3,003 research outputs found

    Intensification of mass transfer in wet textile processes by power ultrasound

    Get PDF
    In industrial textile pre-treatment and finishing processes, mass transfer and mass transport are often rate-limiting. As a result, these processes require a relatively long residence time, large amounts of water and chemicals, and are also energy-consuming. In most of these processes, diffusion and convection in the inter-yarn and intra-yarn pores of the fabric are the limiting mass transport mechanisms. Intensification of mass transport, preferentially in the intra yarn pores, is key to the improvement of the efficiency of wet textile processes. Power ultrasound is a promising technique for accelerating mass transport in textile materials. In this paper, the intensification of mass transfer in textiles under the influence of ultrasound on the basis of a total system approach is described. EMPA 101-test fabric was selected as a model for the cleaning process. This study focuses on two aspects, the mechanism of the ultrasound-assisted cleaning process and the effect of the presence of the cloth on the ultrasound wave field generated in a bath. It has been found that the dissolved gas content in the system plays a dominant role in the cleaning process. The cleaning effects observed are explained by two different mechanisms: small-amplitude acoustic bubble oscillations and micro-jets (resulting from the collapse of acoustic bubbles in the boundary layer between the fabric and the bulk fluid) that give rise to convective mass transfer in the intra-yarn pores. It has also been observed that the overall power consumption of the system varies with the position of the fabric in the acoustic field. This variation is explained on the basis of a model involving the specific flow resistance of the fabric and the physical properties of the standing waves

    Correlating the Effect of Dynamic Variability in the Sensor Environment on Sensor Design

    Get PDF
    This dissertation studies the effect of biofluid dynamics on the electrochemical response of a wearable sensor for monitoring of chronic wounds. The research investigates various dynamic in vivo parameters and correlates them with experimentally measured behavior with wound monitoring as a use case. Wearable electrochemical biosensors suffer from several unaddressed challenges, like stability and sensitivity, that need to be resolved for obtaining accurate data. One of the major challenges in the use of these sensors is continuous variation in biofluid composition. Wound healing is a dynamic process with wound composition changing continuously. This dissertation investigates the effects of several in vivo biochemical and environmental parameters on the sensor response to establish actionable correlations. Real-time assessment of wound healing was carried out through longitudinal monitoring of uric acid and other wound fluid characteristics. A textile sensor was designed using a simple fabrication approach combining conductive inks with a polymeric substrate, for conformal contact with the wound bed. A −1 cm−2, establishing the applicability of the sensor for measurements in the physiologically relevant range. The sensor was also found to be stable for a period of 3 days when subjected to physiological and elevated temperatures (37oC and 40oC) confirming its relevance for long-term monitoring. A direct correlation between sensor response and the dynamic parameters was seen, with the results showing a ~20% deviation from the accurate UA reading. The results confirmed that as a consequence of these parameters temporally changing in the wound environment, the sensor response will be altered. The work develops mathematical models correlating this effect on sensor response to allow for real-time sensor calibration. The clinical validation studies established the feasibility of UA measurement by the developed electrochemical sensor and derive correlations between the wound chronicity and UA levels. The protocols developed in this work for the design, fabrication, and calibration of the sensor to correct for the dynamic in vivo behavior can be extended to any wearable sensor for improved accuracy

    Selective enzymatic modification of wool/polyester blended fabrics for surface patterning

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.An enzyme-based process was investigated to achieve surface patterning of fabrics as an alternative to conventional chemical processes. In the current study, the enzyme protease was employed to selectively modify a wool/polyester blended fabric to impart decorative surface effects. Controlled protease processing of the blended fabric dyed with Lanasol Blue CE enabled the degradation and removal of the dyed wool fibre component from the fabric blend, resulting in novel fading and differential fabric relief due to degradation of wool, revealing the undyed polyester component after enzyme treatment. A 38.5% weight loss was achieved, therefore 85.6% of the wool in the 45/55% wool/polyester blended fabric was removed from the structure. The activity of protease is highly specific, therefore, it caused no damage to the polyester component. The control studies led to the development of surface pattern designs using the enzyme process, achieving effects similar to current processes such as devor e and discharge printing. This novel enzyme process permits the replacement of harsh chemicals used in current surface patterning processes with small doses of biodegradable enzymes

    The influence of woven fabric structures on the continuous dyeing of Lyocell fabrics with reactive dyes

