation factor between the

two sets of data was computed using the Pearson product moment correlation. The results show

R2 values of 0.9750 for the moments, 0.9971 for torsion and 0.9639 for the axial forces.

3.10 Discussion

A sensorized laparoscopic instrument was designed and two prototypes were constructed. The

novelty and benefits of these instruments over existing technologies can be summarized as follows:

1. The instruments measure the forces and torques acting in all 5 DOFs available during MIS.

The forces being measured are those acting on the tip of the instrument and not on the handle

or at the port location. Furthermore, electromagnetic sensors attached to the instruments

provide position feedback in 6 DOFs. Other instruments found in the literature provide

forces at the handle of the instrument or only provide force measurements in three axes or

directly on the gripper.

2. Despite containing force and position sensors, the instrument is similar in shape, size and

weight to traditional laparoscopic instruments. A small, lightweight and flexible cable is at-
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tached to the shaft such that no limiting forces exist and the instrument motion is unaffected.

This allows surgical skills to be properly developed and assessed. Although the BlueDragon

system [40] also measures forces and position, a large manipulator is attached to the tool,

which may affect the proper development of skills when used for laparoscopic training.

3. Replaceable tips and handles make the instruments more affordable since all of the sensing

elements are on the shaft and different tasks can be performed by converting them into the

appropriate instruments. Despite increasing the complexity of the instruments by adding

sensors, the versatility of the instruments is maintained.

4. The instruments can be used in any training environment, e.g., in simulators, animal labs or

real surgery. Since the sensors are attached directly to the instruments and are not part of a

training box, the benefit of using them for skills assessment and training can be transferred

to any training environment for laparoscopic surgery.

The results of the actuation force calibration show a maximum RMS error of 0.35 N with good

repeatability and low hysteresis. The coupling effect of the other signals on the gripper force is a

maximum 2.5 N. Optimal results are obtained from the calibration assessment of the forces in the

x and y directions, which shows 0.07 N RMS error, excellent repeatability and very low hysteresis.

Furthermore, the maximum effect of coupling with the other signals is less than 0.8 N.

The torque calibration assessment shows a maximum RMS error of 1.5 N·mm with low errors

caused by hysteresis and repeatability. Unfortunately, the effect of coupling on torsion is significant

(up to 19 N·mm, while the typical range of torques applied during the performance of standardized

tasks is ±80 N·mm). That said, there is excellent correlation between the torque measurement

from the instrument and that measured by a commercially available force/torque sensor. The

validation of the calibration using the spring and the ATI force sensor shows strong correlations

between the values measured by the instrument and the theoretical results.

3.11 Limitations of the First Prototype

The large amount of drift and noise present in the axial signal are caused by the way the quarter

bridges are combined. Since all four signals are added, the noise present in all of the signals also

gets added and cannot be cancelled out. While trying to assess the calibration of the axial signal,
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it was not possible to zero the signal for long enough to perform a proper comparison between

the signals. It should be emphasized that the amount of drift, noise, and coupling present in the

axial forces is very high, making the data obtained unreliable. As such, the data acquired from

these gauges cannot be taken as a true measure of the forces. However, when the axial forces

measured by the instrument were compared to those of a force sensor, it was observed that the

signal obtained follows the true signal and can be a good indication of the general trend of the

forces being applied axially on the instrument. Furthermore, for the present application, the main

purpose of the instrument is to be able to compare the forces between different users, in which

case, a comparison of trends can still be performed.

Some experiments were successfully performed at CSTAR using these instruments [136, 137];

however, the need for an improved designed was recognized, as presented in the following chapter.



Chapter 4

Second-Generation SIMIS

Instruments

4.1 Introduction

The first generation of the SIMIS instruments had some novel aspects and effectively sensed forces

in some directions; however, the instruments suffered from a few limitations. This chapter out-

lines how the limitations present in the first prototype were addressed by the second-generation

prototype.

4.2 Lessons Learned and Design Solutions

The limitations with the first prototype and the solutions integrated into the design of the new

prototype were as follows:

4.2.1 Limitation 1: Poor axial and torsional signals

Having separate gauges connected in a quarter-bridge configuration with the intention of separating

the axial and torsional signals should have worked in theory. In practice, however, the signals are

affected by noise that does not cancel out when adding and subtracting the signals. This caused the

axial signal to have significant drift and both the axial and the torsional signals to be significantly

coupled with the other signals, to the point that they did not provide reliable information during

48
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Figure 4.1: Instrument close-up showing axial concentration element inside the housing.

calibration or during sensing.

Design solution: Individual strain gauges were used for each signal in two separate full bridge

configurations. Measurement of the torsional forces acting about the instrument shaft required

two sets of two-element rosettes connected in a full torsion bridge configuration, see Section A.2.

Each rosette contains two gauges placed at 90° with respect to each other at a 45° angle from the

centre of the gauge.

A structural element was developed to maximize and decouple the signal used to measure axial

forces. This involved a specialized element with a thin wall section perpendicular to the instrument

axis, with four small slots. Figure 4.1 shows the structural element, while Figure 4.2 shows how

it deforms when axial forces are applied. Strain gauges placed between the slots measure this

deformation while cancelling other forces. Two dummy gauges placed on the main shaft allow the

gauges to be connected in a type III full bridge configuration to maximize the signal, reduce noise

and compensate for variations in temperature, see Section A.2.
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(a) (b)

(c) (d)

Figure 4.2: Stress concentration diagrams as forces increase from 0 to 20 N in the axial direction.

4.2.2 Limitation 2: Coupling between the actuation force and the bending

moments in one direction

In order to increase the deformation and for ease of strain gauge installation, a flat section, 1-mm

thick, was machined on the shaft. Due to this narrowing of the inner shaft, it tends to bend more

when forces are applied perpendicular to this flat surface, compared to when forces are applied

in a parallel direction. This created an undesired coupling between the actuation signal and the

bending moments in one direction only.
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Design solution: To alleviate this coupling, a joint on the inner shaft was added with its axis

parallel to the surface of the flat in order to mechanically isolate the anterior and posterior parts

of the inner shaft. When bending moments act on the instrument, the joint relieves the stresses

on the inner shaft minimizing the coupling between the signals. See Figure 4.3.

Figure 4.3: Inner shaft showing the decoupling feature.

4.2.3 Limitation 3: The step on the outer shaft creates difficulties when sutur-

ing

The presence of the step between the instrument shaft and the tip caused the thread to sometimes

become stuck during suturing, limited the visualization of the tip in certain orientations and

reduced the amount of surface available for wrapping the suture during knot tying.

Design solution: To avoid these complications, the shaft was smoothed out by gradually re-

ducing the diameter further up the shaft. This design still provided enough room for the wires

and the gauges, see Figures 4.4 and 4.5.

4.2.4 Limitation 4: Needle driver tips breaking

The thin walls of the link that forms part of the needle driver tip mechanism broke a few times

as the actual gripping forces applied during suturing were significantly higher than those expected

(it was common for subjects to apply 60 N of force when grasping the needle as opposed to the

expected 20 N).

Design solution: The tip was designed with slightly thicker walls on the link, Figure 4.6. Also

the material was changed from stainless steel 316 (yield strength of 138 MPa) to a Grade 5 titanium
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Figure 4.4: New instrument housing.

(a) (b) (c)

Figure 4.5: Inner housing details: close-up of interface at the distal end (a), close-up of the reduced
diameter (b), and close-up of interface at the proximal end (c).

alloy (called Ti 6Al-4V because of the addition of Aluminum and Vanadium alloying elements)

with a yield strength of 827 MPa.

4.2.5 Limitation 5: Long change-over time between the two models

In order to change over from the needle driver handle to the scissor handle, a screw needed to be

removed from the scissor handles prior to taking them apart. The linking components then needed

to be screwed in and out, which caused the wires to tangle and increased the risk of breaking.

Design solution: To solve this problem, a quick connect mechanism was added between the

handles and the shaft, see Figure 4.7. Furthermore, the design of the scissor handles was changed
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Figure 4.6: Comparison of tip design: new (top) and old (bottom).

(a) (b) (c)

Figure 4.7: Quick connect mechanism: in closed position (a), in open position (b), and in open
position showing the inner spring (c).

so that they could be attached to the instrument without disassembling them.

4.2.6 Limitation 6: Difficult wiring of the cables

The thin nature of the wires and the fact that they need to be routed around moving components,

caused them to break easily through rubbing or due to tangling. Wire repair is very time consuming

and affects the noise present in the signals.
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(a) (b)

Figure 4.8: Outer view of opening for cables (a) and inner view of space available for cables (b).

Design solution: Routing of the cables was completely planned out in the new design and

enough room was provided so that these could be protected as they came out through the rotating

wheel, see Figure 4.8.

4.2.7 Limitation 7: Instrument too short

Due to the position of the rotating wheel with respect to the tip of the instrument, it was de-

termined that the section of the instruments that could enter the patient’s body was in fact too

short.

Design solution: The length of the instrument after the rotating wheel was increased by 6.3

cm (to 31.8 cm, as measured from the rotating wheel to the tip base, up from 25.5 cm).

4.2.8 Limitation 8: Cumbersome setup, difficult to move and easy to damage

The initial version of the electronics included the 7 strain gauge amplifiers mounted on a vertical

plate, completely exposed. The cables would then run up to the breakout boards for the data

acquisition cards (Q8 DAQ, Quanser, Inc.) outside of the computer, which would then have

another cable going into cards located inside of the computer case.

Design solution: The strain gauge amplifiers were connected directly to the data acquisition

cards inside of the computer case and were mounted in a plastic enclosure to which the instruments

connect directly. Figure 4.9 shows the old and the new components.
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(a) (b)

Figure 4.9: Modifications to the electronic connections of the instruments: old design (a) and new,
more compact design (b).

4.3 Calibration

As with the previous prototype, in order to obtain reliable measurements from the sensors, the

system must first be calibrated. Force calibration is required to establish the relationship between

the measured voltages and the forces acting on the instruments. The calibration jig, shown in Fig-

ure 4.10, was designed by a research assistant, considering the lessons learned from the calibration

jig used with the first prototype. This jig still allows weights to be placed in each of the directions

being calibrated, but simplifies control of the position of the instrument when calibrating the x

and y directions. Through a rotating wheel attached to the jig, it is possible to fine tune the

position of the instrument to ensure that it is properly aligned prior to calibration. As with the

first prototype, the x and y moments were calibrated by applying weights at the tip while the

instrument was held in a cantilever configuration. For the torsional moments, the instrument was

supported at three points along the shaft length and weights were applied to the tip of the open

gripper. The axial forces were calibrated by holding the instrument in a perfectly vertical position

and hanging weights from a string attached to the tip.

To calibrate the inner forces, a small force/torque sensor was used (Nano-17, ATI Industrial

Automation). A component was designed so that as the grasper was closed, the grasping forces

would create a torque on the sensor that could be directly related to the grasping force. To

ensure consistency, the instrument was mounted on the calibration jig and levelled with the force

sensor. Several values were recorded from the sensor and the instrument as the grasping force was

gradually increased using the ratcheting mechanism on the instrument handle.
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(a) (b)

Figure 4.10: Calibration jig showing the instrument mounted for calibrating moments (a) and for
calibrating grasping forces (b).

4.4 Performance Assessment

4.4.1 Force Calibration Assessment

A series of experiments were conducted to evaluate the performance of the force sensors when

forces were applied at the tip of the instrument, as follows:

1. Accuracy: To assess the accuracy of each signal, the instrument was placed in the calibration

test bench while weights were applied from 0 to 500 g in 100 g increments in each direction.

This process was repeated 3 times. The accuracy was calculated as the root mean squares

(RMS) of the differences between the measured forces and the theoretical forces.

2. Repeatability: With the same data obtained for accuracy, repeatability was determined by

calculating the maximum standard deviation observed during all of the trials.

3. Hysteresis: To assess the effect of hysteresis, weights were applied in each direction from 0 to

500 g and back to 0 in 100 g increments. The values at each weight level were then compared

and the RMS error was calculated.

4. Signal drift and noise: Data were recorded for 10 seconds to measure signal noise and for 10

minutes to measure drift.

5. Coupling: the effect that each force has on the other forces was measured as the maximum

deviation in all other signals when applying a force of 5 N in each direction.
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Table 4.1: Summary of the strain gauge calibration assessment of the second-generation prototype.

Direction Typical
range

Noise/drift
(10 min)

RMS
error

Repeatability
(max σ)

Hysteresis

Actuation 0 to 50 N 0.013 / 0.058 N 0.36 N 0.18 N 0.28 N

x axis ± 5 N 0.015 / 0.057 N 0.10 N 0.04 N 0.10 N

y axis ± 5 N 0.021 / 0.054 N 0.07 N 0.06 N 0.21 N

Torsion ± 80 N·mm 0.04 / 0.27 N·mm 0.7 N·mm 1.2 N·mm 1.0 N·mm

Axial ± 25 N 0.039 / 0.030 N 0.16 N 0.13 N 0.14 N

Table 4.2: Maximum deviation from a theoretical zero value caused by coupling.

Effect on: actuation
force (N)

x forces (N) y forces (N) torsional forces
(N·mm)

axial forces
(N)

Caused by actuation Range: 0–66 0.07 0.06 0.12 0.50

Caused by x -y forces 0.21 0.06 (y)
Range: ±6

0.14 (x)
Range: ±6

0.57 0.04

Caused by torsional forces 0.03 0.03 0.30 Range -120–80 0.65

Caused by axial forces 0.1 0.05 0.05 0.11 Range: -25–25

The evaluation results are presented in Tables 4.1 and 4.2.

4.4.2 Multi-tip Calibration Assessment

A series of experiments were performed to determine the effect of changing the instrument tips

on the force calibration. The purpose of these experiments was to determine if the instruments

needed to be re-calibrated when a new tip was attached to the instrument or if it was possible to

find a calibration factor for each tip. Parts of this evaluation were performed by a volunteer.

4.4.2.1 Methods

Using the calibration jig shown in Figure 4.10, the evaluation was performed by calibrating the

instrument with one tip attached and then assessing accuracy after changing to other tips. To

ensure consistency between the different tips, the x and y moments were calibrated by applying

weights 2 mm from the tip of the closed gripper. The torsional moments were calibrated by

applying weights 2 mm from the tip of the open gripper. The axial forces were calibrated by

setting the laparoscopic instrument in a vertical position on the calibration jig and by applying

weights to a string that was tied to the open gripper. The grasping forces were calibrated by
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placing the instrument in the calibration jig while grasping the element attached to the ATI force

sensor.

To determine whether calibration was necessary each time a new tip was used, four tips of

differing lengths were tested (Figure 4.11). The lengths of the tips were measured from the joint

where the grasper pivots, to the distal end of the grasper, and labelled by decreasing length from

A to D (Table 4.3). All tips were able to open up to 60 degrees.

Figure 4.11: Different tips used in the calibration evaluation.

Table 4.3: The lengths of the tips used for calibration assessment.

Tip Length (cm) Perpendicular length (cm)

A 2.8 1.4

B 2.5 1.25

C 2.0 1.0

D 1.4 0.7

First, Tip C was calibrated using the software and following the standard procedure (this tip

was selected as the baseline due to its intermediate length). Then, using the calibrated slope

of Tip C, the accuracy of the force readings was measured for all four tips, applying weights in

100 g increments from 0 to 500 g and then back to zero. The grasping force was calibrated by

progressively increasing the grasping force and then correlating the forces measured by the force



4.4 Performance Assessment 59

sensor and the forces measured by the instrument. As it is significantly more difficult to apply

forces up to a certain predetermined value, it was not possible to increase forces by equal amounts

as with the other directions. Instead, the forces were increased by closing the grasper a small

amount each time.

4.4.2.2 Results

A first examination of the results showed that changing the instrument tip only had an effect

on the torsional measurements and the grasping forces, as these are functions of the length and

mechanism of the grasper. In the case of the torsional forces, the difference should be proportional

to the perpendicular distance from where the weights are applied to the instrument shaft. In the

case of the grasping forces, the difference would be affected by the length of the grasper itself and

the mechanism within each tip, including friction. It was then decided to evaluate whether the

incorporation of a conversion factor for each tip would eliminate these effects.

The conversion factors were determined by computing a relative slope between the actual force

values and the measured force values for each direction. If any values were significantly far away

from the trend line, they were removed from the slope calculation. This was done to eliminate the

effect of outliers and reduce the errors due to improper measurements. The resulting corrected

slopes are shown in Table 4.4. Upon incorporating the corrected slopes, the calibration performed

using only one tip was found to be applicable to other tips of different lengths (see Table 4.5).

Table 4.4: Correction factors for torsion and grasp measurements. Calibration was completed with
Tip C.

Tip Conversion factor for Torsion Conversion factor for Grasp

A 1.2 1.2

B 1.5 1.12

D 0.95 0.86

4.4.3 Long Term Calibration Assessment

To determine whether calibration was necessary each time the system was reset, Tip C was re-

calibrated for each force dimension on three different days between 5 to 7 days apart. Each day, the

newly calibrated slope of the same tip was applied to determine the accuracy of the force reading
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Table 4.5: Strain gauge calibration assessment between tips of different lengths. Results show the
RMS errors.

Tip A Tip B Tip C Tip D

x axis (N) 0.043 0.045 0.0019 0.0004

y axis (N) 0.061 0.010 0.010 0.016

Axial (N) 0.133 0.087 0.034 0.340

Torsion (N·mm)* 0.96 0.33 0.25 0.11

Grasp (N)* 0.034 0.032 0.071 0.046

* Corrected.

Table 4.6: Comparison of calibration slopes on different days.

Week 1 2 3 % Difference

x axis 0.0079 0.0089 0.0098 15.82

y axis 0.0069 0.0079 0.0085 21.73

Torsion -0.0034 -0.0042 -0.0043 20.86

Axial -0.00081 -0.00070 -0.00082 20.40

at 100 g increments from 0 g to 500 g and back to zero. There was found to be a significant percent

difference in calibration slopes each day the tip was calibrated about a week apart (Table 4.6).

4.5 Further Complications and Modifications

After completion of the prototype described above and the completion of the calibration assess-

ment, one of the middle shafts broke off at the axial element, see Figure 4.12. This was an

unexpected problem caused by the manufacturing process. The construction of this axial element

required a thin wall to be laser welded to the large shaft at the base of the instrument and to

the thin instrument shaft at 90◦angles. This element proved to be difficult to manufacture and

the instruments needed to be sent to a company that specialized in laser welds for fabrication.

Initially, the sensing element performed very well and survived some very stringent testing on our

part. However, ultimately the welds failed at forces much lower than the design specifications.

Upon examination of the failed components, it was noted that the laser weld lines were very

superficial. Instead of melting together the entire two contacting surfaces, only a very thin weld

line was observed, which was not apparent prior to the failure. The laser welding company would

not take responsibility for the poor manufacturing job; therefore, a solution that did not involve
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Figure 4.12: Broken weld lines on middle shaft.

Figure 4.13: New axial element on middle shaft.

laser welding was sought.

A new axial element was developed, see Figure 4.13, to increase the strength of the instrument.

Unfortunately, this resulted in a reduction of the sensitivity of the axial measurement with very

high signal noise, see Table 4.7 and the bottom row of Table 4.1.
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Table 4.7: Performance assessment of axial measurements with the new sensing element.

Noise (10 s) Drift (10 min) RMS error Repeatability
(max σ)

Hysteresis

3.41 N 4.67 N 0.58 N 0.68 N 0.78 N

Figure 4.14: CAD model of the new middle shaft for construction in the micromachining centre:
exploded view (left) and assembled view.

With the acquisition of a 5-axis micromachining centre (MMC) in the Fall of 2011, a new

middle shaft was designed, see Figure 4.14. This middle shaft contains an axial element with the

same dimensions as the original middle shaft presented in Section 4.2.1. In order to strengthen

the design, the weld lines were moved away from the axial element, thereby allowing the contact

area where the welds are located to be significantly increased.

In order to manufacture the axial element, some extra steps were taken to accommodate the

thin wall thicknesses. Once the inside holes were drilled to size, a brass dowel pin was placed

inside the narrowest hole as shown in Figure 4.15. The dowel allowed the outside features to

be machined, protected the thin walls from accidentally collapsing and allowed the piece to be

mounted on the base in order to drill the stress concentration slots. After the machining of the

element was complete, the dowel was removed and the element was welded to the base and the

shaft of the instruments, as shown in Figure 4.16.

4.6 Discussion

The redesigned prototype was able to significantly improve performance when compared to the

first prototype. The accuracy was measured to be between 0.07 and 0.36 N, repeatability was

between 0.04 and 0.18 N, and hysteresis was between 0.1 and 0.28. All of these measures are
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Figure 4.15: Mounting of axial element on MMC: axial element with brass dowel (top left), element
mounted on MMC during drilling of small slots (bottom), and element mounted on
MMC after machining (top right).

Figure 4.16: Completed middle shaft: close up of axial sensing element.
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considered to be excellent compared to other existing technologies (see Table 2.4), allowing the

developed instruments to effectively measure forces in all DOFs present in MIS. The force cali-

bration assessment was performed within the range of 0 to 5 N. This is considered to be a typical

range of forces applied by MIS instruments, except for the grip forces, where the average of the

forces when driving needles could be 4 to 5 times higher.