    Get PDF
    Tencel, a regenerated cellulosic fibre is synthesised by an environmental friendly process. It can be dyed by the same dye types as recommended for other cellulosic fibres. The behaviour of reactive dyes on Tencel woven fabric varies with the type and the density of woven fabric. The highly crystalline Tencel fibre is less easy to dye uniformly by the continuous dyeing methods because of the short time of contact between the dye and fibre. The purpose of this work is to investigate the influences of weave structure on dyeing of standard Tencel fabric using reactive dyes applied by continuous dyeing methods. Programmes are developed using Matlab software to measure the fabric porosity and uniformity of fibre coloration (UFC) in the yarns of the woven fabric. UFC is also measured subjectively. Firstly, fabrics of four different weave structures (plain, 2/1, 3/1, 5/1 twill fabric) are studied. The visual depth and UFC standard deviation values is highest for the 2/1 twill fabric, gradually reducing towards the 5/1 twill fabric. Secondly, nine plain weave fabrics of different fabric densities are dyed using different padding procedures - a liquor temperature of 40⁰C with a 1 min dwell time and with a 5 min dwell time, and liquor at room temperature without any dwell time. The padded fabrics are then fixed by pad-steam, pad-dry-steam, pad-batch and pad-dry-thermosol continuous dyeing processes. To improve colour depth the plain weave fabrics are given a caustic pre-treatment and their dyeing characteristics are compared with untreated fabrics. The causticised fabrics are dyed using the same padding procedures, for comparison. The optimum dyeing procedure is found to be padding with a dwell time of 1 min in liquor at 40⁰C after caustic pre-treatment to achieve the highest visual depth, dye uptake, and uniformity of fibre coloration. The fibrillation tendency of the Tencel plain weave fabrics is also reduced using this procedure. Numerical relationships are established to enable the prediction of dyeing properties such as colour strength, UFC for fabrics of different weave structures, applied by the various continuous dyeing processes

    Towards Stable Electrochemical Sensing for Wearable Wound Monitoring

    Get PDF
    Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights on wound healing progression. These insights attempt to contribute in reducing some impacts of the financial structure on the healthcare economy associated with wound-care. An enzymatic electrochemical sensing system was designed to provide quick response at a cost-effective, miniaturized scale. Robust enzyme immobilization protocols have assisted in preserving enzyme activity to offer stable response under relevant variations of temperature and pH, from normal. Increased hydrophilicity of the sensor surface using corona plasma, has assisted in improving conductivity, thus allowing for increased electroactive functionalization and loading across the substrate’s surface. Superior sensor response was attained from higher loading of nanomaterials (MWCNT/AuNP) and enzymes (UOx/XO) employed in detection. Potentiometric analyses of the nanomaterial modified enzymatic biosensors were conducted using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) modalities. Under relevant physiological conditions, the biosensor was noted to offer a variation in response between 10 % and 30 % within a week. Stable, reproducible results were obtained from repeated use of the biosensor over multiple days, also offering promise for continuous monitoring. Shelf life of the biosensor was noted to be more than two days with response retained by about 80 % thereafter. Secondary analyses have been performed utilizing the enzymatic biosensor to explore the feasibility of target biomarker detection from clinical extracts of different biofluids for wound monitoring. Biosensor response evaluation from the extracts of human wound exudate, and those obtained from perilesional and healthy skin, provided an average recovery between 107 % and 110 % with a deviation within (+/-) 6 %. Gradual decrease in response (10-20 %) was noted in detection from extracts further away from injury site. Increased accumulation of biofluids on the sensor surface was studied to explore sensor response stability as a function of sample volume. With a broad linear range of detection (0.1 nM – 7.3 mM) and detection limits lower than the physiological concentrations, this study has assessed the viability of stable wound monitoring under physiologically relevant conditions on a wearable platform

    Degumming of Hemp Fibers Using Combined Microwave Energy and Deep Eutectic Solvent