The decoupling design element incorporated into the inner shaft was able to significantly reduce

the effect of coupling caused by the x and y moments from 2.5 N in the previous prototype to

0.21 N in the new prototype. Coupling between the axial and the actuation force was inevitable

with the current design, since the closing of the handle creates tension on the inner shaft, leading to

compression of the middle shaft. To completely eliminate the coupling of these signals, future work

will focus on devising a method to measure the actuation forces right at the tip of the instrument,

which could be further enhanced by incorporating tactile sensors into the gripper.

It should be noted that the level of resolution required in actual surgical procedures remains

unknown. Depending on the procedure and the task being performed, the required force resolution

might be quite different. However, having instruments capable of accurately sensing forces might

allow further research in order to determine the level of resolution required for different procedures.

This section presented an improved calibration process based on the results presented in the

previous chapter. However, it is recognized that many improvements to the calibration procedure

could be made in order to increase accuracy and reduce the amount of time it takes to complete

the process. With the current design, it is difficult to mount the instrument on the adjusting

wheel and to ensure that forces are being applied only in the direction of interest. Also, axial

force calibration was found to be the most difficult to perform consistently because the string

tends to swing. Similarly, inaccuracies were found when the axial force calibration was started

with no weight because the string was not taut. Alternatives to the axial calibration procedure

that do not utilize a string may have to be considered. Furthermore, it was found that calibration

should be done prior to each procedure. This means that a simple, straight-forward calibration

procedure with clear guidelines will need to be developed if the instruments are used commercially.

Ideally, this would involve placing the instrument into a calibration jig while an automated system

performs the entire calibration procedure. This should be considered future work.

As this prototype allows several different tips and handles to be used, it was also important

to evaluate the effect on calibration of changing the tips. From the experimental evaluation, it
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was found that recalibration does not need to be done when changing tips on the laparoscopic

instrument, as long as a calibration factor is incorporated into the calculation of the torsional and

grasping forces. It was expected that the moments would also be affected when using different

tips, as the overall distance to the tip was different. No significant differences were found in the

measurements, and this could be because the difference is masked by the measurement accuracy of

the instruments themselves and/or by inaccuracies of the calibration assessment. If more accurate

calibration methods are developed, or if the accuracy of the instruments is improved, it might be

necessary to include a conversion factor for the x and y forces as well. Axial standard deviation

was found to be the largest out of the four force directions measured, which could be explained by

the inaccuracies of the calibration assessment itself.

A formal evaluation of the impact of changing the handles was not performed. As the change of

handles requires a translation of the inner shaft within the instrument, which affects the wrapping

of the wires within the instrument, the grasping signal changes significantly and using the same

calibration values for the two models is not appropriate. There is also a change in the overall

structure of the mechanism within the instrument as the needle driver tip is longer to accommodate

the different handle configuration. It is recommended that the instrument is recalibrated if the

handles are changed in order to avoid errors in the measurements.

The key to accurate axial force sensing was the design of the axial sensing element. Having

a specialized element allowed the bending moments, torsion and axial forces to be completely

decoupled. Unfortunately, the manufacturing of the original element was deficient and it was not

able to withstand the forces applied to the instrument. This resulted in a significant delay in the

experiments and increased cost due to the required reattachment of the gauges. The new design

is much more robust, but also resulted in reduced sensitivity. Going forward, a micromachining

system allows this element to be manufactured in a more robust manner with the features of the

original axial element for maximum sensitivity.

It is recommended to investigate the ways in which the instruments and the calibration process

can be further improved. The versatility and low cost of the software means that these types

of smart surgical tools could have significant impact on how future laparoscopic procedures are

carried out. The system has the potential to assist during minimally invasive procedures and in

MIS training, allowing characterization and localization of tissues, as well as facilitating guidance

around anatomical features for the surgeon.



Chapter 5

Sterilizable Prototype

5.1 Introduction

The previous chapters presented the design of the sensorized laparoscopic instruments that form

the basis of the SIMIS system. The prototypes were built using metal and plastic capable of

withstanding any sterilization procedure. However, the following characteristics of the design

prevent them from surviving a complete procedure of cleaning and sterilization:

1. The instruments were not fully sealed to prevent moisture or debris from entering the inside

of the instrument.

2. The cables and wires used on the instruments were not selected to withstand the cleaning

and sterilization process.

3. The adhesives and coatings used to attach the strain gauges were not selected to withstand

an autoclave environment.

This chapter outlines the work that was done to develop a sterilizable prototype of the SIMIS

instruments. It also provides guidelines for cleaning and outlines the future work. In order to

understand the design requirements and constraints, it is first important to understand the rules

and regulations surrounding the use of reusable medical devices, as outlined in the following section.

66
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5.2 Reprocessing of Medical Devices

All medical devices that are not disposable need to follow certain procedures to ensure that it is safe

to use them in clinical applications [138]. Safe reprocessing of medical devices has two objectives:

to eliminate all disease-causing microorganisms and to protect the devices from damage caused by

foreign materials.

Tools and devices that come in contact with patients during surgical and therapeutic procedures

need to go through the following steps: disassembly, cleaning, sterilization, drying, reassembly, and

functional testing. It is up to the manufacturer of the equipment to outline how to disassemble,

clean, and reprocess the equipment and devices. They can provide a list of recommended deter-

gents, exposure times, method of sterilization and how many times each device can be reprocessed.

However, they also must provide evidence that the cleaning and sterilization process is effective

and has been validated.

For a critical device, which is one that enters the sterile tissues of the body, the following two

steps must be completed:

Clean This process involves physically removing all debris from the devices. It involves washing

with soap and water, and using detergents and enzymatic cleaners.

Sterilize This process involves the elimination of all microorganisms that could cause disease.

Although different methods of sterilization exist, steam sterilization in an autoclave is

the preferred method. A typical autoclave cycle requires exposing the instrument to

121° Celsius, at 207 kPa and 100% humidity for 30 minutes.

Some design features can prevent the successful disinfection and sterilization of medical devices

by making the cleaning and sterilization process more difficult. These features include long and

narrow lumens and channels, rough or porous surfaces, hinges, cracks, joints and crevices. A suc-

cessful sterilizable device must not only avoid these features, but all materials and any electronics

must be able to withstand the sterilization cycle. The selection of proper materials for a sterilizable

prototype is presented in the following sections.
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5.3 Selection of Adequate Cables and Connectors

Extensive searches were performed to identify companies that make cables and connectors that

are adequate for the design of these instruments. The following sections outline the requirements

and final result of these searches.

5.3.1 Cables

Cables are required to wire the strain gauges within the instruments. A total of 20 individual

wires (four wires for each of the five bridges) need to come out of the instrument and be properly

routed and protected so that they don’t break or tangle. The specifications of the cables for the

sterilizable instruments were determined as follows:

• Made from medical grade materials

• Multi-conductor with at least 4 coated conductors

• Covered with a protective outer sheath with a maximum outer diameter of 1 mm for every

4 conductors

• Very flexible to allow it to wrap around the inner shaft

• Able to withstand temperatures of over 121° Celsius

The cables that were found to meet the requirements were from Cooner Wire [139]. These are

teflon coated, multi-stranded bare copper conductors, with a gold plated copper braided shield,

Figure 5.1. The selected model (CZ-1223-4) has 4 conductors (size AWG 38) with a nominal outer

diameter of 0.82 mm. The cables are rated to 200° Celsius.

The limitation still present with this wire is that in order to ensure that the cable is flexible

enough to be routed around the inner shaft, a braided shield needs to be selected. This shield does

not have a smooth surface and can cause debris to accumulate, making cleaning more difficult.

To avoid this problem, it will be necessary to coat the cable once it has been routed through the

instrument.
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Figure 5.1: Multi-stranded medical grade cables from Cooner Wire.

5.3.2 Connectors

In addition to the cables, a properly sealed connector is required so that the instrument can be

unplugged from the electronics and placed in an autoclave for sterilization. The specifications for

the connectors were the following:

• Fully sealed to moisture

• Must withstand 121° Celsius

• Provide a minimum of 18 pins (4 for each of the three full bridges and at least 3 for the two

half bridges), 20 pins would be ideal in order to ensure equal lead resistances in all of the

bridge arms

• Accommodate miniature cables (AWG 32 or smaller)

The connector that was found to be adequate for this application is from the Fischer Core Series

[140] (part number 1031A019-130 for the connector and K1031A019-130 for the corresponding

receptacle). A connector with the same body but with a different number of pins is shown in

Figure 5.2. These are high performance connectors, hermetically sealed for use underwater, in

high-pressure conditions and corrosion resistant. They are rated to up to 200° Celsius. The model

selected is a 19-pin connector that fits cables in the AWG range of 28–32.
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Figure 5.2: Sample sterilizable connector and receptacle from Fischer.

5.4 Selection of Materials for Strain Gauge Installation

The most significant limitation with the previous SIMIS prototype, regarding the sterilizability of

the instruments, was that the sensorized elements would not be able to withstand an autoclave

cycle. An experimental evaluation was performed to determine the best combination of strain

gauge adhesives and coatings to allow for sterilization of the SIMIS instruments.

An exhaustive search was performed to identify adhesives and coatings that could withstand

temperatures higher than 121° Celsius and that would not be weakened by exposure to high

humidity. Furthermore, the materials should not contain toxic chemicals. The materials that were

found suitable are detailed in Table 5.1.

This table shows that two of the adhesives and two of the coatings are compliant with the

International Organization for Standardization (ISO) 10993 series [141]. This series regulates the

biocompatibility of medical devices and is considered a critical condition that must be met for

new devices to be approved for clinical trials. The following section presents the details of the

evaluation that was performed to assess the best combination of adhesive and coating.

5.4.1 Experimental Methods

The purpose of this experiment was to identify if there is one particular combination of adhesive and

coating that will allow the strain gauges to withstand more sterilization cycles while maintaining

excellent sensing performance. The evaluation was designed as a full factorial test with two factors
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Table 5.1: Relevant information of the adhesives and coatings tested.

Number Name Manufacturer Distributor Specifications

Adhesives

1. M-Bond 610 Vishay Intertechnology Operating temperature between -269° and
175° C. Formulated for bonding strain gauges.
Curing requires a three-step process at different
temperatures in an oven. Contains toxic sub-
stances in the liquid state but is no longer toxic
once cured.

2. Loctite M-3981 Henkel Acklands
Grainger

ISO 10993 certified—further strengthens in an
autoclave environment. Designed for medical
applications. Must be cured in an oven.

3. SILASTIC
Medical Adhesive
Silicone, Type A

Dow Corning Dow Corning Operating temperature of up to 150° C. De-
signed specifically for medical applications. ISO
10993 certified.

Coatings

4. M-Coat C Vishay Intertechnology Reasonable moisture protection, operating tem-
perature -60° to 260° C. Contains toxic sub-
stances in the liquid state but is no longer toxic
once cured.

5. Loctite M-31CL Henkel Acklands
Grainger

ISO 10993 certified, 150° C operating tempera-
ture. Not recommended for products that will
see more than 3 sterilization cycles.

6. Loctite M-11FL Henkel Acklands
Grainger

-60° to 250° C operating temperature, ISO
10993 Certified. Not recommended for prod-
ucts that will see more than 3 sterilization cy-
cles. Must be cured in an oven.

(adhesive and coating) at three levels each (32 design) for a total of 9 different combinations.

To ensure sufficient power and to account for the learning curve in strain gauge installation, the

experiment was designed with 11 replicates.

Stainless steel bars of the same material as the instruments (Stainless Steel 316) were used to

perform the assessment. It was decided that to ensure consistency, all 9 combinations of strain

gauges would be installed on the same stainless steel bar. All 9 strain gauge combinations were

placed on each bar in a random order, see Figure 5.3.

To evaluate the performance of the gauges, the bars were held in cantilever, while weights of

increasing size were used as a load. To ensure consistency, the bars were built with a series of

equally spaced holes that allowed them to be mounted on a calibration jig in such a way that the

distance between the mounting point and the strain gauge was the same for each gauge, see Figure

5.4. Similarly, holes on the other side of the bar allowed the weights to be applied at the same

distance from each strain gauge. An undergraduate summer student designed the bars and the

mounting base, built the actual components, and installed the strain gauges, as described below.
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Figure 5.3: Stainless steel bars with gauges attached.

5.4.1.1 Strain Gauge Installation

All three coatings and adhesives were combined in each of the 11 stainless steel bars, for a total of 9

strain gauges per bar. The laying of the gauges was done in blocks based on the adhesive. Gauges

requiring M-Bond 610 were placed first, as curing this adhesive required a complex procedure in

an oven. The gauges attached with the Loctite adhesive were done second, also cured in an oven,

followed by the gauges using the Silastic adhesive. The installation guidelines for each adhesive

and coating were followed to ensure consistent results. Several gauges fastened with the Silastic

product had to be refastened. The soldering and coating of the gauges was done from bar to bar

in a continuous fashion.

For this performance evaluation, the strain gauges were directly connected to an amplifier in

a type I quarter bridge configuration. To read the information from the strain gauges, a Quanser

strain gauge amplifier was mounted on a board and wired such that reading the information from

the different gauges could be done through a quick change over that only required clamping the

two cables with screws. The other components included a dual output power supply (Agilent

Technologies, model E3620A) and a data acquisition card (Keithley Instruments, model KPCI-

3108). A customized software program developed at CSTAR (see Section A.3) was used to read

the data from the gauges, filter the signals, perform the calibration and record the resulting force

data.
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Figure 5.4: Experimental jig with stainless steel bar in cantilever.

5.4.1.2 Performance Evaluation

To evaluate the performance of the installed gauges and their resistance to autoclaving, the fol-

lowing procedure was followed:

1. Each bar was mounted in cantilever as described above. In order to maintain the distances

from the mounting point to the gauge and from the gauge to the weight location constant,

the bar needed to be repositioned for each gauge.

2. Each gauge was then calibrated through the application of weights from 0 to 1 kg in 100 g
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increments. The slope of the relationship between the voltage and the forces applied was

then recorded as a measure of sensitivity. All calibrations were originally performed at a

standard voltage of 5.26 V, but in some cases after autoclaving, some of the gauges required

a higher voltage to register a signal.

3. Data were recorded for 10 s when no forces were being applied to evaluate noise and drift.

4. Data were then recorded while applying weights at 0 g, 500 g, 1000 g, 500 g and 0 g again.

5. Finally, the performance was assessed by computing the following measures:

(a) Accuracy was measured by comparing the measured values to the theoretical values.

(b) Hysteresis was assessed by comparing the values at 0 g and at 500 g when increasing

and decreasing the applied load.

(c) Noise was measured by comparing the maximum and minimum values of the data when

no forces were being applied.

(d) Drift was computed by comparing the average of the first 500 samples and the average

of the last 500 samples when no forces were being applied.

(e) A final performance measure was computed by adding the above error measures. The

lower the value, the better the performance exhibited by the gauges.

Once the calibration and assessment was completed for all 99 gauges, the bars were placed in

an autoclave (Getinge Castle 500LS series steam sterilizer) for a complete standard cycle. After

the bars were dry and had returned to their normal environmental temperature, the calibration

and assessment procedure was repeated. The autoclave/assessment cycle was performed a total of

five times.

5.4.2 Results

A preliminary evaluation was performed to assess the performance of the 99 original strain gauges

after installation. The results of the assessment are presented below.
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5.4.2.1 Original Performance

Only 51 of the 99 strain gauges provided a valid force measure after installation, as presented in

Table 5.2. The results of the preliminary evaluation are presented in Table 5.3. As the gauges

within each combination had similar performance, one combination was selected as representative

of the whole set.

In summary, there were 22 working gauges with adhesive 1, 14 working gauges with adhesive

2, and 16 working gauges with adhesive 3. Similarly, there were 12 working gauges with coating

4, 24 working gauges with coating 5, and 16 working gauges with coating 6.

It is apparent from these values which adhesives and coatings made the installation process

more difficult. A steeper learning curve might be involved in the application of some of these

substances. The starting performance of the gauges adhered with adhesive 3 is much poorer than

the performance of the other gauges.

5.4.2.2 Performance After Autoclaving

Sample results of the performance of the gauges following the autoclave cycles is presented in

Table 5.4. For simplicity, only the best performing gauge was presented. A summary of the overall

results for all of the gauges is presented in Table 5.5. It is clear from this table that coating 6 was

the only one able to protect the gauges well enough for any gauge to survive all 5 cycles.

Table 5.2: Working strain gauges for each combination of adhesive and coating, and their position
on the bar.

Combination Working gauges Position on the bar

1/4 3 1,3,7

1/5 10 9,9,6,4,7,5,2,4,6,7

1/6 9 9,4,3,8,6,1,5,1,8

2/4 4 4,6,1,2

2/5 8 3,5,2,7,1,9,6,4

2/6 2 1,6

3/4 5 3,6,2,9,3

3/5 6 7,4,1,5,1,7

3/6 5 8,5,9,3,9
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Table 5.3: Sample results of the preliminary evaluation (all values in N).

Combination Slope RMS
error

Repeatability RMS
Hysteresis

Noise Drift Total
performance

1/4 -122.48 0.03 0.04 0.05 0.17 0.02 0.31

1/5 -121.10 0.06 0.07 0.04 0.23 0.03 0.43

1/6 -122.63 0.04 0.04 0.12 0.15 0.00 0.35

2/4 -124.13 0.08 0.05 0.20 0.19 0.02 0.54

2/5 -121.78 0.13 0.09 0.21 0.21 0.07 0.71

2/6 -121.79 0.05 0.05 0.04 0.18 0.03 0.35

3/4 -713.62 1.64 0.44 1.48 0.93 0.09 4.58

3/5 -206.48 0.25 0.08 0.17 0.34 0.04 0.88

3/6 -709.01 2.32 0.87 1.43 1.31 0.45 6.38

Table 5.4: Overall performance (in N) of the best performing gauges in each combination, as
calculated by adding the errors of accuracy, hysteresis, noise and drift.

Bar Pos. Combination Original Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

7 7 1/4 0.319 1.474 - - - -

1 4 2/4 0.420 0.319 0.422 1.618 - -

10 9 3/4 3.28 - - - - -

8 2 1/5 0.356 0.724 1.307 - - -

2 3 2/5 0.182 0.434 0.621 1.300 - -

4 1 3/5 0.888 29.40 9.051 - - -

7 6 1/6 0.348 0.334 0.544 0.459 0.380 0.406

3 6 2/6 0.602 0.680 0.764 0.808 1.365 0.992

2 5 3/6 4.627 5.508 10.34 7.494 8.185 8.712

5.4.2.3 Summary

The results presented above show that the only gauges that survived all 5 cycles were those installed

with coating 6. Although adhesive 1 had one gauge that survived all 5 cycles with this coating,

it was the only one out of 9 that survived any autoclaving. Almost all of the gauges properly

installed with adhesives 2 and 3 and coating 6 survived all 5 cycles. It might be possible that the

low number of working gauges with the 2/6 combination and the poor gauge performance with the

3/6 combination was caused by inexperience in the installation process. It was therefore decided

to examine these two combinations further, as described in the following section.
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Table 5.5: Summary of results showing average performance for all gauges in each combination
and overall comments on ability to survive the autoclave cycles.

Combination Average performance (N) Autoclave survival

1/4 1.28 ± 1.26 Poor results, only one gauge survived one cycle

2/4 3.85 ± 7.14 2 out of 5 survived after 1st cycle, only one survived
cycles 2 and 3

3/4 4.57 ± 1.26 No gauges survived cycle 1

1/5 0.57 ± 0.40 Out of 10 gauges, none survived more than 2 cycles

2/5 0.57 ± 0.30 Out of 8 gauges, none survived more than 3 cycles

3/5 8.10 ± 9.24 Out of 6 gauges, none survived more than 2 cycles.
Poor performance

1/6 0.38 ± 0.11 Only one gauge out of 9 survived cycle 1 and continued
to work until the end

2/6 0.77 ± 0.38 Difficult to apply, only 2 were working from the start.
The ones that did survive had excellent performance
and survived 3 cycles or more.

3/6 7.46 ± 4.50 Almost all survived but original performance was very
poor. Initial performance might improve with a better
installation process.

Table 5.6: Results of the additional evaluation with adhesives 2 and 3.

Combination Average performance (N) Autoclave survival

2/6 0.26 ± 0.14 Survived all 5 cycles

2/6 0.23 ± 0.11 Survived all 5 cycles

3/6 1.11 ± 0.96 Survived all 5 cycles

3/6 1.35 ± 0.62 Survived only 3 cycles

5.4.3 Additional Evaluation of Best Results

Based on the results obtained from the first evaluation, a total of 4 additional gauges were installed

with coating 6, two with adhesive 2 and two with adhesive 3 in order to perform one last comparison

and tune the installation process. The installation process was modified slightly to ensure an even

distribution of the adhesive over the entire gauge. All four gauges worked properly from the

start. The results of the performance evaluation after autoclaving are shown in Table 5.6. These

results clearly show that Loctite M-3981 (adhesive 2) had much better performance and all gauges

survived more cycles.
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(a) (b)

Figure 5.5: Strain gauge installation process: gauges clamped for curing (a) and instruments in
oven (b).

5.5 Assembly

Based on the results from the previous section, a sterilizable prototype is under construction.

The strain gauges were installed using Loctite M-3981 and coated using Loctite M-11FL. As this

adhesive required curing in an oven, the gauges were placed and then clamped with a teflon layer

to prevent the clamps from sticking, while ensuring an even distribution of the adhesive, see Figure

5.5(a). The parts were then cured in an oven, as shown in Figure 5.5(b).

For the inner shaft, 4 gauges were laid in a full bridge configuration as shown in Figure 5.6(a),

two inline with the shaft, and two in a transverse position (Poison). The middle shaft contained 4

different bridges: two half bridges to measure the forces acting perpendicular to the shaft, one full

bridge to measure torsion and one full bridge to measure axial forces. The tiny gauges required

to measure the axial forces were difficult to install. To simplify the process, a teflon disk was

constructed and attached to the instrument using a cable tie to increase the surface area, as shown

in Figure 5.6(b). The teflon disk was kept in place to prevent any damage to the solder pads prior

to assembly.

5.6 Concluding Remarks

The remainder of the instrument is under construction. The connectors required to complete

the assembly have been ordered but have not arrived. A final build of the prototype with a full

performance evaluation is expected to be completed over the next few months.

Additional work is required in order to determine the best way to seal and clean the instrument.
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(a) (b)

Figure 5.6: Gauges installed and cables soldered: on inner shaft (a) and on middle shaft (b).

The long narrow lumen of the instrument cannot be fully sealed to foreign substances due to the

use of interchangeable tips and due to the nature of the actuation mechanism of the instruments.

Methods for flushing the inside of this type of devices have been implemented in the past for

medical devices and a similar procedure is expected to be acceptable for this instrument as well.

However, there are also mating surfaces between components that need to be sealed in order to

ensure that debris does not enter these areas, as it would not be possible to properly flush them

without full disassembly—a process that would expose sensitive parts of the instruments and

should be avoided. Research into proper sealing materials is necessary.

Finally, the cleaning and disinfecting procedure required for medical devices will have to be

properly outlined. Experiments need to be performed to find detergents and enzymatic cleaners

that do not react with the sealing materials or with the adhesives and coatings selected above.

This will also involve determining the required exposure times and validating that the instruments

are fully disinfected prior to reassembly and sterilization.

An adequate method for calibrating the instruments once sterilized will also need to be outlined.

It is not feasible to have the instruments calibrated using the current techniques if they have

been sterilized for surgical use. Recommendations for better calibration systems are presented in

Chapter 8.

The process of approval of a medical device is not an easy task. There are significant con-

siderations that need to be in place, which make this process lengthy and time-consuming. This

chapter has presented a thorough experimental evaluation aimed at selecting adequate materials

that will allow the instruments to survive an autoclave sterilization procedure. The results show
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that the Loctite M-3981 adhesive in combination with the Loctite M-11FL coating provide the

proper protection of the stain gauges to survive five sterilization cycles with excellent performance.

A sterilizable prototype based on the results is under construction.



Chapter 6

Applications to Surgery

6.1 Introduction

The previous chapters have dealt with the design, development and construction of the SIMIS

instruments, as well as an evaluation of their sensing ability. This chapter focuses on evaluating

the feasibility of using the SIMIS system to assist real surgical applications or to optimize the

development of instruments specifically designed for MIS, based on data collected during real

surgical procedures.

As was described in Chapter 2, it has been recognized that the availability of force information

could have an impact during minimally invasive surgery, as the sense of touch is affected by the

limited access conditions present in this type of surgery. The following are three applications in

which force information has been recognized as being useful:

• Tissue characterization and the localization of areas of different stiffness as possible sources

of disease

• Measurement of applied forces and instrument motion during surgery in order to inform the

development of devices specifically designed for MIS

• Providing force feedback during surgery in order to prevent the application of excessive forces

to tissue, or insufficient forces

The following sections outline the three experimental evaluations that were performed to assess

the usefulness and feasibility of the SIMIS system in these surgical applications.

81
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6.2 Applications to Tissue Characterization

The need to characterize tissue has been recognized as important in the identification of areas

of increased or decreased stiffness, which can indicate the presence of pathological abnormalities,

such as cancerous tumours or calcifications. In open surgical procedures, this is usually done by

directly palpating tissue. In MIS, however, the ability to directly interact with tissue is hampered

by the small incisions required to minimize invasiveness.

Researchers have been working on defining mathematical models that can characterize the

stress–strain relationship of artificial and real tissue. Although most researchers simplify this

model as a linear relationship, it has been found that due to the nonhomogeneous nature of tissue,

both in location and direction, human tissue exhibits nonlinear properties [142,143].

Noninvasive techniques, such as magnetic resonance imaging (MRI) or ultrasonography are

often used to characterize tissue, but can only determine models in the linear range [142]. The

Mooney-Rivlin strain energy function and the Ogden and Arruda-Boyce strain function are often

used to model nonlinear behaviour, with no consensus over which one is better [142]. In [143],

after an evaluation of seven different models, the Hunt-Crossley equation was found to reduce the

simulated error compared to artificial phantom tissue. This model is represented by the following

equation:

F = kdn + λdnḋ, (6.1)

where F is the sensed force, k is the stiffness factor, λ is a scaling factor, d is the penetration depth

and ḋ is the speed during penetration. In [142], the value for n was found to be between 1.3 and

2 depending on the tissue. Based on this equation, and assuming that the instruments are moved

in very slow motion so that ḋ is negligible, the stiffness factor may be computed by the following

equation:

k = F/dn. (6.2)

Recent work at CSTAR has shown the benefit of using tactile sensors to identify areas of

increased stiffness [15, 16] with promising results. The feasibility of using kinesthetic feedback for

the same purposes has also been demonstrated [92]. In this section, the goal is to take advantage
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of the fact that the SIMIS instruments are able to measure the applied forces and instrument tip

position in order to establish a method of using kinesthetic data for tissue characterization.

6.2.1 Experimental Evaluation

A preliminary experiment was conducted to evaluate the feasibility of using a combination of the

force and position data obtained using the SIMIS instruments in order to identify the location

of areas of increased stiffness in a laparoscopic training box. The purpose of the experiment was

to evaluate whether the force and position data collected using the SIMIS instruments during a

palpation task could be combined in such a way that a tactile map could be generated to provide

information about the stiffness of the underlying tissue. The hypothesis was that it is possible to

find a way to combine the available information such that the location of a mimicked tumour can

be identified. The following sections describe how the experiments were conducted and the results

that were obtained.

6.2.2 Methods

To perform the experiments, an experimental setup was made out of foam and silicone of different

compositions. A 1-cm cylinder made of silicone rubber (Sorta-Clear 18, Sculpture Supply Canada,

Shore hardness 18A1) was embedded within a tissue phantom (from the Chamberlain Group [146])

in order to mimic soft tissue with an embedded tumour. A replaceable top skin surface made of

soft rubber (EcoFlex, Sculpture Supply Canada, Shore hardness OO-30) was used to visually hide

the lump, see Figure 6.1(a). A plastic frame was designed and built out of acrylonitrile butadiene

styrene (ABS) plastic and was used to attach the model to the laparoscopic box and hold it in

place, see Figure 6.1(b). The location of the centre of the tumour was later measured to be [-122,

-367] in the coordinate system of the instruments (see Section 6.2.3).

As the penetration depth needed to be calculated, it was necessary to determine the location

of the plane of the top of the plastic frame with respect to the origin of the coordinate frame

of the EMTS used to track the SIMIS instrument motion. Therefore, prior to the start of the

experiments, position data were collected while the tip of one of the SIMIS instruments was placed

1The Shore hardness scale is the preferred method for measuring the hardness of elastic materials [144]. It
measures the resistance to indentation, hence a higher number indicates a stiffer material. There are 12 different
scales depending on the hardness of the material. The A scale is used for soft materials such as rubber, leather and
felt. The OO scale refers to very soft materials such as gels and foam [145].
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(a) (b)

Figure 6.1: Experimental setup used during the tissue characterization tests: tissue phantom with
an embedded tumour (a) and tissue inside training box held by plastic frame (b).

at each corner of the frame.

An evaluation was then performed by a subject who was blinded to the actual location of the

tumour. One of the SIMIS instruments was used to systematically palpate the tissue throughout

the entire surface. During this palpation task, it was possible to visually identify a suspected tu-

mour location based on the deformation of the tissue in the surrounding area (this might not always

be the case during real surgery). A second evaluation was performed using the same instrument

to palpate randomly around the suspected lump location. During both of these palpation trials,

the following important variables were recorded: applied Cartesian forces, instrument position in

3 DOFs, and videos of the trials.

6.2.3 Data Analysis

Once the data were collected and recorded, the files were processed using MATLAB to determine

the location of the four corners of the plastic frame in the coordinate frame of the EMTS. The

video was analyzed to extract four time ranges corresponding to two seconds of data collected at

each corner. The mean value of the measured locations (of the x, y and z coordinates) during each

of these time frames was defined as the location of each corner.

The locations of the four corners of the reference frame are presented in Table 6.1. Based on

these values, the three coordinate points used to identify the frame plane were: [-166.6, -335.6,

-377.3], [-166.6, -390.1, -391.2], and [-53.5, -390.1, -391.2], calculated as the average of the two

similar values at each corner.

A MATLAB script was written to process the data from the two palpation trials. The data
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Table 6.1: Location of the four corners of the frame.

x y z

-164.9167 -333.6564 -383.2384

-168.1946 -388.5077 -392.2571

-54.8700 -391.6660 -390.1576

-52.1919 -337.4846 -371.3062

Figure 6.2: Data flow diagram for tissue characterization data processing.

flow followed by this script is outlined in Figure 6.2. The data collected was first downsampled by

averaging the values in each window, so that both the force and position data would have the same

number of data points and so that each data point corresponded to one frame in the video. The

data were then filtered (see Section 6.2.3.1) at a low-pass frequency rate of 128 Hz to eliminate high-

frequency noise. The magnitude of the force was computed from the force components measured

in the x and y directions (the axial force was not used due to the limitations mentioned in Chapter

4). The position data were processed to compute the perpendicular distance from each point to

the plane of the plastic frame2.

As a measure of stiffness, the simple nonlinear measure shown in Equation 6.2 was implemented

with n = 2. It was found in [148] that sensors are able to detect lumps at average indentation

depths of 1.75 to 2.75 mm. For this reason, and to avoid high stiffness values erroneously created

by near-zero penetration depths, the minimum penetration depth that was considered was set to

1 mm. The stiffness equation used was then the following:

2To determine the perpendicular distance to the plane of the frame, the coordinates of three points on the frame
were used to compute the normal to the plane as the cross product of the vectors between those points. Then the
function for the plane was defined as the dot product of a symbolic vector [x, y, z ] and the normal to the plane.
To compute the perpendicular distance from a point P, the coordinates of point P were substituted into the plane
function and divided by the norm of the normal vector [147].
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k =


F/d2 d ≥ 1,

0 d < 1.

(6.3)

6.2.3.1 Filtering

In order to determine which filter to use, a survey of the published literature was conducted to find

typical filters used for processing human motion data. A fourth-order low-pass Butterworth filter

is used in [149] with a cutoff frequency of 25 Hz, and low-pass filters are also used in [150] and [151]

with cutoff frequencies of 15 Hz and 3 Hz, respectively. In earlier work at CSTAR, a specialized

filter defined in MATLAB as the filtfilt function [92] was used. This function filters data in the

forward direction and then re-filters the output in the reverse direction so that phase distortion

is eliminated, as shown in Figure 6.3. This also doubles the order to the filter, so a second-order

Butterworth filter is equivalent to a fourth-order filter without the filtfilt function.
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Figure 6.3: Overlaid filtered (blue) and unfiltered (red) position data with a second order filtfilt
filter (left) and a fourth-order Butterworth filter (right).

It was then decided for these experiments to implement a second-order Butterworth filter with

the filtfilt function (A similar filter is used in [152] with a cutoff frequency of 10 Hz). The

raw data were used to create power spectrum maps to determine the ideal cutoff frequencies, see,

for example, Figure 6.4. A cutoff frequency of 1.25 Hz was determined to be adequate for both

the position and force data in its raw form, in order to eliminate high frequency noise without

losing important details of the data profile. As the data was downsampled during the tissue
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Figure 6.4: Power spectrum of the position data for a novice subject.

characterization trials, a cutoff frequency of 128 Hz was used to avoid excessive smoothing of the

data.

6.2.4 Results

The results of the initial palpation are shown in Figure 6.5. In this figure, the stiffness factor is

shown as a dot that varies in size and colour. For small stiffness factors, a small blue dot is used.

As the factor increases, so does the size of the dot. A large stiffness factor is represented by a large

dark red dot. The maximum applied force during this palpation task was 7 N.

It was noted from this figure that the peak in the localization map was at [-138.2, -361.2],

which is significantly far away from the actual location of the tumour (centred at [-122, -367]).

The video was then analyzed to identify the cause of the error in the localization. The position

of the instrument at the moment the palpation measure peaks is presented in Figure 6.6. It was

noticed from the video that although the tip of the instrument was located at the top left of the

tumour, the shaft of the instrument was in fact in contact with the tumour; hence, the palpation

measure showed a peak. Considering the data recorded during a more focused palpation procedure

in the vicinity of the suspected location of the tumour, Figure 6.7, the palpation peaks at [-121.9,

-363.8], which is within the actual location of the tumour. The maximum applied force during the
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Figure 6.5: Tactile map obtained from a systematic palpation across the entire surface, showing
the stiffness factors obtained at each (x, y) coordinate in N/mm2.

Figure 6.6: Image of instrument location during identified peak.

second palpation task was 13.2 N, resulting in larger dots as compared to Figure 6.5.
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Figure 6.7: Tactile map obtained from a localized palpation around suspected site, showing the
stiffness factors obtained at each (x, y) coordinate in N/mm2.

6.2.5 Discussion and Development Guidelines

This experiment shows a very simple evaluation of the potential that the SIMIS system has to

localize areas of increased stiffness. The purpose was to demonstrate the feasibility of using the

SIMIS instruments to identify the location of an area of increased stiffness.

The results show that it is possible to identify the location of a lump, but for increased accuracy

in localization, care must be taken in how the instrument contacts the tissue and sufficient force

must be applied. A very simple way of determining stiffness was implemented in these prelimi-

nary tests. There are many possible ways to improve the performance by using more elaborate

algorithms. Some considerations and development guidelines are as follows:

• The calculation of the penetration depth could be automated by determining when contact

with the tissue begins (i.e., what is the position of the instrument when the forces exceed a

certain minimum threshold). From that point on, the relationship between the position and

the force measured can be used directly to characterize tissue stiffness. A tissue characteri-

zation model can then be implemented as shown in Figure 6.8.

• In real surgical settings, the surface of the tissue may not be horizontal as in these ex-

periments. Instead, the incline of the surface changes from one location to another. The

forces applied in the three Cartesian directions could be combined to determine the direction
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in which the forces are being applied in order to calculate the penetration depth in that

direction. This would require the force sensing accuracy to be similar in all three directions.

• Some of the advantages of using the SIMIS instruments for tissue characterization arise from

the fact that they can measure force in different directions. This permits directional force

measurements not present in most tactile sensing systems, which only measure pressures

normal to the surface. An interesting area of research would be to investigate the use of the

sliding instrument motion for tumour localization. This approach might be able to provide

a measure that better corresponds to how a surgeon’s hand palpates during open surgery.

• Proper tissue characterization also has an effect on the development of simulators (both

physical and virtual reality simulators, see Chapter 7). Using materials of incorrect properties

during training can lead to the development of poor habits and other adverse effects [142].

Research has shown that in vitro tissue characteristics differ significantly from those found

in in vivo situations [142]. Being able to measure forces during real surgical procedures can

provide information to inform the development of better tissue models.

• If future modifications are made to the instrument to allow the opening angle of the grasper

to be measured, then the grasping data could also be used to characterize tissue in a similar

manner.

In these experiments, due to the orientation of the instrument with respect to the tissue, the

axial forces were not as important when estimating the contact force with the tissue, as the forces

acting perpendicular to the shaft dominate. However, in other applications, the axial force could

be important. Another limitation of this study is that only one tissue phantom was palpated,

as this was meant to be a proof of concept evaluation. Future work should focus on a properly

designed experiment with sufficient power, using several different tissues and performed by various

subjects.

6.3 Applications to the Development of Haptic Interfaces

The availability of data collected from real surgical procedures can lead to the development of

better tissue models for training and planning. Another application in which this information
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Figure 6.8: Data flow diagram of tissue characterization procedure.

would be valuable is in the development of devices that are optimally designed for use in MIS. For

example, Chapter 2 presented the concept of a haptic interface as a device that applies resistance

in certain directions so that the user feels as though they are in contact with the tissue. A haptic

interface can then be used to control a surgical robot or as an interface to a surgical simulator.

Although haptic interfaces are commonly used in applications outside of the medical field with

great success, their success in controlling a surgical robot or as an interface to a surgical simulator

has been limited. Some of the reasons for this limited success are as follows:

1. Providing haptic feedback depends on the ability to accurately sense information during

surgery, or on the realism of the simulated tissue in simulators. The feedback provided can

only be as good as the sensors used or the accuracy of the model. Current surgical systems

are not able to accurately measure interaction forces during surgery, thereby limiting the

applications of haptic interfaces. Current simulators do not have realistic models in part due

to insufficient information about real tool–tissue interactions.

2. The effectiveness of haptic interfaces is also limited by the ability to ensure transparency in

the control system. This requires the position data to be transferred from the interface to

the robotic system or the simulator, and the force data to be transferred back in a smooth



6.3 Applications to the Development of Haptic Interfaces 92

and accurate manner with no time delay. Other work at CSTAR has focused on addressing

these difficulties, see for example [153–156].

3. If the goal is to ensure transparency, feedback in all 7 DOFs must be provided. There are

very few haptic interfaces currently in the market that can provide 7 DOF of force feedback.

Some examples are Sigma.7 and Omega.7 (Force Dimension, Nyon, Switzerland), and the

Freedom 7S (MPB Technologies, Montreal, QC, Canada). Also, a customized interface was

adapted at CSTAR from Quanser’s Haptic Wand [111]. However, these interfaces do not

match the motion and force ranges required for surgical applications thereby limiting their

application to surgery.

4. Current haptic interfaces do not provide realistic feedback due to limitations of the actuation

systems employed for the interface. The range of forces and stiffnesses required are not well

defined for surgical applications, making the development of haptic devices specific to MIS

difficult.

To assist in this research area, the objective of this section is to investigate the use of the SIMIS

instruments to inform the development of haptic interfaces, by collecting force interaction data

and motion information from real surgical settings. To achieve this objective, it was first necessary

to determine if the instruments could be successfully used in in vivo settings to properly measure

force and position information.

6.3.1 Experiments

An experiment was performed to meet these objectives. The hypotheses were as follows:

1. The SIMIS instruments are able to provide information on the tool–tissue interaction forces,

as well as the motion of the instrument tips during in vivo surgical procedures.

2. Data collected during in vivo surgical procedures can be used to obtain information about

the typical range of motion and forces applied in the individual directions, in order to inform

the selection or development of haptic interfaces for MIS.
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6.3.2 Methods

The experiment was performed in an in vivo porcine model (only one animal was used). Ethics

approval was obtained from the University Council for Animal Care at Western prior to the date

of the procedure. To perform this experiment, the SIMIS system was brought to the animal lab

at the completion of another test.

The field generator that forms part of the electromagnetic tracking system was mounted on

a plexiglass board and clamped to the surgical table near the head of the animal, away from the

metal railings. The computer and amplifiers were placed on a cart near the surgical table. In order

to prevent liquids from entering the inside of the instruments, plastic drapes were used to cover

the rotating wheels and the cable openings.

The SIMIS instruments were calibrated prior to the start of the procedure. An experienced tho-

racic surgeon and a novice surgeon performed the tests. Using standard laparoscopic instruments,

the expert surgeon created an incision in the stomach wall of the animal and inserted an artificial

tumour (like the ones used in the previous experiments) and then, using the SIMIS instruments,

proceeded to palpate the stomach with the objective of identifying the location of the tumour. It

was not possible to identify the location of the tumour, as the tumour was not held in place at a

specific location, but was free to move inside the stomach; however, data were collected regarding

the force and position of the instruments during a palpation task.

In the second stage of the experiments, both the expert and the novice surgeons passed one

suture and tied one intracorporeal knot each (consisting of a double knot followed by two single

knots). The position and force applied during these two tasks was recorded as well as the video

from the endoscopic camera.

6.3.3 Data Analysis

To analyze the data, a MATLAB script was developed to read and filter the data according to the

method outlined in Section 6.2.3.1. The data were then processed to extract the mean, maximum

and minimum values of the forces applied in each of the 5 directions, as well as the minimum and

maximum values of the motion data in each of the 6 directions. This was performed for all of the

tasks and for both the novice and the expert surgeons.

A first look at the data revealed a direct coupling between the axial and the grasping forces.
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Therefore, a decoupling procedure was followed to subtract the scaled grasping data from the axial

data. As the quantity of data was small, the scaling factor was determined empirically through

direct observation of the force graphs.

6.3.4 Results

The instruments were successfully used to measure force and position in a porcine in vivo model,

as shown in Figure 6.9. The instruments were able to measure position and force information and

the SIMIS system effectively recorded the data and video of the procedures. The results obtained

from the data analysis are shown in Tables 6.2 and 6.3.