    Get PDF
    Hemp is considered as one of the sustainable agricultural fiber materials. Degumming or surface modification of hemp bast is needed to produce single fibers for ensuing textile and industrial applications. The traditional degumming process necessitates a high amount of alkali, which causes detrimental environmental pollution. This study offers a new method to degum hemp fibers with reduced use of harmful alkali and precious water resources. In this work, hemp bast fibers were degummed by using combined microwave energy and deep eutectic solvent (DES). The properties of hemp fibers manufactured by this method were investigated and compared with the traditional alkali process. Several analytical techniques were used to characterize and perform a comparative analysis of the degummed fibers. Results revealed that the fiber qualities, including fiber surface morphology and UV shielding performance of DES-treated fibers at 1:20 solid-liquor ratio (UPF value was 183.67) were higher than these from the traditional alkali treated (140.75) and untreated raw hemp fibers (127.47). FT-IR, SEM, NMR, and XRD confirmed that degumming using a Microwave-DES treatment at 1:20 solid-liquor ratio had a higher yield with respect to removal of gummy materials (lignin and hemicellulose, etc.). TGA and DSC also confirmed the higher thermal stability of DES-treated fibers. In addition, cellulose content in the Microwave-DES treated samples was increased to 44.82% - 49.95% which was comparable with the increased cellulose content (49.49%) of alkali treated fibers. All these data indicate the effective, less time-consuming, green, and environmentally sustainable protocol for manufacturing hemp fibers