The values shown in Table 6.3 correspond to maximum Cartesian forces of 13.3 N for the right

hand and 8.2 N for the left hand. Other studies that measure tool–tissue manipulation forces in an

in vivo setting have not been found in the literature. Many studies have measured applied forces

for the purpose of tissue characterization, but these do not represent typical tissue manipulation

forces during minimally invasive applications. Others have measured forces outside of the patient’s

body; for example, [152] shows that the Cartesian forces during laparoscopic cholecystectomy were

around 18 N. The forces presented in [157] include maximum Cartesian forces of 16.1 N during

suturing and 4.4 N during knot tying in a flexible plastic gel phantom using the da Vinci system.

The forces during cutting of ex vivo pig liver were found to be less than 4.5 N in [158]. Our previous

studies measuring manipulation forces in a porcine model during a natural orifice appendectomy

showed tissue manipulation forces as high as 15.8 N. The values presented herein represent the first

complete measurement of typical tool–tissue manipulation forces in all of the degrees of freedom

available during MIS.

6.3.5 Discussion and Applications

The SIMIS system was successfully used in an in vivo setting. The required computer and other

electronics were able to sit close enough to the surgical table without interfering with the space

required by the surgeons while still allowing the instruments to properly reach the surgical site.

After the procedure was completed, the tips were cleaned following the standard methods of

cleaning and disinfection used in the laboratory setting. The rest of the instruments and the

cables were wiped clean using disinfecting cloths.



6.3 Applications to the Development of Haptic Interfaces 95

Figure 6.9: Instruments in use during the in vivo trials.

Table 6.2: Results of the in vivo trials showing the range of motion used in each direction.

Direction Measure Value (mm) Direction Measure Value (degrees)

x minimum -172.3 Azimuth LH / RH min -160 / 124

x maximum 129.2 Azimuth LH / RH max -118 / 187

x range 301.5 Azimuth max range 63

y minimum -129.2 Elevation minimum -42

y maximum 151.2 Elevation maximum 23

y range 280.4 Elevation range 65

z minimum -139.2 Roll minimum -119

z maximum 203.2 Roll maximum 107

z range 342.4 Roll range 226

Table 6.3: Results of the in vivo trials showing the range of forces applied in each direction.

Actuation (N) x (N) y (N) z (N) Torsion (N·mm)

Left hand

Maximum 51.9 3.2 2.1 1.5 1.3

Minimum 0 -1.7 -3.5 -1.8 -2.0

Range 51.9 4.9 5.6 3.3 3.3

Right hand

Maximum 68.6 3.3 6.7 4.0 54.6

Minimum 0 -2.9 -1.3 -4.6 -37.6

Range 68.6 6.2 8.0 8.6 92.2
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Care must be taken when placing the field generator near the surgical site. It is important for

it to be close enough to the instruments so that the sensors are always within the tracking field,

but not so close that there is interference from the surgical table. Using a carbon fibre table would

solve this problem. Also, if the sensors move below the top of the field generator, it leads to noise

in the position tracking data. The generator needs to be placed sufficiently low to ensure that this

does not occur.

A limitation of this study is that the axial forces were obviously coupled with the grasping

forces. Some decoupling measures were implemented but the results still showed some coupling

between the signals. However, the resulting range of forces in the axial direction is similar to that

of the other directions. Although full decoupling of the signals is impossible due to the design of

the instruments, the use of the third version of the SIMIS instruments shown in Section 4.5 with

more accurate axial sensing and reduced noise should be able to partially address these problems

in future experiments.

This experiment has provided an example of an application of the SIMIS system. Tests could be

performed to inform the development or selection of haptic interfaces for specific tasks or specific

environments. The use of the sterilizable SIMIS instruments in human procedures could inform

the development of haptic interfaces that are optimized for use in surgery. These experiments have

provided a proof of concept for the use of the SIMIS system to collect data during real procedures.

6.4 Applications to Sensory Substitution

A potential benefit of measuring tool–tissue interaction forces during MIS is to address the prob-

lems caused by the distorted haptic feel that result from the reduced access conditions. Although

master–slave robotic systems allow the use of haptic devices that can provide haptic feedback di-

rectly to the hands of the user, in a laparoscopic setting the force information needs to be provided

in an indirect manner, as the surgeon is directly manipulating the surgical instruments. The SIMIS

customized software is able to apply an image overlay to the endoscopic image in order to provide

force information in a visual manner. This opens up an interesting area of research in sensory

substitution and human factors with respect to surgeons’ ability to use visually displayed data in

some form or another to minimize tissue damage or to ensure that suture knots are tight.

The effect of providing visual force feedback in master–slave surgical robotic systems has been
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investigated by various groups, see Table 2.1. In [30] and [159], force information is overlaid onto

the surgical view in the form of force bars that change in size and colour as the force magnitude

increases. In both of these studies, very few significant differences were found in the amount of force

applied with visual force feedback compared to when no feedback was provided. To investigate

whether overlaying the force information directly on the instrument shafts would cause the surgeons

to pay more attention to the applied forces, a specialized overlay program was presented in [19].

The results were not much better when only visual feedback was provided, as opposed to when

direct haptic feedback was also available.

In all of these trials, the only information provided was the Cartesian forces acting perpendic-

ular to the instrument shaft, and no more than 10 subjects performed the procedure, limiting the

power of the evaluations. To the best of our knowledge, the effect of providing visual force feed-

back in conventional laparoscopic applications and the effect of providing information in different

degrees of freedom have not been explored.

The overall objective of this experimental evaluation was to determine when force feedback is

necessary in minimally invasive procedures and what type of force feedback should be provided.

Furthermore, it would be of benefit to determine whether everyone benefits in the same manner,

or if the level of expertise has an effect on the perceived benefit.

6.4.1 Experiments

A series of experiments were performed to achieve the objectives stated above. Considering the

difficulties that other researchers have had in finding significant differences in the applied forces

when visual feedback was provided, it was important to properly design the experiments consid-

ering all of the possible factors that could influence the outcomes and the levels of these factors.

The following factors were originally identified:

1. Variability between subjects: The level of expertise among subjects ranges from novice

to expert and could be formally divided in up to 6 intermediate levels depending on their year

of training. This first set of experiments focused on a comparison between novices (those

that have never before received training in MIS) and expert surgeons. Nuisance factors

related to the subjects include differences in their personalities, interest in the project, and

mood. These factors were not formally addressed in the design and their effect was minimized
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through randomization.

2. Amount of feedback: Using the SIMIS system, feedback can be provided in up to 5 DOFs.

If too much information is provided, however, it might be difficult to interpret its meaning.

For simplicity of interpreting the information provided, these 5 DOFs were divided into three

sets: force feedback (i.e., the magnitude of the forces in x, y and z ), rotational force feedback

or torsion, and actuation force feedback (i.e., grip or cut depending on the task).

3. Type of force feedback: Force feedback can be provided in several different manners.

Since in this MIS setup the subjects are directly manipulating the instruments, the force

information can only be provided in a visual or an auditory manner. Most surgeons con-

sider auditory force feedback to be disruptive in a surgical environment and as such it was

not implemented in these experiments; however, the optimal presentation of auditory force

feedback during MIS could be the subject of future work.

4. Effect of training: Training prior to each task is considered important to familiarize the

user with the experimental setup, the instruments and the tasks. Training can be provided

in different amounts and using different methods. The effect of training should be minimized

by ensuring consistency in the training that the subjects receive prior to commencing the

task.

5. Tasks: A critical step in the design of these experiments was to identify which tasks could

benefit the most from having force feedback. There are many simple tasks that can easily

be performed in a minimally invasive manner without force feedback. These tasks are not

ideal for assessing the importance of force information, as they have already been shown

to be possible without force feedback. More critical are tasks that have a high degree of

complexity. The selection of the task was critical as discussed in the following section.

6.4.2 Methods

It was desired to develop a complex procedure that required both technical and cognitive skills

to complete, and that was composed of those tasks that have been shown to require some form

of force information: palpating tissue to localize a lesion or tumour, intracorporeal suturing and

knot tying, and cutting near a critical anatomical feature.
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To perform this procedure the setup presented in Section 6.2.2 was used with different tissue

samples. The location of the tumours was varied randomly and the subjects were blinded to the

location of the tumour. This setup allowed participants to perform a complex procedure, composed

of 5 tasks, as follows:

Task 1 Palpation: The SIMIS instruments were used to palpate the tissue in order to locate the

tumour. This task was usually completed when they could visually identify the object

(Figure 6.10(a)).

Task 2 Cutting: The instrument in the dominant hand was replaced by a set of standard

laparoscopic scissors, which were used to cut the thin skin covering the tumour (Figure

6.10(b)).

Task 3 Tissue Handling: The SIMIS instruments were again used to remove the tumour

(Figure 6.10(c)).

Task 4 Suturing: The instruments were used to drive a needle through the tissue, as shown in

Figure 6.10(d).

Task 5 Knot tying: An intracorporeal surgeon’s knot was tied, composed of one double knot

and two single knots (Figures 6.10(e) and 6.10(f)).

Information about the applied forces was displayed directly on the video screen that was ob-

served by the participants. This information was displayed as bars that increase in size and change

colour as the force increases (from green, to yellow, to orange, to red). The point at which the bar

changes to red was set to 10 N or 30 N·mm, in order to prevent tissue damage [38].

6.4.2.1 Preliminary Trials

A first set of tests were performed considering the cause and effect diagram outlined in Figure 6.11,

with experience level as a between-subjects factor and the types of feedback as within-subjects

factors. This first set of tests was performed to determine which factors or high-order interactions

were completely irrelevant to the outcome and to establish a measure of error. The measure of

error allows the standard deviation in the measurements to be established, allowing the sample

size of future experiments to be determined. The preliminary trials also served to iron out any

issues with the methods prior to enlisting a large number of subjects.
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Steps in a complex procedure composed of 5 tasks: palpate tissue to identify tumour
location (a), cut top surface to expose the tumour (b), remove tumour (c), pass a
suture (d) and tie and tighten an intracorporeal surgeon’s knot (e,f ).

Figure 6.11: Cause and effect diagram for the preliminary trials.

The design of these experiments follows a typical 23 design (three factors at two levels each),

assessed with 8 tests per replicate, as shown in Table 6.4. A full factorial test was performed

(implementing all possible combinations), permitting the assessment of low- and high-level inter-

actions. Performing at least two replicates allows the measurement error to be computed, hence

a total of four replicates were performed with two expert surgeons and two novices. Similar to

previous experiments, the following variables were recorded during the trials: task time, applied

forces (3 DOFs), torque, grasp force, instrument position in 6 DOFs and videos of the trials.

The outcomes from the procedures that were measured and analyzed during the preliminary

trials were as follows:
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Table 6.4: Plus and minus table for the 23 design and the interpretation of each test.

Run Force Grip Torsion Description

1 - - - No force feedback

2 + - - Only Cartesian force feedback

3 - + - Only grasping feedback

4 + + - Cartesian force and grasping feedback

5 - - + Only torsional feedback

6 + - + Cartesian force and torsional feedback

7 - + + Grasping and torsional feedback

8 + + + All force feedback

Task completion time The time required to perform each of the five tasks was extracted from

the videos.

Number of errors The videos were analyzed to determine the total number of errors per-

formed in each trial. Errors noted included: incorrectly identifying the

lump location, improperly cutting the incision (too small), dropping the

needle, incorrectly placing the sutures, loose knots, breaking the needle

off of the suture, and tearing the tissue.

Applied forces The mean forces applied in the Cartesian directions, the grasping forces

and the torsion about the instrument axis for each of the five tasks were

calculated from the recorded data.

Instrument motion Instrument tip motion was processed to extract the total motion range

and volume.

6.4.2.2 Insights from the Preliminary Tests

The results show a series of interesting insights and guidelines for the next round of experiments.

First of all, the number of errors seemed to be linked only to experience level, the run number for

each subject, and the task that was being performed. Similarly, task completion time and the task

volume were mostly affected by the level of expertise of the user. It is understandable that force

feedback would not have an effect on the volume, as the motion range can be considered unrelated

to the amount of force applied during a task. Task completion time might still be affected if

cognitive loading increases or decreases significantly with visual force feedback.
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The results also show that the Cartesian forces applied on both instruments were the most

sensitive to the type of force feedback provided, regardless of the task. Grasp and torsional forces

were only significantly different in the last three tasks, leading to the conclusion that, for the

palpation and the cutting tasks, only the Cartesian forces applied may need to be analyzed.

It was also noted that in cases where two or more forms of feedback were provided, performance

was better if only one form of feedback was given. In other words, performance was improved if

only one form of feedback was provided and decreased if no force feedback or too much information

was given. This indicates that there might be a mental overload when more than one force graph

is being displayed on the screen and users might have ignored the feedback provided in these

situations. It is interesting to note that torsional feedback did not have an effect on the torsional

forces applied.

A complex task consisting of all 5 steps was a good way of measuring the effect of force feedback.

Tasks 3 and 4 were the most sensitive to the type of feedback provided.

When analyzing the data, it was noticed that it was difficult to find a correlation between the

time frame on the video and the force and motion data. The sampling rate of the video turned

out to be variable and it was difficult in some cases to match up the data appropriately. It was

then decided to modify the software to record the sample time directly on the screen.

Based on these preliminary results, the main trials outlined in the following section were deter-

mined. Using DesignExpert (version 8.0.7.1, StatEase, Inc. Minneapolis, MN) and based on the

data, it was determined that a total of 30 subjects had to complete the next round of experiments

with 15 subjects at each experience level. To minimize the mental overload caused by too much

information provided to the users, it was decided to provide only Cartesian force and grasping

feedback, as Torsional feedback did not seem to have an effect on the torsional forces during any of

the tasks. Furthermore, torsional forces really only come into play during the suturing task, and

can be considered bothersome during the other tasks, causing subjects to ignore them completely.

6.4.2.3 Main Trials

Considering the results of the first set of tests, the main trials were then performed. After watch-

ing a video describing the procedure that needed to be performed, 30 subjects performed the

trials. Subjects with no surgical experience practiced tying an extracorporeal knot using standard

instruments prior to starting the experiments. All of the subjects were also allowed to practice
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manipulating the instruments until they felt comfortable with their operation. All of the subjects

were right-handed, 7 were female and 23 were male. 13 subjects were considered experts, while 17

subjects were considered novices.

The experiment was designed as a repeated measures study with two factors (force feedback

and grasping feedback) at two levels each (22 design). Each subject then performed the procedure

a total of four times, with varying visual feedback: no feedback, force feedback only, grasping

feedback only, and force and grasping feedback together. For each subject, the different forms of

feedback were provided in random order. They were told to attempt to remain in the green range

(below 4 N) when manipulating tissue, but to go to the red (above 10 N) when grasping the needle

to minimize slippage.

The following variables were recorded during the trials: task time, applied forces (3 DOFs),

torque, grasp force, and instrument position in 6 DOFs. Videos of the trials were also recorded.

Modifications to the software allowed the video to display the frame number, which was then

paired to the frame numbers in the force and position data, allowing full synchronization of all

data sources.

6.4.3 Data Analysis

The videos of all 120 trials were observed and analyzed as follows: 1) the start and end times of

each task were identified and recorded; 2) time frames were recorded for any events that were out

of the ordinary, for example: if the needle was dropped and no longer visible, the subject took

a break, the instruments needed to be fixed, or the skin lifted off of the setup and needed to be

replaced; and 3) the time frames corresponding to actions in between the tasks were also identified.

This process was followed in order to reduce variability in the data, as the subjects were all unique

in their way of removing the instruments from the setup, or dropping the tumour to the side.

There was no dead time in between Tasks 4 and 5.

Once these frame times were recorded, a MATLAB script was run to separate the data into the

different tasks, compute the total range of forces applied in each direction, and create individual

plots for evaluation. The forces in the x and y directions were combined into one force magnitude

(again axial forces were not considered due to the issues noted in in Chapter 4). The plots were

then reviewed to identify any discrepancies in the data.

If anomalies were identified, the video was analyzed further to identify the cause of the problem.
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Any anomalies in the position and force data were removed through linear interpolation. For

example, it was noted that if the instruments crashed against each other, which happened often

as the instrument was brought back into place after cutting, it produced a blip in the position

data that did not correspond to the instrument motion. In these cases, the data were cleaned by

linearly interpolating between the values before and after the blip.

Finally, the data were processed to compute the average and the maximum forces for the

Cartesian force vector and for the grasping force. Also, the ratio of high forces to the total task

completion time was also computed. This measure was developed to reflect how a person might

respond to visual force feedback. When the display bars change from green to yellow to orange

to red, the subject would tend to reduce the applied forces and therefore minimize the amount of

time higher forces are applied. The thresholds for what was considered to be high forces were set

to 8 N the Cartesian forces and 10 N for grasping forces.

The Statistical Package for the Social Sciences (SPSS) version 19 was used to perform statistical

analysis of the data. An analysis of variance (ANOVA) test was used to determine if any significant

differences exist between the data sets with force and grasping feedback as the within-subjects

factors and experience level as a between-subjects factor. The results obtained are presented

below.

6.4.4 Results and Discussion

The experiments were successfully performed by all 30 subjects. One additional subject did not

complete the trials as it triggered a prior upper-body injury. In one of the 30 cases, the calibration

file had been accidentally deleted and, although the data were collected, the visual force feedback

provided to the user was useless. This was not noted until the trials were completed, therefore the

results presented below correspond to 29 of the 30 subjects.

The instruments were able to successfully measure force and position data during the trials

with minimal problems. Some of the problems that occurred with the SIMIS instruments included:

errors in force data collection caused by pinching of the cables (this resulted in a complete satura-

tion of the signal), the inner shaft disengaging from the handle, and the instrument tips not closing

fully. As soon as these issues were identified during the trials, the experiments were stopped and

the problems corrected prior to continuing.

The results of the data analysis are presented in Tables 6.5 and 6.6 as discussed in the following
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Figure 6.12: Average task completion time for all five tasks according to the feedback provided.

sections. Trends are presented for p < 0.25.

6.4.4.1 Time

The effect of feedback on task completion time was only significant during the first of the 5 tasks,

see Figure 6.12. It was noted that when actuation feedback was provided, task completion time

increased (121.3 s vs. 61.4 s, p = 0.001). During the other tasks, visual feedback had no effect on

the task completion time.

The fact that task completion time increased during the first task when actuation feedback

was provided indicates that the subjects required more time to adjust to the information that was

being provided. Grasping was not used during the first task, so it might have been a confusing

factor for the subjects as they would see the force bars increase although they might not have been

in contact with the tissue. Furthermore, as this was the first task, it is possible that the subjects

were adjusting to the information that was provided.

6.4.4.2 Task 1: Palpation

During the palpation task, the availability of force information had no significant effect in any

of the measures. Although the grasping force had no effect on the palpation as the tissue itself
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Figure 6.13: Average mean forces with and without force feedback during the palpation task. The
difference is not statistically significant, p = 0.50.

was not being grasped, both the grasping and the actuation forces were analyzed, as this might

provide some insight into how the instruments were held during a palpation task. In many cases,

the subjects may have chosen to ignore the grasping force, but having to consciously think about

it might have resulted in the increased time presented above.

In all of these trials, the forces applied were quite low, thereby rarely reaching the orange or red

ranges (average and maximum Cartesian forces were about 1.9 N and 6.0 N respectively). Looking

at the mean forces only, there was a nonsignificant trend to apply greater forces when feedback

was provided, see Figure 6.13. All of these forces were still well below the range of forces allowed,

so it is speculated that having feedback allowed subjects to know that they were not exceeding

high forces and that they would not damage the tissue.

As subjects could not tell how deeply they were palpating, the availability of feedback did not

help in tumour localization. To aid in tissue characterization, a map needs to be developed as

presented in Section 6.2 to fully take advantage of kinesthetic feedback for lump localization.

6.4.4.3 Task 2: Cutting

During the cutting task, the recorded information was limited to the left hand only, as standard

laparoscopic scissors were used on the right hand. Although the SIMIS instruments can be con-

verted to scissors by replacing the handle and the tip, it was decided to use standard instruments

to save on instrument conversion time and to prevent damage that could be caused to the cables

during the instrument changeovers (240 changeovers would have been required).
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During this task, the left instrument was used to grasp the tissue and assist during the cutting

process. Force and grasp should both be minimal to prevent tissue damage.

Similar to the previous task, there was an insignificant trend of higher applied forces when

feedback was provided. Although Cartesian force feedback did not have an effect on the Cartesian

forces applied, it did have an effect on the amount of time that grasping forces exceeded 10 N. The

high-force grasping ratio was significantly reduced from 21% to 11% (p = 0.012).

Analysis of this task is difficult because not all subjects were grasping the tissue when the

high forces occurred. Some subjects used the grasper to push on the tissue only, so interpreting

high grasping forces is difficult. A more detailed analysis of the video would be of benefit to

recognize the times when tissue was actually being grasped and to determine whether the visual

force feedback had an effect during those time frames.

6.4.4.4 Task 3: Tumour Removal

During the tumour removal task, the subjects usually used the left hand to push the skin out of

the way, while the right hand grasped the tumour and pulled it out. Some subjects had difficulty

grasping the tumour as it would slip out of the instrument jaws. Overall, to succeed in tumour

removal, the tumour had to be grasped hard. This is reflected in the increase in grasping forces

compared to the first two tasks, with the right hand showing much greater forces than the left

hand (mean forces of 10.2 N in right hand vs. 4.5 N in left hand).

The grasping forces tended to be higher with force feedback in the left hand (4.3 vs. 4.6 N,

p = 0.72), but lower with force feedback on the right hand (11.1 vs. 9.4 N, p = 0.21). The only

significant difference was in the high grasping force ratio on the right hand, which was reduced

from 36% to 29% when feedback was provided, p = 0.039. Similar to Tasks 1 and 2, the Cartesian

forces applied by both hands were well below the threshold and there was no significant effect

caused by the availability of visual force feedback.

6.4.4.5 Task 4: Suturing

During the suturing task, both instruments were involved in properly orienting the needle prior to

penetration. Once the needle was in place, the right instrument was predominately used to pass

the needle through, with the left instrument assisting again at the end to remove the needle from

the other side of the tissue. High grasping forces were required on the right-hand instrument to
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Figure 6.14: Average mean forces with and without force feedback during the suturing task. The
difference is not statistically significant, p = 0.45.

grab the needle properly when penetrating the tissue. This is reflected again in the much higher

grasping forces applied by the right instrument.

The effect of visual force feedback was significant during the suturing task. Subjects tended

to apply less grasping force with the right hand when grasping feedback was provided, showing a

significant difference in the maximum grasping force applied (p = 0.045). This is an interesting

observation, as the range of the forces was significantly higher than the point at which the grasping

feedback bar turned red. Although the subjects observed no difference when forces were higher

than 10 N, there is a significant difference in the data when grasping feedback was provided. One

possibility is that when the subjects observed the red bar, it caused them to be more careful overall

and apply less force.

Looking at the mean forces only, there was a nonsignificant trend to apply reduced forces when

feedback was provided, see Figure 6.14. The ratio of forces higher than 8 N also tended to be less

in both instruments when feedback was provided (0.3% vs. 0.02% in the left hand, p = 0.2 and

0.6% vs. 0.3% in the right hand, p = 0.15).

6.4.4.6 Task 5: Knot tying

The knot-tying task was by far the most difficult to complete for the novice subjects. There was a

significant increase in task completion time compared to other tasks. There was also a noticeable

level of frustration in the novice subjects that would cause them to pay even less attention to the
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visual force information provided.

During this last task, the grasping forces need to be high to ensure that the needle does not

slip during tying. Grasping of the needle needs to alternate between the two instruments when

tying the different knots. This is reflected in similar maximum forces measured with the two

instruments (45.5 vs. 43.2 N). As with Task 4, the availability of grasping feedback reduced the

maximum grasping forces on the right hand instrument (from 44.9 to 41.4 N, p = 0.045).

The Cartesian forces did not show any significant differences when visual feedback was available.

The forces applied were quite low in all cases. The analysis of this task was also complicated by

the different motions involved in knot tying. The subjects needed to be gentle to ensure that there

was no unnecessary pushing of the tissue, but had to make sure that the three knots were tight. A

more thorough analysis of this task, separating the time frames when tightening the knots, would

be beneficial. It was expected that the maximum forces would reflect these tightening values, but

still no significant effects were observed.

It should be noted that, compared to the other tasks, the mean Cartesian forces and the high-

force ratios are much smaller. This was caused by the drastic increase in task completion time and

the fact that, while the subject is orienting the needle and the suture, there are few times when

the instruments are not in contact with anything except for grasping the suture.

6.4.5 Final Remarks

Section 6.4 presented an evaluation of the usefulness of visual force feedback during conventional

laparoscopic surgery. Similar to the results obtained by other researchers evaluating the usefulness

of visual feedback during robotics-assisted surgical procedures, there were only a few instances in

which visual feedback produced a change in the forces applied by the subjects, regardless of their

experience level. It was noted that when the typical forces applied were well below the range of

allowable forces, subjects tended to increase the amount of force applied, but as the required force

increased, visual force feedback tended to reduce the applied forces, especially for the dominant

hand.

It is very possible that subjects did not care to use the visual force information. The fact that

there was no change in task time would indicate that the subjects were not interested in using the

force feedback consciously (there was no cognitive overload). In fact, some experienced subjects

commented on how they did not need the force information and that they were not going to use it.
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Other novice subjects were too focused on completing the task to even be able to consider using

the visual force information.

It is recommended that when visual force feedback is presented, it should be very specific to

the task being completed and very clear guidelines be given to the user. Training in the use of force

feedback might also be required. Current training methods do not focus on consciously teaching

the proper application of forces. The availability of systems that allow the users to know the

amount of force that is being applied opens up new areas of research in training that could lead

to better outcomes in the future.

6.5 Conclusions

This chapter showed that there are several applications in which the SIMIS instruments can en-

hance real surgery settings. The combination of force and position information can be used in

the development of realistic tissue models or haptic interfaces specifically designed for MIS. This

information is also valuable in order to create tactile maps to assist in the identification of areas of

different stiffness. The real-time measurement of forces allows visual force feedback to be presented

to the surgeon. For this information to be effective, it needs to be specific to the task being done

and surgeons must be trained in the use of force information.

From the experiments performed, interesting conclusions can be drawn regarding the effect that

experience level has on performance and the applied forces. The following chapter investigates the

usefulness of the SIMIS system in training and skills assessment.



Chapter 7

Applications to Surgical Training

7.1 Introduction

This chapter presents the use of the SIMIS system for skills assessment during training. After

a thorough review of the current state of the art in training and skills assessment in MIS, the

experiments performed are described, followed by the development of new performance metrics

based on force as well as the analysis of the experimental results.

7.1.1 Motivation

Recent analyses of medical errors have indicated that 44,000 to 98,000 people die every year in the

USA due to medical errors [160], and that 32,000 deaths were considered to be surgery related in the

year 2000 [161]. It has also been found that up to 24,000 deaths occur in Canada every year due to

preventable medical errors (34% of those are related to surgical procedures) [162]. Other research

shows that most surgical mistakes happen in the operating room and are due to technical issues,

the majority of them occurring during routine operations performed by experienced surgeons [163].

Preventable surgical errors may be the product of ineffective or inconsistent training methods

and curriculum. When it comes to surgical procedures, trainees must acquire cognitive skills, com-

munication abilities, judgement, and motor skills, including dexterity and technical competence.

The standard method of training is for a trainee to follow the instructions of the surgeon directly

in the operating room (OR). However, research has shown that the OR is not an adequate place to

learn motor skills for several reasons [164–168]: there are ethical concerns (when is it ok to let the

113
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trainee do the work?); there are legal concerns (if there is a mistake, who is to blame?); the pres-

ence of new technologies means that there is more to learn and that experts are learning as well;

new legislations have come into play (which has significantly reduced the number of hours that

residents can work); there are time constraints (the need for increased efficiency and reduced costs

means less OR time); and public awareness has become more demanding (which places pressure

on surgeons to reduce patient morbidity and complications, and increase patient safety).

With the introduction of laparoscopic surgery, the rise in the number of surgery-related injuries

created an awareness for the need to properly measure technical competence [169] and to develop

better training methods. Achieving technical competence in MIS procedures is not easy. The

learning process is affected by perceptual and motor limitations [149] that create a steep learning

curve, for example [167,170,171]:

• 2D vision creates a lack of depth perception.

• The reduced field of view leads to spatial disorientation and unintended contact with healthy

tissues.

• Degraded motion perception creates disorientation (motion illusions caused by viewing the

site through a reduced aperture).

• Passive viewing causes dissociation between action and perception (this occurs when the as-

sistant controls the camera, as the surgeon’s movements do not correspond with the received

visual information).

• The fulcrum effect produces motion reversal and scaling of forces.

• The lack of haptic feedback limits sensory perception.

• Manipulation using long tools reduces comfort and dexterity.

It has been recognized that it is not sufficient to learn techniques for open surgery, but that

specific training for MIS is required [172]. To complicate things further, the number of people 65

years and older continues to grow dramatically in North America, leading to more patients who

require less invasive procedures [172] and more complex illnesses that need to be treated [168].

This has led to the introduction of new requirements for training, where all residents need to

achieve certain competency levels prior to operating on humans [167]. Thanks to new technologies
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that allow us to record activities in the OR, it is now possible to develop metrics and quantita-

tive descriptors that characterize technical performance [173]. However, identifying how best to

quantify technical performance is the subject of extensive research and no ideal solution has been

found. In order to understand how these metrics have been developed, it is important to consider

the learning process, as described below.

7.1.2 Knowledge Acquisition

A large number of researchers have worked for many years to understand better how learning

occurs in order to develop better training methods. Training methods must be effective (i.e., meet

all of the objectives) and efficient (i.e., reduce the learning curve and the cost) [174].

To understand how motor skills are acquired, Fitts and Posner proposed three stages of motor

skill development [168, 175, 176]: the cognitive phase, which is what students do in class: read,

watch and listen; the integrative phase, when students start to apply the knowledge with some

guidance but with lack of fluidity; and finally the automatous phase, which is when fully indepen-

dent learning occurs with no supervision or guidance.

As learning occurs by doing, not just through observation [177], the most important variable

for skill acquisition is how long the trainee practices for [178]. However, all trainees learn at a

different rate, and identifying the level of acquired technical competence in a trainee is important.

Another thing to consider is which environment is the best for knowledge acquisition. There

is currently no ideal option [175]:

• From the point of view of skill acquisition, practicing on a real patient in the OR is ideal,

although it comes with significant ethical and legal concerns, as discussed above. Assessments

in the OR have to consider that patients and situations are all unique.

• Learning on cadavers eliminates the risk to patients, but there is limited availability and the

conditions are not the same as in a live patient.

• Animal models are more available than cadavers but their anatomy is different from humans;

there is also some risk of transferring diseases to those working with the animals.

• Synthetic models allow good skill comparisons, but it is hard to know how effective the

training itself is (i.e., do the acquired skills transfer to real surgery).
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• Virtual reality (VR) simulators allow very accurate assessments based on performance pat-

terns. They are more costly and are unable to give proper haptic feedback, which means

they lack fidelity. Transferability of the skills acquired in a VR simulator to real surgery is

not easy to measure, as the metrics used in the simulators are not always clinically relevant.

7.1.3 Aspects that Affect Performance

Many things can have an impact on training and can make the development and evaluation of new

training methods more difficult. For example:

1. Variability between subjects: performance is significantly affected by the subject’s attitude

towards a task, their self motivation [179] and innate abilities [179,180].

2. Training schedule: the practice schedule for trainees can be fixed, random, or adaptive. Adap-

tive scheduling has been shown to improve performance more quickly by allowing trainees to

progress at their own pace [179]. Adaptive scheduling can consist of adjusting the number

of trials, adjusting the difficulty or adjusting both, based on learner performance [178,181].

3. Feedback [161, 179, 182, 183]: Providing feedback to the user when learning a new task has

been shown to significantly reduce the learning curve [184]. The frequency, the type of

feedback, and how it is delivered need to be considered [179,183]. Some argue that feedback

should be focused on performance throughout the task [184], while others think that it should

focus on the outcome [183]. Another thing to consider is whether the feedback focuses on

what the trainees are doing right or on correcting their mistakes.

4. Mental overload [185,186]: Higher mental workload in the operating room can be one of the

reasons why performance in a simulator is better than in the OR [160]. As trainees practice,

they develop automaticity, which decreases mental workload and frees up mental capacity

for other tasks to be performed effectively [186]. Training should reflect the conditions in the

OR to ensure that trainees do not experience overload when transferring to the OR setting.

5. Mental training: Thinking about the steps of a procedure prior to performing it has been

shown to improve results when paired with physical practice [164, 183, 187]. The amount of

mental training a subject has done will affect their performance during physical practice.
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Nevertheless, efforts to improve training and skills assessment methods have been significant.

The following sections describe research efforts that have been proposed to assess motor skill

development in surgical applications.

7.1.4 Validated Assessment Methods

In order to assess how a trainee acquires a particular skill, it is important to have a way of

testing if learning has occurred and to what degree. Unfortunately, motor skills are not easy to

measure [161, 175] and there is considerable controversy regarding the best method for assessing

motor skills.

For many years, the Record of In-training Assessment (RITA’s or ITER’s) has been used

to assess progress by means of interviews [175]. The standard method of assessing motor skills is

through the use of checklists or standard rating scales. Global Rating Scales (GRS) in general have

been proposed for use in many areas, for example gynecology [188] and emergency medicine [189].

A more standardized method of laboratory training is called the Objective Structured Assessment

of Technical Skill (OSATS), which combines checklists and GRS in order to provide a structured

evaluation that attempts to be objective, readily accessible and allows the measurement of a proper

learning curve [166,175,188].

The limitations of these performance measures include: being subjective (can result in biased

and inconsistent assessments and produce high inter-rater variability) [161,180,190], not providing

feedback when learning complex skills [184], not being trainee and procedure specific [189], and

requiring extra cost and time due to the need for an evaluator [161].

The following sections present other methods of assessment that have been developed specifi-

cally for MIS, and have attempted to address these limitations. In general, in order to assess the

effectiveness of proposed training methods, they must meet a series of evaluations, which are aimed

at assessing reliability and validity as follows [191]: face validity (subjective—experts assess the

contents to determine if it is appropriate), content validity (subjective—experts assess how effective

the contents are according to what is being assessed), construct validity (objective—evaluates if it

a hypothesis is true), concurrent validity (comparison of two methods, one of which is validated)

and predictive validity (can predict who will be able to perform a task better). The proposed MIS

skills assessment methods and their level of validity are presented below.
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7.1.4.1 GOALS

The Global Operative Assessment of Laparoscopic Skills (GOALS) has been accepted and validated

as a training method. It was developed as a way of standardizing the assessment of minimally

invasive procedures [165,192]. The assessment is done by a trained expert who watches a video of

the trainee performing the task and provides a score on 5 elements: depth perception, bimanual

dexterity, efficiency, tissue handling, and autonomy. Although the results are no longer biased,

as it is possible to perform a blind assessment, the evaluation is still subjective and requires a

significant amount of time on the evaluator’s part.

7.1.4.2 FLS / MISTELS

Another validated training method is the McGill Inanimate System for Training and Evaluation

in Laparoscopic Surgery (MISTELS) [193], which has been incorporated into the Fundamentals of

Laparoscopic Surgery (FLS) curriculum as the manual skills component [194]. It requires trainees

to achieve proficiency for 5 basic tasks performed inside a physical simulator environment with

inanimate objects. A performance measure is calculated based mostly on the task completion

time, together with an evaluation of the final outcome of the task.

Construct validity was shown in [194] using four levels of experience (2nd year, 5th year, laparo-

scopic fellows, laparoscopic surgeons), while inter-rater reliability was shown in [195]. Concurrent

validity with the GOALS system was shown as a randomized control trial in [196]. Some limita-

tions of this type of training are: the evaluation of final outcome is still a subjective measure that

requires an expert evaluator; the tasks are very simple and can only assess basic motor skills; and

no feedback is provided to the trainee, which can result in the development of poor habits. Fur-

thermore, it has been criticized because beginner trainees that have not reached the automatous

phase should not be judged based on task completion time [165].

7.1.4.3 ICSAD

To address some of the limitations of the FLS curriculum, research has focused on the development

of metrics that assess performance over the entire task in an automated manner. The Imperial

College Surgical Assessment Device (ICSAD) was developed for this purpose. It uses position

sensors attached to the hands of the trainee and computes performance based on task completion
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time, number of movements and total path length [197]. Construct validity for MIS was shown

in [198] using vascular anastomosis as a complex task. This study compares the ICSAD measures

to subjective measures: size, angle, spacing between sutures, suture depth, damage to tissue, and

leaks. The results showed that improvements in the measures were observable as the trainees

gained experience and differences were found between novices and experts.

The ICSAD system was used in [199] to investigate whether there is a correlation between

visual–spatial abilities, manual dexterity and surgical ability. Surgical performance was assessed

with the ICSAD system and the OSATS method. Visual and manual dexterity were assessed using

other validated methods (Mental Rotations Test, Surface Development Test, Gestalt Completion

Test, Phase Discrimination Test, and Crawford Small Parts Dexterity Test). Some correlation

was found with spatial ability and surgical ability in novices, while some correlations were found

between manual dexterity and efficiency of hand motion.

The limitations of the ICSAD system are that it can only evaluate the performance that can be

related to motion and time and that large external markers need to be worn by the trainee [200].

However, a significant advantage of ICSAD is that it can be used in any training environment,

including in simulators, as presented in the following sections.

7.2 Simulator-based Training

A simulator entails some sort of model that allows a trainee to practice specific tasks related to the

surgical procedures that are being learned. Simulator-based training has been proposed as a means

of developing surgical skills in MIS, as the type of skills that need to be learned for MIS are easily

trained with simulators [167]. The fidelity of the simulator model may vary significantly, as well

as the tasks that are performed. Regardless of the complexity of the system, for a simulator to be

effective, it needs to be part of a curriculum and follow a competency-based program, as opposed

to just providing performance metrics [167]. Research that aims to evaluate the importance of

high- versus low-fidelity simulators will be needed to fully exploit the potential of simulators as an

educational tool [201].

There are three different types of simulators [176]: training boxes or physical simulators, virtual

reality simulators and augmented reality or hybrid simulators. The following sections present the

different types of simulators in more detail.
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7.2.1 Physical Simulators

Physical simulators are described as real objects that mimic to some extent the conditions present

in surgery. For MIS, physical simulators often involve a training box that mimics the patient’s

body, while the instruments enter through small openings. The MISTELS program described above

is performed inside a physical simulator [193]. Other examples include the Simulab™ LapTrainer

[170,202], the LaproTrain™ [203], and the i-Sim [204].

These simulators have the advantage of being low cost, portable, adaptable, and simple [170].

Their low cost means that they are more available to schools [165]. However, the most important

advantage over virtual reality simulators is that, because real instruments are used in contact

with real objects, realistic haptic feedback is provided to the trainee [205]. The main limitation

of physical simulators is that they do not provide a measure of performance other than task

completion time. Performance evaluation has to be done using GOALS, ICSAD or the FLS

evaluation for the MISTELS tasks. Some researchers indicate that only those simulators that

provide an objective measure of performance (other than time) can improve training and provide

an adequate measure of skill [176].

7.2.2 Virtual Reality Simulators

VR simulators are those in which a computer program is used to create a model of the surgical

environment and the instruments. These types of simulators address the problem of lack of feedback

by computing performance metrics based on the movement of the instruments and/or of the

trainee’s hands and their interactions with the virtual environment [191]. The interface usually

allows a specific training schedule to be followed by the trainee and their progress over time can be

measured and tracked. However, these simulators are usually costly and they lack realistic haptic

feedback.

Although some studies indicate that a large number of injuries result from poor haptic feed-

back [185], there is no consensus regarding the importance of haptics when performing surgery.

Nevertheless, research has shown that haptics in VR training is important [176], especially during

early basic skills training [5]. During MIS a distorted sense of haptic sensation is still present, as

opposed to the complete loss of haptic feedback that results from robotic surgery; therefore VR

trainers without haptics should only be used to learn hand–eye coordination [5].
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Significant research has been directed towards the development of VR simulators with haptic

feedback. For example, a system developed at the University of Washington to simulate a suturing

task uses the SensAble PHANToM® haptic interfaces with needle drivers attached to the end-

effector [190]. However, VR simulators with some form of haptic feedback are not very realistic [167]

and they are very costly [172].

7.2.3 Hybrid Simulators

In some applications, both physical and VR simulators have been shown to be equally effective

for the development of basic MIS skills. VR trainers have the advantage of providing objective

performance measures, while physical simulators provide accurate haptic feedback; however, nei-

ther of them is ideal. Augmented Reality (AR) or hybrid simulators can provide the best of both

worlds [167]. They combine real environments with realistic haptic feedback and software pro-

grams that are able to enhance the surgical view, track instrument motion, provide performance

metrics and track trainee progress. An example of an AR simulator is the ProMIS™ system, a

hybrid simulator in which real instruments can be used, while the system tracks instrument tip

motion to provide a measure of performance [206].

7.2.4 Robotic Surgery Simulators

As the skills required for laparoscopic surgery and robotic surgery are different, it is necessary to

train and assess the skills in simulators that are appropriately designed for the type of procedure

[161]. The dV-Trainer™ by Mimic Technologies [207] is a VR simulator that was designed for

training in the use of the da Vinci surgical system. Ongoing work at CSTAR is currently focused

on assessing the transferability of the skills learned on the Mimic system to the da Vinci using a

Mastery Learning approach to training. Similarly, [177] presents the use of SimSurgery®, a 2D

virtual reality simulator for the da Vinci with no haptic feedback.

AR simulators that allow the use of any real instrument can also serve as trainers for robotic

surgical systems. For example, the da Vinci system was used with the ProMIS system mentioned

above in [208]. The results showed construct validity for the use of the ProMIS measures as a

means of measuring robotic performance.
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7.2.5 Other Aspects of Simulator Training

To determine which type of simulator is more appropriate for a particular task, several different

measures are used to assess simulator effectiveness [189]: validity (do the results of the assessment

properly measure what is being trained?), reliability (is equal performance measured equally every

time?), and sensitivity (is it capable of detecting small changes in the skill level of what is being

trained?). Deciding which type of simulator to use or to implement into a curriculum is not a

straight-forward decision. There are many simulators that have been developed and evaluated,

and they all have their advantages and disadvantages. An excellent summary of simulators and

their level of validity is presented in [167].