    RAZVOJ NAPREDNIH NANOBIOKOMPOZITA IZRAĐENIH OD POLILAKTIDNOG POLIMERA OJAČANOG VLAKNIMA BRNISTRE

    Get PDF
    The main goal of this thesis was to develop biodegradable composite material of sustainable origin for possible usage in automotive industry. Increased demand for usage of sustainable and biodegradable natural materials initiated wider production of biocomposites. For that reason, composite materials made of sustainable polylactide (PLA) polymer and Spartium junceum L. (SJL) bast fibres were designed and produced in the course of research for this thesis. Three fibre extraction (maceration) methods were investigated: water retting (WR), osmotic degumming (OD) and alkali retting under the influence of microwave energy (MW). It was proven that long lasting conventional maceration method can be succesfully replaced by ecologically favourable method using microwaves. Tensile strength of MW treated fibres show approximately 60 % higher strength compared to conventional WR and 30 % compared to novel OD method. Functionalization of fibres was carried out using montmorillonite (MMT) nanoclay particles added as a flame retardant nanofiller, and citric acid (CA) as an environmentally friendly crosslinker. Effectiveness of the conducted modifications was examined according to the relevant standardized methods used in current industrial and manufacturing processes (testing of morphological, mechanical, chemical and thermal properties of the final composite material). MMT/CA modified fibres show better thermal stability in comparison to the reference fibre (MWR) which is confirmed with the increase in crystallinity and proved by thermogravimetric analysis by shifting of fibre's onset decomposition temperature to higher value. Fibre/polymer interface was also positively influenced by MMT/CA fibre modification. Therefore, such material has showed higher decomposition temperature at certain weight loss, as well as higher strength and modulus values in comparison to samples without CA. The results indicate formation of crosslinking caused by interactions between the carboxylic acid and –OH groups of cellulose fibre or PLA. Biodegradability of developed composite materials was examined with serine endopeptidase. Concentration of 50 wt% enzyme reveals very positive result of composite degradation. After 5 days of enzymatic treatment, composite material reinforced with MMT/CA modified fibres lost 2.5 % of its initial weight. Additionally, the possibility of residue stem utilization in bioenergy production was investigated. Proximate and ultimate analysis of residues after MW maceration showed increase in content of positive biomass quality indicators. The obtained results confirmed SJL biomass as promising feedstock for solid biofuel production. The significance of the proposed research lies in the application of innovative, sustainable raw materials for the production of new advanced products of wide application.Glavni cilj ovog rada bio je razvoj biorazgradivog kompozitnog materijala održivog porijekla koji bi se mogao koristiti u automobilskoj industriji. Naime, upotrebi ovakvih materijala u automobilskoj industriji pogoduje Direktiva 2000/53/EC Europske unije koja traži da zemlje članice do 2015. godine nanovo iskoriste minimalno 95 % otpadnog vozila čime bi se osiguralo da na deponiju završi manje od 5 % otpadnog vozila. Povećana potražnja za korištenjem održivih i biorazgradivih prirodnih materijala, čime se ujedno smanjuje onečišćenje okoliša, potaknula je širu proizvodnju biokompozita. Iz tog razloga su se dizajnirali i proizveli kompozitni materijali izrađeni od održivog polilaktidnog (PLA) polimera i Spartium junceum L. (SJL) stabljičnih vlakana koja su se koristila kao ojačalo cijelog sustava. Prirodna vlakna koja se koriste kao ojačala u kompozitnim materijalima su: lan, juta, konoplja, sisal, ramija, kenaf, abaka, kokosova vlakna, vlakna ananasa, šećerne repice, vlakna iz rižine ljuske, itd. Izbor vlakana ovisi o svojstvima koje određeno vlakno posjeduje, ali i o njihovoj dostupnosti. Kompozitni materijal će biti jeftiniji ukoliko su sirovine koje se koriste u njegovoj proizvodnji lokalno dostupne. Oko 30 % ukupnih vlakana koja se koriste u Europskoj autoindustriji se proizvodi u zemljama članicama EU, a 70 % se uvozi iz Istočne Europe i Azije. U gospodarsko nerazvijenijim dijelovima Hrvatske (otoci i Dalmatinsko zaleđe) raste brnistra (Spartium junceum L.) – samonikla biljka od koje se dobivaju vlakna izuzetne čvrstoće. Brnistra većinom raste u Mediteranskim zemljama. Kroz povijest je imala široki spektar namjena (izrada mirisa i boja od cvjetova, košara od stabljika, tekstilnih materijala od vlakana). Vlakna su ipak njen najvažniji produkt pa se u današnje vrijeme ponovno javio interes za njihovom proizvodnjom. Istražene su tri metode ekstrakcije vlakana (maceracija): močenje u vodi, osmotsko degumiranje (OD) i močenje u alkalnom mediju pod utjecajem energije mikrovalova (MW). Dokazano je da se tradicionalni način maceracije stabljike SJL (brnistre) močenjem u vodi koji se koristio do sada, može uspješno zamijeniti ekološki povoljnom metodom korištenjem mikrovalova. S obzirom da prirodna vlakna ne pokazuju dobru kompatibilnost s nepolarnim polimernim matricama potrebno je modificirati vlakna ili matricu kako bi se postigla dobra svojstva prijanjanja između vlakna i matrice te kako bi takav kompozitni materijal imao poboljšana svojstva. U ovom radu vlakna brnistre su oplemenjena korištenjem tri metode modifikacije: dodatna obrada s lužinom niske koncentracije (1F), obrada s lužinom i nanoglinom (2F) te obrada s nanoglinom i limunskom kiselinom (3F). Montmorilonitna nanoglina (MMT) se koristila u ulozi usporivača gorenja, a limunska kiselina (CA) kao ekološki pogodno sredstvo za umrežavanje. Kompozitni materijal se izradio metodom kompresijskog prešanja polimera u obliku peleta te kratkih nasumično orijentiranih vlakana brnistre pri temperaturi od 170 °C. Ispitala su se njegova strukturna, mehanička i termalna svojstva kako bi se utvrdila mogućnost zadovoljavanja minimalnih zahtjeva automobilske industrije. S obzirom na sve veću osviještenost o okolišu i problemima globalnog rasta otpada, te zbog potrebe za pronalaženjem obnovljivih rješenja ispitala se i mogućnost razgradnje ovakvog materijala primjenom enzima endopeptidaze koja pripada skupini proteaza zaslužnih za biorazgradnju PLA. Dodatno, kako je već poznato da proizvodnja prirodnih vlakana za sobom ostavlja popriličnu količinu otpada koji je tijekom procesa maceracije najčešće kemijski tretiran, potrebno je naći rješenje njegove oporabe. Kod ekstrakcije vlakana brnistre metodom močenja u lužini uz korištenje mikrovalne energije količina takvog otpada iznosila je oko 90 % te se stoga istražila i mogućnost upotrebe takvog otpada kao biomase u proizvodnji krutih biogoriva. Prilikom utvrđivanja optimalne metode ekstrakcije vlakana brnistre napravljeno je močenje u vodi u trajanju od 480 sati pri rasponu temperature od 30,6 °C do 33,0 °C nakon čega je slijedila mehanička obrada uklanjanja drvenastih dijelova močene stabljike kako bi se dobila vlakna. Metoda osmotskog degumiranja rađena je pri 30 °C u trajanju od 672 sata nakon čega je ponovno slijedila mehanička obrada sa svrhom dobivanja vlakana. U trećoj metodi je brnistra močena u 5 % otopini natrijeve lužine i podvrgnuta mikrovalnoj energiji snage 900 W i frekvenciji od 2,45 GHz u trajanju od 10 minuta nakon čega su se vlakna jednostavno izdvojila pod mlazom vode. Kompozitni materijal se izradio postupkom kompresijskog prešanja PLA polimera i vlakana (masenog udjela 20 %) pri temperaturi 170 °C, opterećenju od 3,9 kN/m2 te vremenskom trajanju od 5 minuta. Prilikom ispitivanja mogućnosti biorazgradnje PLA i kompozitnog materijala korišteno je približno 20 mg uzorka koji se tijekom 5 dana pri temperaturi 37 °C obrađivao u puferskoj otopini različitih koncentracija enzima uz omjer kupelji 1:50. U izradi ovog rada korišten je niz metoda ispitivanja vlakna i kompozitnog materijala. Kemijske komponente neobrađenih i obrađenih vlakana poput celuloze, hemiceluloze, lignina, pepela i ekstrahiranih tvari određene su uvriježenim biotehničkim metodama TAPPI T211 om-02, TAPPI T204 cm-97 i TAPPI T222 om-11. Primjenom vibracijske metode ispitivanja, uz korištenje ''Vibroskop'' i ''Vibrodyn'' uređaja (Lenzing Instruments GmbH, Gampern, AT) ispitale su se finoća i vlačna čvrstoća pojedinačnih vlakana brnistre prema normi HRN EN ISO 5079:2003 – Tekstilna vlakna – Određivanje prekidne sile i prekidnog istezanja pojedinačnih vlakana, te HRN EN ISO 1973:2008 - Tekstilna vlakna - Određivanje duljinske mase -- Gravimetrijska metoda i titrajna metoda. Predopterećenje, brzina ispitivanja, te duljina ispitivanog uzorka iznosile su redom 1500 mg, 3 mm/min, odnosno 5 mm. Morfologija vlakana i njihovih