Some of the recognized disadvantages of simulators include: being too expensive [164, 172],

allowing unsupervised training that can lead to the development of bad habits [166], having un-

known or mixed results about the transferability to the clinical environment [189], and not showing

a reduction in the learning curve [172].

For simulators to be effective, proper motivation needs to be given to the trainees so that

they fulfill the training hours required for proficiency [167]. They must also provide feedback while

learning, allow trainees to repeat each skill several times, adapt progressively to more difficult tasks,

provide individualized learning in a controlled environment, and provide well-defined outcomes

[189]. A significant amount of work has focused on measures of performance outcome, as described

in the following section.

7.3 Performance Measures

Properly designed performance measures are required in order to determine the level of experience

that surgeons and trainees have when performing specific tasks. For performance measures to be

effective they need to be standardized and their use fully defined. A standard measure is defined

as “a quantifiable level of performance that serves as a boundary between those who perform well

enough and those who do not” [189]. However, there is no consensus on how these standards

should be developed.

A step in this direction is the work presented in [209], which outlines that performance measures

must show “low intra-subject variability, moderately low intra-group variation [grouped by skill

level] and significant inter-group variation.” Some researchers have focused too much on developing
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objective measures that improve with practice, e.g., [210], and this leads to questions regarding

the measures used in simulators as a way of measuring performance [179]. Little work has been

done to correlate these types of measures with the actual outcome of the procedure [179,211], and

new measures need to be found [149].

Surgical performance requires a “mix of cognitive and technical components” that varies be-

tween people [184]. A proper performance measure needs to consider both components, be related

to the outcome and describe how the movement is generated [184]. The ideal performance measure

is one that can be automatically computed in an objective manner. It should be a single measure

that describes the global characteristics and the fine details of a movement [212]. Safe, complete

and error-free procedures are more desirable outcomes than efficient ones [179]. However, for new

metrics to be adopted, they need to be proven to be better than existing evaluation standards [172].

An interesting way of developing an effective performance measure is presented in [173], where

they looked at what is considered important, identified a metric that could characterize it, and

then figured out a way to combine the measures into one. Others have also recognized that each

parameter alone is not sufficient and that a combination needs to be found [149].

The following sections provide an overview of the performance measures that have been de-

veloped in the literature. They are divided into 5 categories: temporal, outcome, motion-based,

force-based and nonlinear measures.

7.3.1 Temporal

Task completion time is a common way of assessing trainee performance. Most simulators and

evaluation metrics currently in use employ time in one way or another to measure skill. Task

completion time has been used for skills assessment in [121, 149, 184, 185, 197, 205, 208, 211, 213,

214] and may provide an indication of trainee skill level when combined with other performance

measures. Another way of using time as a measure of performance is to look at the time between

subtasks [190] as a measure of hesitation.

7.3.2 Outcome Measures

Outcome or qualitative measures refer to those that assess the final outcome of each task or of the

procedure as a whole. These measures don’t look at how the procedure was performed but instead

are only concerned with the end result. Some examples of this type of measure are the number
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of errors [179, 185], the number of attempts required to achieve the desired outcome [213], or the

quality of the outcome [190].

Other more specific criteria can be defined for specific tasks. For example, [198] outlines

the evaluation criteria for a vascular anastomosis, defining a 6-point score composed of a series of

questions about size, angle, space between sutures, depth, damage and leak defects. Similarly, [180]

has looked at anastomoses leakage and cross sectional area of anastomoses. For suturing in general,

other measures consider fluidity of motion, accuracy, placement and tightness of the knot [208].

An analysis and categorization of the typical errors made by trainees during laparoscopic

surgery is presented in [181] in an effort to identify common errors and their causes. Outcome

errors were identified as being either procedural (e.g., skipped or missed step) or executional (force

application or actual performance). It was found that the dominant errors were skipped steps,

incorrect sequence and use of excessive force.

Although implementing outcome measures requires less time commitment on the part of the

evaluator compared to the measures described in Section 7.1.4, it is still time consuming and

subjective. Furthermore, the type of assessment has to be very specific to the task being performed.

7.3.3 Motion-based Measures

Motion-based measures are the most commonly used metrics for objectively measuring perfor-

mance. It is possible to identify objective parameters that truly characterize the surgeon’s move-

ment through the biomechanical analysis of hand or instrument motion [149].

Some of the commonly used motion-based measures include the number of movements [180,

197, 211] and the distance travelled (path length) [149, 150, 179, 205, 208, 211], which is also used

for robotic procedures [214]. One way of computing the path length is [173,205]:

P =

∫ D

0

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt, (7.1)

where D is the task duration and the variables in the brackets correspond to the first derivative

of the motion in the three Cartesian directions x, y and z.

Other less common metrics measure the straightness of the path (i.e., the ratio of the straight

line connecting the start and finish points, to the actual path followed) [149], the path deviation

(i.e., the maximum perpendicular distance from the actual path to the straight line connecting the
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end points) [149], the maximum roll angle [184], and the response orientation, defined as [173,205]:

P =

√∫ D

0

(
dθ

dt

)2

dt, (7.2)

where θ is the rotation angle about the instrument axis. Other measures are proposed in [182,214]

to assess performance using a robotic system, and include curvature (which measures straightness of

the path), and relative phase (which measures instrument coordination, computed as the difference

in the phase angle between the two instruments).

7.3.3.1 Speed

Speed is an important consideration when measuring performance and many measures are based

on this metric, which is computed as the first derivative of the motion profile. Some of the

measures proposed in the literature include: a normalized speed measure—computed as the mean

of the speed divided by the peak speed (this is lower as the intervals between submovements

increase) [215], the mean speed [149], the peak speed [149, 184], the magnitude of the velocity

vector [150,214], 3D instrument tip velocity [209], the number of changes in velocity over time [208],

and the number of peaks in speed [215].

Roher, et al. [215] also use the Movement Arrest Period Ratio (MAPR, proposed in [216]) as

a measure of how often the speed is zero (measures hesitation) and is defined as the proportion of

time that the movement speed exceeds a given percentage of the peak speed (10% was selected).

7.3.3.2 Acceleration

Another measure commonly used is acceleration, computed as the second derivative of the motion

profile. Measures based on acceleration include the number of accelerations and decelerations [179],

the mean acceleration [149], and the maximum acceleration [149]. Another measure is the integral

of the magnitude of the acceleration vector (IAV ), which measures the energy expenditure and is

defined as [149]:

IAV =

∫ D

0
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d2x

dt2
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+
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dt2

)
dt. (7.3)
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7.3.3.3 Jerk

The use of the third derivative of the motion profile, known as jerk, has been used by several

researchers as a measure of motor skill, usually applied to assessing the progress of certain diseases

like Huntington’s disease, Parkinson’s disease [151], injuries to the jaw [150] or the effects of

having a stroke [215]. The smooth motion characteristic of voluntary movements has minimum

jerk [212,215]. Measures based on the minimum jerk can predict the smoothness because it provides

a measure of the intention that a person has when moving [212]. A curved path has more jerk

than a straight path, even when there is constant velocity, and it increases with high accelerations;

therefore, the jerk measure provides a measure of suboptimal coordination [151].

The advantages of using jerk include “analytical tractability, computational manageability, and

theoretical simplicity” [215]. Jerk has been shown to discriminate between healthy patients and

those with motor dysfunctions and can be used to identify progress when learning [150]. It was

proposed as a means of assessing skill development in MIS in [205] and in [152], although in the

latter study, no differences were found between novices and experts due to lack of power.

A limitation of the minimum jerk measure is that it is inversely dependent on the second power

of task completion time, hence it is not completely independent of task duration. Several different

ways of normalizing jerk have been proposed in [217]. As the integral of the jerk squared has units

of length2/time5, to normalize they suggest multiplying by the duration (D) to the power of five

and dividing by the power of the amplitude Am, as follows:

C =
D5

Am
2

∫ t2

t1

...
x (t)2 dt. (7.4)

The results of their evaluation show that the dimensionless measure remains constant as the

amplitude of the motion and the duration vary. It is sensitive to increases in the number of

peaks, amplitude of the peaks, and periods of arrest, indicating that it provides a real measure of

smoothness. Based on this, a three-dimensional jerk measure is presented in [149]:

Jerknorm =
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There still needs to be care when using the jerk measure to assess performance. It is important

to note that smoothness will be measured as high if there are large pauses between movements,
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which is counterintuitive as a performance measure [215]. Therefore if a novice predominantly uses

the dominant hand, the motion profile will show higher jerk than the other hand.

7.3.3.4 Nonlinear Measures

Nonlinear measures have also been proposed as a metric for motor skill. The work presented

in [218] shows that human movement is best characterized as a dynamic nonlinear system. The

use of linear analysis attributes all of the variation to noise, and in the case of human movement,

there are definite patterns that are exhibited that are not noise. Using nonlinear theory, it is

possible to gain better insight into the characteristics of human movement. Furthermore, looking

at the structure of the variability instead of its amount is a better measure of behaviour, as there

seems to be a decrease in variability as people develop a skill, which then increases again when

they become experts and they find alternate ways of effectively performing a skill [219].

Nonlinear theory has been applied to the assessment of experience level for intracorporeal

suturing, through the evaluation of the Hurst Exponent and phase plane plots [220, 221]. The

results show that the swing range and bandwidth of the plots, as well as the chaotic exponent of

the motions, decrease as trainees gain experience. Also, the largest Lyapunov Exponent (LyE) was

used as a measure of consistency of performance in [222]. The largest LyE is a measure of stability

that indicates how quickly successive trajectories diverge in space [218]. Finally, approximate

entropy can also be used as a measure of regularity. It usually provides the same result as the

LyE, but with higher statistical accuracy [218].

Another nonlinear-type analysis includes Hidden Markov Models (HMMs), which are language

models commonly used to analyze speech patterns. They have been used to analyze surgical

gestures (for example during knot tying) in order to provide a measure of skill that reflects the

performance throughout the task [122, 161]. HMMs provide a means of assessing the statistical

similarity of a data set measured for a subject with apparently unknown skill level to expert and

novice surgeons [122]. However, HMMs require each step of the procedure to be categorized during

analysis. A common approach relies upon manual decomposition of the video, which is just as

time consuming as OSATS-type measures. Some automation has been attempted for decomposing

surgical gestures automatically from the video but it is very computer intensive.

HMMs have also been used to quantify applied forces and torques during MIS for characteri-

zation of surgical skills for training advanced laparoscopic procedures [120]. Markov models were
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shown to provide a good objective metric of performance (87.5% accurate). However, a significant

limitation of the HMM’s is that in order to extend it to new procedures, an expert surgeon must

“provide the specifications for building the topology of the HMMs,” which cannot be easily done

by most surgeons [200].

7.3.4 Force-based Measures

Similar to position data, force data can be analyzed in many ways to extract valuable information.

Newly developed instruments and devices that allow force information to be measured during

training have initiated the development of performance measures that try to reflect the trainee’s

ability to be gentle or to apply sufficient force when required. Very little work has been done in

the use of force information for skills assessment and training in MIS, limited by the ability to

measure force in real surgery.

Applied forces may be an important measure to consider when characterizing trainee skill

level, but it is not straightforward to determine what distinguishes an expert from a novice, as

ideal applied forces are task-dependent [190]. Some efforts to develop force-based metrics can be

found in the literature. The da Vinci application programming interface (API) was used in [214]

to provide information on the relative grasping force. This is not a true measure of force, as the

information is presented as a percentage of the current drawn by the motors. An experimental setup

was used in [223] to evaluate the usefulness of using force information to quantify performance in

stroke patients. Some VR simulators have been developed with objective assessment metrics, some

of which are based on the maximum forces applied [190] or grasping with excessive pressure [191].

Finally, a study was presented in [152], where a laparoscopic grasper was instrumented with a

force/torque sensor and strain gauges on the handle of the instrument to measure the applied

forces during real surgical procedures. Unfortunately, apart from only being able to measure the

applied forces from outside of the patient’s body, this study was underpowered and no significant

differences were found in the forces applied by novices and experts.

An interesting study presented in [181] found that it was difficult for trainees to be gentle

with tissue, often referred to as “the heavy hands” of the beginner. This study found that 92%

of consequential errors that dominated during simulated MIS procedures were skipped steps (pro-

cedural error), wrong sequence (procedural error) and use of excessive force (executional error).

Force related errors (too much or too little) dominated 58% of consequential errors and 31% of
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inconsequential errors.

Some of the force-based measures that have been used and some that are inspired by motion-

based measures include the following:

1. Force Range: Refers to the difference between the minimum and the maximum forces applied

during a task. This measure is important because it encompasses the magnitude of the forces

in both directions.

2. Interquartile Range: This measure takes into account the 50% of the data that are closest to

the median. In other words, it does not consider the data that are in the lowest quartile (the

25% of the data with the lowest values) and in the highest quartile (the 25% of the data with

the highest values). Similar to the force range, this measure combines the forces applied in

the positive and the negative directions, but by taking only the interquartile range, outliers

do not have an effect on the overall measure.

3. Average Force: The average or median force is important to identify the mid-point value of

the data. The range only makes sense in conjunction with this value. Average forces were

used in [184] as a measure of skill.

4. Maximum Force: The maximum value of the absolute force applied might also be an im-

portant measure. It is affected by outliers, so care must be taken when interpreting the

information. This measure was used in [184], but did not show a difference between experi-

ence levels.

5. Integral of the Force: This value provides a measure of high forces and the amount of time

that the forces are high. If a single peak occurs, the integral of the force will not be much

higher, but if the forces are high for a long time, the integral will be significantly higher.

6. Derivatives of the Force: Refers to the first and second derivative of the force as a measure

of consistency in force application. These measures are used in [224] as a way of analyzing

muscle behaviour, but have not been used as a measure of surgical performance.

7. Smoothness of the Applied Forces: This value refers to the third derivative of the force and

the equivalent to the jerk measure. It provides a quantitative measure of how smoothly the

forces are applied. The integral of the squared force jerk was used to measure smoothness
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when applying forces in [223], where it is stated that it provides a measure of “spontaneous

accelerative behaviours in the grip force profile”.

One of the main goals of skills training is to learn to gauge the applied forces better [181], but

current simulators do not allow trainees to receive information about the applied forces. Providing

visual force feedback during training might allow trainees to develop a more refined sense of touch

in order to learn to be gentle with tissue and to apply sufficient force when required, however, they

need to be trained to use this information.

7.3.5 Other Measures

Other interesting ways of measuring performance have been proposed in the literature. In [225],

researchers used biomechanical data in a simulated environment that tracks the surgeon’s motions.

Force, displacement, velocity and work of various muscles in the arms and back are extracted from

the simulator to evaluate skill. Physiological behaviour is used in [226] as a means of assessing

surgeon performance during laparoscopy. They measure heart rate, respiration, pulse wave and

perspiration in addition to the movements of the body. This study presents an evaluation of time

and breathing rate using an elastic band with a strain gauge attached. The results show that the

expert surgeon had a significantly lower breathing rate compared to all of the novices.

A method for measuring trainee performance, called the MScore, was developed for the dV-

Trainer [227]. It is based on a variety of metrics, some of which can only be measured when operat-

ing in a simulated environment, e.g., pose efficiency, pose accuracy and proficiency distance. Other

metrics include task completion time, total path length, instrument collisions, master workspace

range, instruments out of view, and other metrics specific to the tasks being performed. It also

includes a measure of force that is based on the current drawn by the motors.

7.3.6 Data Processing

Analysis of these measures is usually done through standard ANOVA tests. Principal Component

Analysis (PCA) was used in [209] to identify skill level based on instrument motion with good

results. However, in order to compare various measures of performance, they need to be within

the same range and ideally unitless. Different ways of normalizing performance data have been

proposed in the literature. In [226], the results were all normalized with respect to the expert. A



7.4 Development of New Performance Metrics 131

more elaborate method is presented in [173,205]. This method involves comparing each individual

parameter to those obtained from a group of experts, as follows:

zi =
PN
i − PE

i

σE
i

, (7.6)

where PN
i is the value obtained by the trainee for that particular metric and PE

i is the mean of the

metric for the expert group. σE
i is the standard deviation for the expert group. A total measure

is then computed as follows:

z = 1 −

N∑
i=1

αizi

N∑
i=1

αizmax

− α0z0, (7.7)

where N is the number of parameters, αi and α0 are coefficients that may be used to balance the

influence of each parameter, and z0 is the outcome of the task. This equation provides a way of

generating a combined performance metric from individual metrics.

7.4 Development of New Performance Metrics

It should be noted from the review presented above, that there is still a very clear need to develop

measures of performance that meet the following requirements:

1. Should be automatically computed based on motion or force data.

2. Should be objective measures that do not rely on the user’s input for assessment.

3. Should provide a measure of the performance throughout the task, not only the final outcome.

4. Should provide a measure of aspects that are actually important to consider during surgery,

such as safety and dexterity.

An experimental evaluation was performed to select or develop new performance metrics that

are able to identify different experience levels during MIS and meet the requirements outlined

above.

The same data collected during the experiment described in Section 6.4 were used to determine

better performance measures for skills assessment. As the experiment was designed as a full
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factorial test with experience level as the between-subjects factor, it is possible to analyze the

same data to determine which performance measures are able to differentiate between the different

experience levels.

The hypothesis is that it is possible to process the force and/or position data in such a way that

a high correlation can be found between experience level and the value of the resulting metrics.

7.4.1 Methods

A total 30 subjects performed the complex procedure composed of 5 tasks: palpation, cutting,

tumour removal, suturing and knot tying. 13 subjects were considered experts, while 17 subjects

were considered novices. A more detailed division of the experience of the subjects was created,

as described in Table 7.1, based on background, post-graduate year (PGY) level, and years of

practice.

Table 7.1: Detailed experience levels.

Basic Detailed Description

Novice
n = 17

1 (n = 6) No medical background, e.g., Engineers

2 (n = 6) Medical students

3 (n = 5) PGY 2–3 and surgeons with no MIS training

Expert
n = 13

4 (n = 2) PGY 4–5 with training

5 (n = 5) Fellows with training

6 (n = 6) Expert surgeons

7.4.2 Data Analysis

The preparation and analysis of the data follows the methods outlined in Section 6.4.3. It was

observed that although many of the results did not show significant differences from the within-

subjects analysis on the effect of visual force feedback, most measures showed significant differences

from the between-subjects effects, i.e., they showed differences between the novices and the experts.

However, for the more detailed experience levels shown in Table 7.1, there were not enough subjects

per group to have sufficient power to observe between-subjects effects in all cases. It was therefore

decided to perform a more thorough analysis by performing a Spearman’s Rho correlation between

the different metrics and the detailed experience levels.
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Considering the existing metrics found in the literature and presented in Section 7.3, different

measures could also be computed from the data. This is described in the section below.

7.4.2.1 Position-based Measures

The position-based metrics that were proposed in the literature were computed and compared, as

follows:

1. The total volume used by the instruments was computed by calculating the maximum and

minimum in each direction and then multiplying the resulting three ranges of motion. This

measure was computed in cm3.

2. To avoid the effect of outliers in the total volume calculation, the interquartile volume was

also computed in cm3. The function iqr from the MATLAB Statistics Toolbox was used to

calculate the interquartile ranges in each direction, which were then multiplied to compute

the volume.

3. The tip velocity was computed by calculating the first derivative of the motion profile for

x, y and z (using the MATLAB function diff with a sampling time of 0.02 s). The three

velocity components were then combined into one through the Euclidean norm of each data

point. The tip velocity profile was then used to compute the following metrics:

(a) The consistency of the speed was calculated as the standard deviation of the velocity

profile in mm/s.

(b) The number of peaks in the speed was calculated using the MATLAB function findpeaks

to find the number of local peaks in the velocity profile.

(c) The peak speed was calculated as the maximum of the velocity profile in mm/s.

(d) The average speed was calculated as the mean of the velocity profile in mm/s.

(e) The MAPR was calculated as defined in Section 7.3.3.1 for values that exceeded 25%

of the maximum speed.

(f) The path length was calculated as the integral of the velocity profile using the MATLAB

function trapz in mm, as defined in Equation 7.1.
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4. The acceleration profile was computed by differentiating the velocity profile in each direction

and then combining the components into one using the Euclidean norm. The following

metrics were then computed:

(a) The consistency of acceleration was calculated as the standard deviation of the accel-

eration profile in mm/s2.

(b) The peak acceleration was calculated as the maximum of the acceleration profile in

mm/s2.

(c) The average acceleration was calculated as the mean of the acceleration profile in mm/s2.

(d) The IAV was computed as the integral of the acceleration profile in mm/s2, as defined

in Equation 7.3.

5. The normalized jerk was calculated by differentiating the acceleration profile in each direction

and then combining the components using Equation 7.5.

Of these measures, the interquartile volume, and the standard deviation in the speed and accel-

eration as a measure of consistency have not been used previously for assessing motor performance.

The number of peaks in speed and the MAPR have not been used previously in the assessment of

surgical performance.

7.4.2.2 Force-based Measures

The force data were processed as described in Section 6.4.3. The resulting data consisted of a

grasping force profile and a Cartesian force profile for each task in each trial. The force-based

metrics implemented in the analysis include the following:

1. The average forces in each direction were calculated as the mean of the grasping force profile

and of the Cartesian force profile.