kompozita, kao i kemijska analiza određeni su primjenom skenirajućeg elektronskog mikroskopa FE-SEM (Tescan GmbH, Brno, CZ) pri 20 kV i različitim povećanjima, uz detektor za energijski razlučujuću rendgensku spektrometrijau EDS (Bruker Nano GmbH, Berlin, DE). Prije mikroskopiranja uzorci su se pripremili naslojavanjem u uređaju za ''naparivanje'' (Quorum Technologies Ltd, Laughton, UK) s tankim slojem Au/Pd kako bi se povećala njihova električna vodljivost neophodna za ovakvo ispitivanje. Kako bi se ispitala efikasnost predobrada prirodnog vlakna iz brnistre, a kasnije i svojstva adhezije vlakno/polimer u kompozitnom materijalu, koristila se infracrvena spektroskopija s Fourierovom transformacijom (FTIR), uz ATR metodu. Svi spektri su snimljeni u području 4000 cm-1-380 cm-1, uz rezoluciju 4 cm-1, te su prikazani kao srednja vrijednost četiri mjerenja. FTIR se dodatno koristio i kao alat za određivanje efekata biorazgradnje uz pomoć određivanja karbonilnog indeksa, pri istim uvjetima kao i za sva prethodna ispitivanja. Određivanje hidrofilnosti vlakna napravljeno je određivanjem zeta potencijala primjenom uređaja za elektrokinetičku analizu SurPASS (Anton Paar GmbH, Graz, AT). Termalne karakteristike vlakana i njihovih kompozita ispitane su korištenjem termogravimetrijske analize i kalorimetrije. TGA analiza (Perkin Elmer Ltd, Beaconsfield, UK) je odrađena pri uvjetima zagrijavanja uzorka od 30 °C do 800 °C s brzinom zagrijavanja 10 °C/min u struji plinovitog dušika brzine protoka 30 ml/min, dok je kalorimetrija sagorijevanja odrađena u skladu s normom ASTM D7309. Vlačna čvrstoća kompozita se ispitala na univerzalnom uređaju za ispitivanje Instron 5584 (Instron GmbH, Darmstadt, DE) pri brzini ispitivanja 3 mm/min i radnoj udaljenosti 20 mm. Biorazgradnja uzorka djelovanjem enzima istražena je određivanjem gubitka mase uzorka pri čemu se koristila analitička vaga uz preciznost očitanja 0.0001 g. Istraživanje mogućnosti upotrebe ostataka brnistre nakon maceracije obuhvatilo je sljedeće metode ispitivanja: određivanje sadržaja vode prema normi HRN EN 18134-2:2015, pepela prema normi HRN EN ISO 18122:2015, koksa prema normi EN 15148:2009, fiksiranog ugljika računskom metodom prema normi EN 15148:2009, te sadržaja hlapive tvari prema HRN EN 18123:2015. Ukupni sadržaj ugljika, vodika, dušika i sumpora proveden je metodom suhog spaljivanja na Vario, Macro CHNS analizatoru (Elementar Analysensysteme GmbH, Langenselbold, DE) prema protokolima za ugljik, vodik i dušik HRN EN 16948:2015 te sumpor HRN EN 15289:2011, dok je sadržaj kisika određen računski. Gornja ogrjevna vrijednost je utvrđena prema HRN EN 14918:2010 normi pomoću adijabatskog kalorimetra IKA C200 (MZ - Analysentechnik GmbH, Mainz, DE). Sadržaj makro elemenata je određen prema HRN EN 16967:2015 normi korištenjem atomskog apsorpcijskog spektroskopa Analyst 400 (Perkin Elmer Ltd, Beaconsfield, UK) s uzorcima prethodno pripremljenim mikrovalnom digestijom prema HRN EN 16968:2015 normi. Istraživanje u sklopu ovog doktorskog rada započelo je određivanjem najpogodnije metode maceracije u smislu ekološke i ekonomske isplativosti. S obzirom na činjenice koje su učvrstile svoje temelje još u dalekoj prošlosti, vlakna brnistre su se smjestila u skupinu prirodnih stabljičnih vlakana, te su se u ispitivanju koristile metode maceracije karakteristične za dobivanje vlakana lana, a samim time su se i uspoređivala svojstva vlakana iz brnistre i lana kako bi se utvrdila moguća područja njihove primjene. Obrada vlakana u alkalnom mediju niske koncentracije primjenom mikrovalne energije pokazuje najbolje rezultate, i to ne samo u ekološko-ekonomskom smislu već i u kvalitativnom. Čvrstoća, na ovaj način dobivenih vlakana, se povećala za 60 % i 30 % u usporedbi s ostale dvije ispitane metode maceracije – močenje u vodi i osmotsko degumiranje. Vlakna proizvedena pomoću mikrovalne energije su finija od drugih ispitanih vlakana za 10 %, a pokazuju najveće prekidno istezanje od 6,03 %. Repriza ovakvog vlakna se kreće u rasponu od 7 do 8 %. FTIR spektri brnistrinih vlakana nastali različitim metodama maceracije potvrđuju efektivnost mikrovalno potpomognute maceracije što je vidljivo iz odsustva vrpci poput 2850 cm-1, 1730 cm-1, 1537 cm-1, 1239 cm-1 koje redom predstavljaju voskove i ulja, pektin i lignin, te iz povećanog intenziteta pikova pri 1000 i 985 cm-1 koji ukazuju na bolji razvoj sekundarne stanične stijenke