2. Similarly, the peak forces in each direction were computed as the maximum of each force

profile.

3. The interquartile range was computed using the MATLAB function iqr for the grasping and

the Cartesian force profiles.
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4. The integrals of the grasping and the Cartesian force profiles were calculated using the

MATLAB function trapz with a sampling time of 0.002 s.

5. The vector of force derivatives was computed using the diff function. The derivative measure

(dFmetric) was then calculated using the following equation:

dFmetric =

√
D

2 · Fiqr
2

∫ D

0

(
dF

dt

)2

dt, (7.8)

where Fiqr is the interquartile range of the force profile.

6. Similarly, the vector of the second derivative of the force was computed by differentiating

the first derivative, and the second derivative measure (d2Fmetric) was computed using the

following equation:

d2Fmetric =

√
D3

2 · Fiqr
2

∫ D

0

(
d2F

dt2

)2

dt. (7.9)

7. The third derivative was computed by differentiating the second derivative, and the third

derivative measure (d3Fmetric) was calculated using the following equation:

d3Fmetric =

√
D5

2 · Fiqr
2

∫ D

0

(
d3F

dt3

)2

dt. (7.10)

Of these measures, only the peak and the mean forces have been used previously for the

assessment of surgical performance. The second derivative has been used to assess the smoothness

of movement in stroke patients. All of the other measures are considered in this experimental

evaluation for the first time for skills assessment in surgery.

7.4.2.3 Combined Measures

It was also decided to implement measures that combined various force- and position-based metrics,

to come up with one overall measure of performance, which could then be adapted to be task

dependent. The goal of this implementation was to account for various important skills that need

to be developed together, in order to ensure that a trainee has acquired the required level of

experience. In the work presented in [165], the GOALS score is computed as a combination of
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several different measures. Following those same measures and considering what could in fact be

measured with the SIMIS system, the following measures were considered to be important:

• Depth Perception: As a measure of depth perception, the GOALS score looks at overshooting

targets and how quickly the subjects correct for the overshooting. This can be represented

as the smoothness in the motion, i.e., as the jerk measure.

• Bimanual Dexterity: To compute the bimanual dexterity, it was necessary to develop a

measure of how much each hand was being used relative to the other one. The MAPR

measure already calculates the percentage of time that the instrument is being used, so

a measure of bimanual dexterity was developed by subtracting the MAPR value for the

nondominant hand from the MAPR value for the dominant hand.

• Efficiency: As a measure of efficiency, the total volume utilized for each task and the number

of peaks in speed were considered important. It was decided to not include task completion

time as the number of peaks in speed is already correlated with time.

• Tissue Handling: This is a measure of how roughly the tissue is handled or if any tissue

damage occurs. The force-based measures come into play to assess tissue handling abilities.

The measures considered for tissue handling included the integral and the derivative of the

grasping and the Cartesian forces for both instruments.

Considering the measures for the left and the right hand, this resulted in a total of 15 measures

that needed to be combined. However, it was important to combine them in such a way that

not one measure dominated over the others and so that they could be adapted to the task being

performed. For example, during the palpation task (Task 1), the volume measure is not relevant as

the motion was completely dependent on the location of the tumour in the tissue. For the cutting

task (Task 2), bimanual dexterity could not be computed as the right-hand movements were not

measured. Also, the value of the jerk measure was higher than 106, while the change in MAPR

was lower than 1.

To accommodate these requirements, the data needed to be normalized and each measure

multiplied by a scaling factor according to the task being performed.

Two different methods of normalization were implemented for the combined force–position

(FP) metrics, as follows:
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1. FP Metric 1: A normalization method was developed with the purpose of minimizing the

effect of outlier-type data, which tends to dominate when all of the data are normalized to

the maximum value. This measure assigned a value of 0.5 to the trimmed mean of the data

set, i.e., the mean of the values without the top three maximum and minimum values. Each

measure was then capped at 5 to ensure that the outlier data did not dominate.

2. FP Metric 2: The method outlined in [205] was implemented following Equations 7.6 and

7.7. The data from one of the subjects considered to be the most experienced was used as

the standard to which the other subjects were compared.

Furthermore, to determine the scaling factors, two different methods were followed:

1. An ad hoc definition of the weights was determined based on the requirements of each task.

2. An optimized scaling vector was determined with the goal of maximizing the Spearman’s

Rho correlation with the experience level. The MATLAB function fmincon can be used

to find optimal parameters constrained between a lower and an upper bound (set to 0 and

1 respectively). It was used to find the set of scaling values that generated the minimum

correlation (maximum negative correlation) between the measure and the experience level

for each of the tasks.

The results of these experiments are presented in the following sections.

7.4.3 Results

A first analysis of the results showed that one of the experienced subjects created outlier data

during the palpation task (Task 1). This subject had difficulty localizing the tumour in every try,

having to make up to 5 incisions in order to find the correct location of the tumour. As this was a

statistically significant outlier confirmed using DesignExpert (based on the Externally Studentized

Residuals), it was removed from the data for the analysis of Task 1 only.

7.4.3.1 Time

Task completion time results are presented in Figure 7.1 and Table 7.2. Time shows a significant

correlation with experience level in all tasks, decreasing as experience increases. The correlations
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Figure 7.1: Task completion time for the 5 tasks according to the level of experience.

Table 7.2: Task completion time results in seconds for all 5 tasks.

Task 1: Palpation Task 2: Cutting Task 3: Handling Task 4: Suturing Task 5: Tying

Mean Time 64.0 ± 11.4 52.6 ± 5.0 37.6 ± 7.2 178.1 ± 24.2 356.1 ± 31.2

Novices 78.4 ± 14.6 64.3 ± 6.6 53.1 ± 9.5 263.8 ± 31.9 545.4 ± 41.1

Experts 49.5 ± 17.4 40.9 ± 7.5 22.1 ± 10.8 92.4 ± 36.5 166.8 ± 47.0

Significance p = 0.215 p = 0.026 p = 0.041 p = 0.001 p < 0.0001

Correlation -0.336, p = 0.0002 -0.242, p = 0.008 -0.297, p = 0.001 -0.437, p < 0.0001 -0.769, p < 0.0001

are weak for the simpler tasks and become stronger as the task complexity increases. It can be

observed from these figures that a consistently decreasing trend cannot be observed for any of the

tasks. The suturing and knot-tying tasks (Tasks 4 and 5) show a plateau after experience level 4,

which is the point at which students are considered trained in basic MIS tasks.

7.4.3.2 Position

Not all of the position measures showed significant correlations. Table 7.3 shows the correlations

that were significant for each of the tasks. It can be observed that the number of peaks in speed

and the normalized jerk show significant correlations for all of the tasks. Looking more closely

at the speed peaks, it was noted that they were directly coupled with the task completion time,

showing the same shaped graphs as time for all of the tasks. Normalized jerk provided a better
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Table 7.3: Spearman’s Rho correlations between the six levels of experience and each position-
based measure evaluated. Results show left and right hand values for each task when
applicable. Bolded correlations are significant with p < 0.05 (LH: left hand, RH: right
hand).

Measure Task 1:
Palpation
(LH, RH)

Task 2:
Cutting
(LH only)

Task 3:
Handling
(LH, RH)

Task 4:
Suturing
(LH, RH)

Task 5:
Tying
(LH, RH)

Total Volume -0.182, -0.197 0.020 -0.054, -0.122 -0.331, -0.223 -0.541, -0.528

Speed Consistency -0.220, -0.202 -0.114 -0.132, -0.116 -0.250, -0.177 -0.465, -0.357

Speed Peaks -0.338, -0.345 -0.237 -0.330, -0.302 -0.445, -0.434 -0.767, -0.772

Max Velocity -0.062, -0.058 0.121 0.010, 0.150 -0.206, 0.006 -0.230, 0.024

Mean Velocity 0.175, 0.291 0.117 0.171, 0.260 0.207, 0.546 0.270, 0.562

MAPR 0.151, 0.211 -0.092 0.095, -0.018 0.334, 0.262 0.481, 0.436

Path Length -0.305, -0.276 -0.154 -0.188, -0.195 -0.348, -0.316 -0.725, -0.680

Acceleration
Consistency

-0.235, -0.216 -0.138 -0.148, -0.127 -0.233, -0.173 -0.465, -0.340

Max Acceleration -0.102, -0.075 0.120 -0.005, 0.104 -0.142,-0.027 -0.196, 0.079

Mean Acceleration 0.096, 0.255 0.204 0.151, 0.253 0.214, 0.555 0.252, 0.525

IAV -0.319, -0.283 -0.155 -0.199, -0.180 -0.342, -0.316 -0.725, -0.671

Jerk -0.341, -0.333 -0.243 -0.296, -0.268 -0.409, -0.406 -0.750, -0.736

IQR Volume -.0153, -0.065 0.156 0.081, -0.031 -0.319, -0.149 -0.285, -0.269

measure of performance, as shown in Figure 7.2. It can be observed in this graph that in most tasks

there is a decrease in the jerk as the experience level increases; however, this decrease also tends

to plateau after level 4. Some of the correlations found with the position measures are slightly

stronger than the correlations found with task completion time.

7.4.3.3 Force

Looking at the effect of experience level on applied forces as a between-subjects factor, there were

no significant differences found in the cutting and tissue handling tasks (Tasks 2 and 3). The

results are presented in Table 7.4. Compared to time and position, stronger correlations were

observed in some of the force-based measures as shown in Table 7.5. More important, however, is

the fact that some of the measures showed consistently decreasing slopes for the palpation task,

as well as during suturing and knot tying (Tasks 1, 4 and 5). Some examples of these measures

are shown in Figure 7.3.
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Figure 7.2: Normalized jerk as a function of experience level for all 5 tasks.
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Figure 7.3: Sample graphs of force-based metrics: maximum grasping force for Task 1 (a), deriva-
tive of the grasping force for Task 4 (b), derivative of the grasping force for Task 5
(c), derivative of the Cartesian force for Task 4 (d), integral of the Cartesian force for
Task 4 (e), and integral of the Cartesian force for Task 5 (f ).
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Table 7.5: Spearman’s Rho correlations between the six levels of experience and each force-based
measure evaluated. Results show left and right hand values for each task when ap-
plicable. Bolded correlations are significant with p < 0.05 (LH: left hand, RH: right
hand).

Measure Task 1:
Palpation
(LH, RH)

Task 2:
Cutting
(LH only)

Task 3:
Handling
(LH, RH)

Task 4:
Suturing
(LH, RH)

Task 5:
Tying
(LH, RH)

Grasp

Mean -0.251, -0.038 0.039 -0.034, -0.112 -0.352, -0.290 -0.238, -0.191

Maximum -0.336, -0.107 0.024 0.034, -0.322 -0.388, -0.349 -0.369, -0.337

IQR -0.181, 0.096 0.106 0.029, -0.045 -0.164, -0.234 -0.142, -0.179

Integral -0.320, -0.190 -0.082 -0.178, -0.386 -0.520, -0.523 -0.678, -0.666

First Derivative -0.386, -0.418 -0.053 -0.130, -0.363 -0.393, -0.524 -0.695, -0.721

Second Derivative -0.330, -0.374 -0.139 -0.193, -0.384 -0.411, -0.514 -0.748, -0.769

Third Derivative -0.306, -0.352 -0.179 -0.227, -0.357 -0.408, -0.505 -0.763, -0.782

Cartesian Forces

Mean -0.137, -0.142 -0.257 -0.109, -0.054 -0.159, -0.418 -0.406, -0.397

Maximum -0.284, -0.356 -0.080 -0.059, -0.170 -0.304, -0.439 -0.371, -0.402

IQR 0.044, 0.025 -0.029 0.011, -0.050 -0.109, -0.278 -0.488, -0.378

Integral -0.293, -0.313 -0.376 -0.311, -0.339 -0.454, -0.567 -0.755, -0.780

First Derivative -0.355, -0.381 -0.129 -0.203, -0.256 -0.459, -0.437 -0.729, -0.652

Second Derivative -0.322, -0.315 -0.228 -0.260, -0.290 -0.470, -0.460 -0.769, -0.729

Third Derivative -0.303, -0.291 -0.247 -0.283, -0.302 -0.465, -0.450 -0.776, -0.748

7.4.3.4 Combined Measures

The two FP metrics were implemented and evaluated. The results of the FP metrics when imple-

mented with the ad hoc scaling factors were not much stronger than plain task completion time;

therefore, the data presented herein corresponds to the optimized metrics as described in Section

7.4.2.3.

Figure 7.4 shows a comparison between the correlations found with task completion time,

peaks in speed, jerk, the integral of the force, and the two optimized FP metrics. Both FP metrics

combine the jerk measure, the difference in the MAPR value between the two hands, the total

volume, the number of peaks in speed, and the integrals and derivatives of the grasping and Carte-

sian forces. In both cases, the scaling factors were determined through an optimization strategy

that aimed to find the strongest correlations with experience level. FP metric 1 was computed

by normalizing each measure with respect to the range of values obtained within each measure.
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Figure 7.4: Comparison of the best possible Spearman’s Rho correlations between the six levels of
experience and several different metrics.

FP metric 2 was computed by normalizing the measures with respect to those of an expert. This

figure shows that the force-based measures and the FP metrics show stronger correlations with

experience level than task completion time and the position-based measures alone.

The results of the optimization for both of the measures show very different results for the

resulting scaling factors, as shown in Tables 7.6 and 7.7. From these tables, it is interesting to see

the metrics that dominated each FP metric. Most of the measures that dominate are force-based,

with the exception of volume, which turned out to be important during the suturing task (Task

5).

7.5 Discussion

Computation of the derivatives of the force and position signals must be carefully performed to

ensure that the resulting signal has an adequate signal-to-noise ratio. An appropriate design of the

smoothing filter ensures that the signals corresponding to the first, second and third derivatives of

the force and motion profiles are not dominated by noise; however, too much filtering (for example

if successive filters are used) can eliminate the high frequency data that characterizes irregular

movements.

To ensure that the selected filter was adequate, each time the metrics were calculated, the

original signal and the three computed derivatives were plotted, as shown in Figure 7.5. Visual
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Table 7.6: Scaling factors resulting from the optimization of FP Metric 1 (LH: left hand, RH: right
hand).

Measure Task 1:
Palpation

Task 2:
Cutting

Task 3:
Handling

Task 4:
Suturing

Task 5:
Tying

Jerk RH 0.0744 0.0091 0.0271 0.021 0.2123

Jerk LH 0.0541 0 0.0243 0.0249 0.1928

∆MAPR 0.0073 0 0.0273 0.0139 0.0177

Volume LH 0.0064 0.0004 0.0065 0.0117 0.316

Volume RH 0.008 0 0.0055 0.0253 0.1079

Speed Peaks LH 0.0367 0.0108 0.0295 0.0193 0.1988

Speed Peaks RH 0.0415 0 0.0216 0.0155 0.2363

Force Integral LH 0.1848 0.9769 0.0182 0.142 0.1138

Force Integral RH 0.0251 0 0.4493 0.7806 0.5922

Force Derivative LH 0.2861 0.001 0.0082 0.4157 0.0917

Force Derivative RH 0.3204 0 0.0364 0.0379 0.0679

Grasp Integral LH 0.3766 0.0026 0.0074 0.7401 0.3994

Grasp Integral RH 0.0078 0 0.657 0.1079 0.1477

Grasp Derivative LH 0.364 0.0004 0.0055 0.0247 0.4595

Grasp Derivative RH 0.5678 0 0.6738 0.9326 0.3773

inspection of these plots ensured that there were no significant jumps in any of the signals due to

discontinuities or excessive noise in the data.

It is, however, important to recognize that the work presented herein seeks to find a metric that

can distinguish the experience level of trainees, regardless of how accurately the speed, acceleration

or jerk profiles are represented. If some noise is left in the resulting signal, the consequences for

this work are not as significant as they might be for a different application, such as the control

of a robotic system. In [150], the authors argue that not losing high-frequency characteristics

when differentiating leads to increased sensitivity and robustness in the calculation of jerk-based

performance metrics.

The results of the experiments presented above show that the SIMIS instruments provide

an excellent tool for skills assessment during minimally invasive surgery. Not only were force-

based measures able to provide stronger correlations with experience than those found with task

completion time or position-based measures, but the relationships obtained with force are able to

distinguish better between sub-levels within the expert category. In other words, when trainees

are considered trained in basic skills, time- and position-based measures provide a measure of
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Table 7.7: Scaling factors resulting from the optimization of FP Metric 2 (LH: left hand, RH: right
hand).

Measure Task 1:
Palpation

Task 2:
Cutting

Task 3:
Handling

Task 4:
Suturing

Task 5:
Tying

Jerk RH 0.017 0.003 0.009 0.0086 0.0207

Jerk LH 0.0135 0 0.0105 0.0073 0.0123

∆MAPR 0.0383 0 0.0273 0.177 0.2812

Volume LH 0.0773 0.0017 0.0162 0.0254 0.3555

Volume RH 0.0787 0 0.0033 0.0096 0.3143

Speed Peaks LH 0.0322 0.0064 0.0257 0.0341 0.0939

Speed Peaks RH 0.0338 0 0.0229 0.0332 0.1049

Force Integral LH 0.2238 0.7627 0.0291 0.0563 0.0284

Force Integral RH 0.0293 0 0.3966 0.732 0.4762

Force Derivative LH 0.3712 0.0063 0.0224 0.2059 0.1622

Force Derivative RH 0.3415 0 0.0134 0.0184 0.1289

Grasp Integral LH 0.6889 0.0093 0.0186 0.6132 0.4145

Grasp Integral RH 0.0145 0 0.7206 0.0612 0.2166

Grasp Derivative LH 0.2216 0.0025 0.0125 0.0172 0.4381

Grasp Derivative RH 0.5271 0 0.7669 0.1394 0.0938

proficiency similar to that achieved by expert surgeons who have been practicing for many years.

However, some force-based metrics are able to distinguish between those different levels.

It is interesting to note that for experience Level 4 (subjects at the PGY 4–5 levels), task

completion time for Tasks 2 to 4 was less than all other groups. Other studies have shown similar

results, see e.g., [214, 228]. This can be explained by the fact that these trainees had recently

completed their training in MIS, where time is the main measure of performance. In fact, [228]

shows that there is a clear decline in performance after training (post-test evaluations) and even

further in retention tests when assessing performance using the FLS metrics (which are mainly

time-based).

Looking at task completion time as a measure of performance provides an easy way of estab-

lishing the difference between the levels, as time is the simplest metric to measure. It is clear that

in any kind of activity that we perform, the more experience we have, the faster we are able to

perform a task. However, care must be taken when using time as a measure of performance for

several reasons:

1. Performing a task quickly means that the trainee has reached the automatous phase regard-
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Figure 7.5: Sample graphs of force (a) and position (b) derivatives.

less of whether the task is performed properly [165]. When training novices, this stage has

not been reached, so time is not a good measure to use.

2. There is a clear trade-off between speed and accuracy [214], hence performing a task faster

is not necessarily better.

3. Everyone is different and what is fast for one person might not be fast for another person.

Time is not a measure of ability [188] and it is important for surgeons to work at their own

pace, especially when working near critical areas.

4. Depending on the specialty, doing things too fast could be a detriment to the overall outcome.

This is especially true for thoracic surgeons who work close to critical anatomical features.

5. Training for time teaches trainees to focus on doing it fast, not necessarily correctly. Trainees

may become aggressive in order to achieve the goals.
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6. An overall time measure might be influenced by other aspects of the training scenario, for

example, if there are distracting factors or other differences between the practice scenario

and the assessment scenario.

Nevertheless, task completion time may be useful as a measure of trainee skill level when combined

with other performance measures.

The results of the position- and force-based metrics show interesting trends for qualifying

experience during a complex procedure composed of 5 tasks. Some of the position-based metrics

and most of the force-based metrics proposed showed significant correlations with the 6 levels of

experience proposed (p < 0.05), except for the cutting task (Task 2), where only a few measures

correlated significantly with experience. As would be expected, the correlations found in the

simpler tasks (1–3) are weak, while the ones found for the complex tasks (4–5) are the strongest.

The strongest correlations with the position-based measures were found with the peaks in

speed and the jerk measure (Table 7.3). However, the correlations found with these measures and

experience level were not that much stronger than those found with time, as shown in Figure 7.4,

with the exception of the speed peaks during the tissue handling task (Task 3). Nevertheless, as

the correlations found were significant, they can be used as a measure of movement smoothness,

especially when looking at the normalized jerk measure (Fig 7.2), which is not coupled with task

completion time.

The values presented in Table 7.4 show the typical values found for the different metrics, as well

as the differences present between the novice and the expert groups. As the complexity of the task

increases, more of these measures become significantly different between the two groups. A few

of the force-based metrics showed greater correlations with experience level than those found with

time and motion, as shown in Table 7.5. The strongest correlations are observed with the integral

and the derivatives of the forces. A detailed task by task analysis of the results is presented below.

Palpation As Task 1 is very simple, task completion time for the novice and the expert groups

was not significantly different. The forces applied by the left-handed instrument

showed a significant difference between the novice and expert levels. The forces

applied by both instruments were very similar, showing that subjects used both hands

equivalently for palpation, and that the overall amount of applied force tended to

decrease as experience level increased. The first derivative of the grasping forces and
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the second and third derivatives of the grasping forces for the right hand showed

stronger correlations, as well as the first derivative of the grasping forces and the

maximum Cartesian forces on the right hand. The maximum grasping force also

showed a consistently decreasing trend, as shown in Figure 7.3(a).

Cutting Task 2 is slightly more complicated than Task 1, requiring more dexterity and control

of the instrument. It was observed that the time was significantly different between

the two experience groups, with a decrease in the task completion time as the experi-

ence level increased. A limitation of this task was that the use of standard scissors did

not allow forces to be measured on the dominant hand, hence the results for this task

are limited. Nevertheless, the mean and the integral of the Cartesian forces showed

greater correlations with experience level than task completion time.

Handling During Task 3, experience level showed a difference in time, with novices taking longer

than experts. The mean, integral and the three derivatives of the grasping force and

the integral of the Cartesian forces showed stronger correlations on the right hand

only. The lack of more significant correlations is attributed to the overall simplicity

of this task.

Suturing In Task 4, many of the position- and force-based measures showed a significant dif-

ference with experience level. All of the force metrics showed significant correlations

with experience level during this task on the dominant hand. The integral of both

the grasping force and the Cartesian forces showed stronger correlations with both

hands, as well as many of the derivative measures. On the right hand, the Cartesian

force integral and derivative as well as the grasping force derivative showed continu-

ally decreasing trends on the dominant hand, as shown in Figures 7.3(b), 7.3(d) and

7.3(e).

Tying During Task 5, the effect of experience was apparent in all measures and the cor-

relations with experience are the strongest of all the tasks. Experts took less time

and applied less force in all directions. However, the correlations are comparable to

task completion time, only stronger in a few of the measures. Nevertheless, the force

integral and the grasping force derivative showed decreasing trends as shown in Fig-
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ures 7.3(c) and 7.3(f). As this is the most complex task, further differentiation may

require breaking the task into smaller steps to observe the difference in the applied

forces when handling the needle, as opposed to tightening the knot, for example.

Finally, an interesting analysis results from looking at the optimized scaling values presented in

Tables 7.6 and 7.7. Larger scaling factors result from those measures that have the most influence

on the final measure, so by looking at these parameters we can identify which measures are more

affected by trainee experience level. The results show that the metrics that appear to be most

important for the combined force–position measures include: Cartesian force integral (Tasks 2 to

5), grasping force integral and derivative (Tasks 1, 3–5), as well as the total volume (Task 5).

These combined measures provided stronger correlations with experience than any of the other

single metrics; however, their implementation is more difficult as they depend on systems that can

measure instrument motion and applied forces in the different degrees of freedom (i.e., grasping

and Cartesian directions).

7.6 Conclusions

This study evaluated the effect of experience level on performance when conducting a complex

procedure composed of 5 tasks, with the goal of identifying new performance metrics. The results

show that experience level correlates better with force-based metrics than those currently used in

simulators. In particular, the integral and the derivative of the forces provide strong correlations

that are much higher than those found with mean and average forces. The new metrics presented

herein can be automatically computed, are completely objective (requiring no input from the

evaluator), provide a measure throughout the task and measure aspects of performance that may

actually have an effect on the outcome and the safety of the procedure.

Future work in this area includes an evaluation of the effect that training using force-based

metrics may have on the trainees’ development and learning curve, as well as identifying other pos-

sible combinations of metrics that include task completion time and the outcome of the procedure.

Furthermore, it would be interesting to assess the value of implementing nonlinear performance

metrics based on force and motion data.



Chapter 8

Conclusions and Future Work

The work presented in this thesis was aimed at addressing some of the current limitations present

during MIS, in particular, the degraded haptic feedback that is caused by reduced access conditions.

A thorough literature review was performed to clearly show the existing gaps in the state of the

art. There are currently no commercially available multi-axis force sensors that could fit through

standard endoscopic ports to allow tool–tissue interaction forces to be measured directly.

The SIMIS instruments presented herein provide a solution to the current inability to measure

forces during MIS. The first prototype presented some good solutions to the problem of attaching

sensors on a laparoscopic instrument in order to measure applied forces inside of the patient’s

body. However, limitations in the design made it such that it was not possible to obtain a reliable

measure of the axial or torsional forces. In spite of this, the first generation system was successfully

used to show construct validity of the SIMIS system as a training tool, using both motion and

applied force data.

The second-generation prototype of the SIMIS instruments solved many of the problems en-

countered with the first prototype and allowed several different evaluations to be performed, in

order to assess the usefulness of force and position data during surgery and for skills assessment.

A significant amount of work was also done towards the development of a sterilizable version of the

instruments. After conducting extensive evaluations to select appropriate materials, a sterilizable

version of the instruments is currently under construction.

The experiments performed with the SIMIS instruments have shown that force and position

information recorded during minimally invasive procedures can be used to identify areas of different

150
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stiffnesses to assist the surgeon in the localization of pathological abnormalities. Kinesthetic

information can also be valuable for the development of haptic interfaces or better tissue models for

physical or virtual reality simulators. Furthermore, force and/or position information is valuable

for the development of objective and automated performance metrics, to be used during skills

assessment and training, which truly reflect performance throughout the task.

8.1 Contributions

This work provides a justification for the development of instruments capable of measuring the

applied forces during MIS, and outlines the applications in which the force information has been

shown to be valuable. The specific contributions of this work are as follows:

• A set of instruments was developed that are capable of measuring forces and torques in all

degrees of freedom present during MIS. The system was developed in a modular fashion,

such that several different tasks can be performed by changing the tips and the handles

of the instruments. A full instrument performance evaluation showed excellent accuracy,

low hysteresis, noise and drift. The ability to measure instrument orientation allowed the

force data to be corrected for the effect of gravity. An analysis of the effect of changing

tips and the stability of the system over time was also presented. This is the first time

that instruments have been developed specifically for laparoscopic surgery so as to measure

tool–tissue interaction forces individually in different directions with minimal coupling.

• This work has advanced the knowledge of medical device design in that significant steps

have been taken towards the development of sterilizable sensorized elements. Specifically, the

experiments that were conducted show that, through the selection of appropriate materials

and components, it is possible to construct devices sensorized with strain gauges that can be

sterilized in an autoclave. This work can provide a solution for the measurement of applied

forces during real surgical procedures.

• The effect of visual force feedback during MIS was also investigated. The results indicate

that if visual force feedback is provided during a long and complex task composed of many

steps, and is provided in a very general manner, such that it is up to the user to determine

how to interpret the information, the effect on the forces applied by the user are minimal.
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The experiments presented herein were properly designed and had sufficient power to allow

these conclusions to be made. This is the first time that an experiment has been performed

using an appropriate number of subjects, with the goal of establishing the effect of visual

force feedback during a complex laparoscopic task.

• A feasibility study has been presented showing that force and position information recorded

using the SIMIS instruments can be combined to provide a visual representation of the

stiffness of the underlying tissue. The ability to measure tissue characteristics with the same

instruments that are used for tissue manipulation is a significant advantage provided by the

SIMIS system. This is the first time that a laparoscopic instrument has been presented that

can be used for both tissue characterization and tissue manipulation.

• The in vivo trials performed provided an indication of the range of motion and forces that are

required for the development of haptic interfaces specifically designed for surgical applica-

tions. The research shows that the SIMIS instruments can be used to inform the development

of haptic interfaces for specific applications by recording the range of applied forces and the

range of motion during surgical procedures.

• Further evaluations have presented evidence towards the effectiveness of applied forces as a

basic performance metric to be used for skills assessment. The applied forces correspond to

the true tool–tissue interactions, which represent safety and instrument control, as well as

when and how the instrument comes in contact with the tissue or other elements in the surgi-

cal environment. Although these are important considerations when learning difficult tasks,

surgical trainees are not currently being trained to apply adequate forces during laparoscopic

surgery. The SIMIS system presents a solution to this problem, by providing feedback and

performance metrics that allow trainees to know how much force they are applying and hence

learn to control the applied forces.

• Finally, the force and position information was processed to develop new performance metrics

that correlate better with experience than the metrics currently used in surgical simulators.

These new metrics also allow smaller increments in performance level to be differentiated,

including those that occur with years of practice in the operating room.
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8.2 Future Work

Recognizing that the work presented herein is not complete, there are several research avenues

that may be explored. The areas of future work that have been identified are presented below:

• The current calibration method is very time consuming and cumbersome. A more auto-

mated calibration method can be developed using a 6 DOF force/torque sensor as the basis

for the calibration. The key to this solution is to develop an appropriate interface that en-

sures that as forces are applied in different directions, a corresponding measurement can be

obtained from the force sensor. In this scenario, a SIMIS instrument would be inserted into

a sleeve that contains the sensor and the instrument–sensor interface. The user would then

run through a series of movements that would ensure that forces are applied in all direc-

tions. The data from the sensor and the instrument would be simultaneously recorded and

an automatic relationship between the two could be computed to establish the calibration

factors. Furthermore, a more automated calibration method could be implemented by hav-

ing a mechanism that automatically moves the instrument according to a defined calibration

sequence. This would ensure that an adequate range of forces would be applied in all direc-

tions and that the results would not be affected by the person performing the calibration.

These solutions would also allow the calibration of an instrument that has been sterilized

inside of a close-fitting wrapper. In this scenario, the instrument with the wrapper would be

inserted into the calibration sleeve and automatically calibrated prior to use.

• Several improvements to the manufacturability of the instruments are possible. The current

prototypes have been designed for manufacturing by using standard-sized components as

much as possible. The machining of the parts is considered to be adequate for high volume

production. The limitation in the instrument construction is related to the installation of

the strain gauges. It currently takes about a week for a very skilled technician to apply all

of the strain gauges, solder the cables and apply the coating to a single instrument. This

process may be streamlined through the development of customized gauges that contain

various gauges on one single foil, such that several of them can be installed at one time.

These customized gauges could also have the lead wires already attached to simplify the

wiring of the instrument. Custom cables with the exact number of strands and with each

wire cut to the appropriate length would also help to reduce the assembly time.
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• To fully develop a device that may be approved for use in humans there are several steps

that are still required:

– It is necessary to find a cable that does not have a braided shield that could cause debris

to accumulate. This cable must still be flexible enough to be routed around the inner

shaft of the device.

– Solutions need to be found to properly clean crevices, hinges and joints present in the

current device. If sealants are to be used to fill in some of these crevices, adequate

materials need to be found that will not degrade with instrument sterilization.

– It is necessary to find detergents and enzymatic cleaners that do not weaken the coating

and adhesives that are proposed for the strain-gauge installation.

– Finally, the process of approval for Health Canada needs to be followed, including the

preparation of a large amount of documentation to prove the safety and usefulness of

the devices.

• There is still no consensus as to whether the usability of an instrument improves with the

availability of force information. An in-depth study that analyzes the need for force feedback

through sensory substitution should be performed for each individual application. It is

necessary to determine the number of degrees in which forces need to be sensed for different

procedures, the required resolution and accuracy with which forces need to be measured,

and which force directions are most valuable to provide for individual tasks. A significant

amount of data is recorded using the instruments each time a task is performed. Establishing

when it is important to consider the forces in each direction, and when certain forces may

be ignored, would simplify the process of data analysis following an experiment.

• Future directions for the use of the SIMIS system for tissue characterization applications have

been presented in Section 6.2.5. More elaborate algorithms can be developed to automatically

determine when contact with the tissue begins and to determine the direction in which the

forces are being applied with respect to the tissue surface. Research into the use of sliding

instrument motion might provide a measure of tissue properties that better reflects the

information perceived by a surgeon’s hand during direct palpation. Tissue stiffness data can

also be used to develop better tissue models for surgical simulators.
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• Further research can be conducted towards the development of better performance metrics.

Other position and force metrics could be computed, and other ways of combining the data

should be evaluated. It would also be interesting to perform an analysis of the data by

computing nonlinear measures. Furthermore, a validation of the metrics proposed should also

be conducted. Current work is focusing on performing a concurrent validation of the system

using the ICSAD system, as this information was also collected during the experiments

presented in Chapters 6 and 7. Further experiments should also be performed to validate the

metrics with a new set of subjects comprised of different experience levels and backgrounds.

• Implementing force-based metrics in training scenarios will have an impact on how trainees

learn different skills. Evaluations that aim to assess the long-term effect of training with

force feedback should be performed. This will require an assessment of how best to incor-

porate force-based metrics and the SIMIS system into a curriculum. Once incorporated, a

randomized control trial can be performed, where trainees are exposed to either standard

training methods or the new force-based curriculum.

• An experiment to validate the proposed metrics could be performed for use in robotic surgery.

Other experiments have been performed at CSTAR using a haptics-enabled master–slave

robotic system [26,229]. As this system allows for the measurement of tool–tissue interaction

forces, experiments can be conducted to assess the validity of using the force-based perfor-

mance metrics developed herein in robotics-assisted procedures. Force-based metrics could

be used to guide the trainee when learning new tasks using haptic interfaces and through

the implementation of virtual fixtures that ensure the development of proper techniques.

• The ideal outcome when developing sensors for MIS would be a 7-DOF force-torque-grip

sensor that can enter the patient’s body through small incisions and that is biocompatible

and sterilizable. The required sensing, materials and manufacturing technologies are almost

there and the future appears promising. Researchers must continue to find novel designs for

multi-axis sensing that can be miniaturized and still provide the required sensitivity. Studies

to establish the levels of accuracy and resolution that are required for force sensors in MIS

need to be performed [5].

• Possible areas of research within the human factors field include developing an understanding



8.2 Future Work 156

of why force sensing is needed when performing surgical tasks [25] and how a loss of force

information can be compensated for by other senses [5].

The ultimate goal of force sensing in MIS is to achieve a reduction in the levels of stress on

the surgeon, which would benefit patients and the healthcare system in terms of increased safety,

efficiency and cost [6]. To achieve this goal, the forces that are required for different tasks in

conventional MIS or robotics-assisted procedures need to be determined. A significant amount of

work is still required in this area, as discussed above.

Minimally invasive techniques have revolutionized surgical and therapeutic procedures. The

lack of force feedback has not obstructed this major change in the delivery of patient care, but

experts have recognized that its availability could significantly improve instrument control and

overall safety. The future of MIS could be positively impacted by the development of smart

surgical tools that can restore (or enhance) sensory capabilities [117], such as the SIMIS system

presented in this thesis.
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Appendix A

Software Development

A.1 Software Design

Customized software1 was developed to capture, process, and record the information from the

strain gauge amplifiers and from the EMTS, and to acquire video streams from a videoscope

for the purpose of vision-based tracking of the instruments and for overlaying the visual force

information. Details of the vision-based tracking method are considered outside the scope of this

thesis, see [230] for more information.

The software interface was developed in C++ using the Qt GUI library over the course of 2

years with various changes and iterations. The final version of the software is presented below.

The SIMIS software was developed such that it is possible for the user to control the information

that is being displayed and recorded. It takes the raw data from the strain gauges, filters it using a

digital low-pass filter with a cutoff frequency of 10 Hz, and uses the equations presented in Section

A.2 to compute the corresponding strain. A calibration interface allows the user to calibrate each

direction and compute a calibration factor that is applied to the strain values in order to determine

the applied forces. A screen capture of the complete GUI is shown in Figure A.1.

The force and position information are displayed in real time through two dynamically rescaling

plots, as shown in Figures A.2 and A.3. The user can control which graphs are displayed by enabling

or disabling different signals presented on a tree of checkboxes. The force graph can display the raw

1The work presented in this appendix was performed by a software engineer working at CSTAR. My contribution
to this work consisted of determining what the software needed to do, providing the equations that needed to be
used to process the data, and evaluating its overall performance.
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Figure A.1: Graphical user interface for the SIMIS software.

data of each signal, the computed strains, and/or the final force values. A simple command allows

the offset of the signals to be removed (this eliminates the effect of drift). The position graph can

display the calibrated position and/or orientation information for the different instruments based

on the EMTS or the vision-based tracking system.

For increased control, several parameters related to each of the instruments can be entered

or modified as needed by changing the values on a table, as shown in Figure A.4. These values

include those parameters that influence the signal processing tasks carried out in the software, and

include the following:

• Low-pass cutoff frequency of the filter

• Gravity compensation factors and offsets for each of the 5 signals: inner (grasping or actua-

tion), torsional, x, y, or axial (z )

• Position calibration factors corresponding to the displacement values for the three Cartesian

coordinates from the position of the sensor to the tip of the instruments

• Excitation voltage from the power supply connected to the amplifiers
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Figure A.2: Force graph included in the SIMIS GUI.

Figure A.3: Position graph included in the SIMIS GUI.
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• Gauge factors for the gauges used in each of the 5 bridges

• Gauge resistance for all of the gauges (This assumes that all of the gauges have the same

nominal resistance, but this is only used in the equations for the quarter and half-bridges,

which do have the same nominal resistance, see Section A.2.)

• Lead resistances for each of the 5 bridges (These values are used in the equations for the

quarter- and half-bridges.)

• Poisson ratio of the strain gauges

• Maximum force values for visual force feedback, corresponding to the individual directions, as

well as the combined Cartesian forces (This corresponds to the point at which the displayed

force bars turn to red.)

• Calibration and decoupling factors for each of the five signals (These values are acquired

directly from the calibration process, but can be manually modified if needed.)

As mentioned above, a calibration interface allows the user to automatically record the mea-

sured signal and relate it to a particular load being applied on the instrument, see Figure A.5. This

calibration interface provides the ability to control which signal is being calibrated, specify the

instrument being calibrated, and input the weight increment used during calibration. The values

are recorded and the slope and offset are automatically computed and displayed. Visualization of

the data allows the user to determine if the relationship is linear, hence allowing the immediate

detection of problems with the bridge or calibration process.

Finally, a video display is included in the GUI that corresponds to the video feed that is being

recorded by the system, see Figure A.6. The same tree of checkboxes used to control the data

displayed on the force graph can be used to control the visual feedback overlaid onto the video

feed. The acquisition time and frame number are also overlaid directly on this image to facilitate

synchronization of the video with the recorded force and position data.

Additional details on how the raw signals from the strain gauges are processed are presented

in the following section.



A.1 Software Design 180

Figure A.4: Window within the SIMIS GUI to input calibration constants and adjustment param-
eters.
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Figure A.5: Calibration interface included in the SIMIS GUI.

Figure A.6: Video with force overlay included in the SIMIS GUI.
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A.2 Strain Gauge Processing

Strain gauge configurations are wired as a Wheatstone bridge [231] in order to maximize the signals

and minimize noise. Depending on how the gauges are connected, it is possible to add or subtract

their signals in order to measure strain acting in different directions. Details on the bridges used

in the SIMIS instruments are presented below.

A.2.1 Type I Quarter Bridge

Type I quarter bridges are used in the first-generation prototype, see Figure 3.6. These bridges

require only one strain gauge in order to measure axial or bending stress. The equation used to

compute the strain is the following:

ε =
−4Vr

GF(1 + 2Vr)

(
1 +

RL

RG

)
, (A.1)

where ε is the strain, GF is the gauge factor, RL is the lead resistance, RG is the nominal gauge

resistance, and Vr is defined as follows:

Vr =
∆V

VEX
, (A.2)

where ∆V is the change in voltage measured by the amplifier and VEX is the excitation voltage

used to power the amplifier.

A.2.2 Type II Half Bridge

Type II half-bridges are used in all of the prototypes to measure the bending moments related to

the forces acting in the x and y directions, see Figure 3.5. The type II half bridge rejects axial

measurements and measures bending. The equation used to compute the bending strain is the

following:

ε =
−2Vr

GF

(
1 +

RL

RG

)
. (A.3)
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A.2.3 Type III Full Bridge

A type III full bridge is used for the actuation signals, as well as for the axial and torsional signals

implemented in the second-generation prototype, see Figure 3.4. The equation used to compute

the strain is the following:

ε =
−2Vr

GF[(ν + 1) − Vr(ν − 1)]
, (A.4)

where ν is the transverse sensitivity ratio (Poisson) of the strain gauges used in the bridge.

A.3 Generic Software Architecture

In addition to the SIMIS software, a generic software architecture was developed so that signals

from different strain gauges could be acquired using any data acquisition card and displayed,

calibrated and recorded based on any bridge configuration. The GUI of this generic interface is

shown in Figure A.7. As with the SIMIS software, this interface allows the force measurements to

be displayed according to what is selected in the tree of checkboxes. It also contains a calibration

interface similar to the one available in the SIMIS software.

The main difference between this generic software interface and the SIMIS software lies in the

ability to assign the channels that are being used and specify the type of bridge that is connected

to each channel, as shown in Figure A.8. The generic software interface also allows the user to

input the values for excitation voltage, gauge factor, Poisson ratio and gauge resistance for each

of the channels.
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Figure A.7: Generic graphical user interface for displaying, recording and calibrating strain gauges.

	  
Figure A.8: Window within the generic GUI to select an input channel and assign a bridge type.
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• Ethics approval for the experimental evaluation from the Research Ethics Board for Health

Sciences Research Involving Human Subjects at the University of Western Ontario

• Ethics approval for the in vivo trials from the Animal Use Subcommittee of the University

Council on Animal Care at the University of Western Ontario

• Permission statement from SAGE publications for the content of Chapter 2

• Written permission from ASME for the content of Chapter 3

• Permission statement from IEEE for some of the content included in Chapter 4
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