što između ostalog pridonosi i većoj čvrstoći takvih vlakana. Nakon što su se ispitala svojstva vlakana uvidjela se mogućnost njihove primjene u izradi kompozitnih materijala u kojima bi vlakno brnistre imalo ulogu ojačala polimerne matrice. S obzirom da su neki od najvažnijih faktora koji utječu na učinkovitost ovakvih kompozitnih materijala kemijski sastav, struktura, mehanička svojstva njegovih komponenata kao i njihova međusobna interakcija koja je otežana činjenicom da je prirodno vlakno hidrofilnije od polimerne matrice, potrebno je dodatno utjecati na navedena svojstva. Vlakna dobivena maceracijom u lužini su predstavljena kao referentna vlakna (MWR), a modifikacije su uključivale dodatnu obradu s lužinom (1F), obradu s montmorilonitnom nanoglinom i lužinom (2F), te obrada s nanoglinom i limunskom kiselinom (3F). 3F vlakna su pokazala porast u sadržaju celuloze, te smanjen sadržaj hemiceluloze s obzirom na druga modificirana vlakna, a u usporedbi s MWR te su vrijednosti iznosile 0,6 %, odnosno 12,4 %. SEM i EDS analize površine vlakana potvrdile su promjene uslijed modifikacija. SEM slike ukazuju na povećanje hrapavosti koja je posljedica nanosa MMT čestica na površinu vlakana, što je potvrđeno i EDS analizom. FTIR spektar vlakna MWR pokazuje veći intenzitet vrpci (pika) pri 2844 cm-1 i 2900 cm-1 u odnosu na druga vlakna što ukazuje na dodatno uklanjanje pektina, voskova i masti uslijed kemijskih modifikacija. Također se kod MWR vlakna, za razliku od ostalih, pojavljuje pik pri 1506 cm-1 karakterističan za lignin dok su ostali pikovi vezani za lignin neprimjetni ili pokazuju mali intenzitet. Prema vrijednostima indeksa ukupne kristalnosti (TCI) koji je proporcionalan stupnju kristaliničnosti celuloze, te indeksa lateralne sređenosti (LOI) koji se odnosi na stupanj sređenosti bočnih lanaca celuloze, vlakno 3F pokazuje veću kristaličnost, kao i bolji poredak u odnosu na MWR, i to za 11,2 %, odnosno 19,6 %. Određivanjem zeta potencijala uočeno je da obrada s MMT i CA utječe na smanjenje hidrofilnosti, te su također 3F vlakna pokazala bolju termalnu stabilnost u odnosu na MWR što je vidljivo u pomaku početne temperature razgradnje s 355 °C na 357 °C. Vlakna 2F pokazuju čvrstoću veću za 6,8 % , a vlakna 3F povećanje za 4,6 % u odnosu na MWR. Nižu čvrstoću uzorka 1F najvjerojatnije je uzrokovalo dugotrajnije izlaganje natrijevoj lužini prilikom njegove modifikacije. Ispitivanjem finoće vlakana nakon modificiranja, uzorak 3F je pokazao nešto grublja vlakna te je 63,3 % vlakana iz ove skupine imalo finoću u rasponu 35-45 dtex. Modificirana vlakna su se koristila kao ojačala za PLA matricu te su izrađeni sljedeći kompozitni materijali: kompozit izrađen od MWR vlakana i PLA (CR), kompozit izrađen od 1F vlakana i PLA (C1), kompozit izrađen od 2F vlakana i PLA (C2) te kompozit izrađen od 3F vlakana i PLA (C3). Vrsta provedene modifikacije vlakana utjecala je na čvrstoću kompozitnog materijala. Kompozit ojačan vlaknima 2F pokazuje najnižu čvrstoću uzrokovanu neadekvatnom adhezijom vlakna i polimera. Iako vlakna 1F pokazuju smanjenje čvrstoće uslijed ponovljene obrade s lužinom, kompozit ojačan ovakvim vlaknima pokazuje porast čvrstoće za 115 % u odnosu na C2. Kompozitni materijal ojačan vlaknima 3F pokazuje najveći porast čvrstoće i to za 135 % u odnosu na C2 ukazujući na istovremeni porast žilavosti ovakvih materijala. Razlika u čvrstoći kompozita ojačanih vlaknima 2F i 3F uzrokovana je dodatkom limunske kiseline pri modificiranju vlakana 3F što je potvrđeno i SEM analizom poprečnog presjeka kompozitnog materijala. Uočilo se smanjeno izvlačenje vlakana te njihova bolja adhezija s PLA matricom nego što je to uočeno kod ostalih ispitanih kompozita. FTIR analiza također potvrđuje bolju adheziju kod uzorka C3 što je vidljivo iz jačeg intenziteta pika pri 1750 cm-1 značajnog za C=O istezanje te smanjenog intenziteta pika pri 1645 cm-1 karakterističnog za –OH vibacije istezanja čime se potvrđuje čvršća povezanost vlakna, polimera i punila. FTIR analiza kod uzorka C2 pokazuje mali intenzitet pikova u području 1030-460 cm-1 koje je karakteristično za metalne okside što nam potvrđuje nedovoljno jaku vezu između vlakana brnistre, PLA i nanogline. Prekidno istezanje svih ispitanih kompozita je veće nego što je kod čistog PLA. Uzorak C3 je pokazao najveće prekidno istezanje, čak za 43,7 % veće od čistog PLA što ukazuje na žilaviji materijal koji se može deformirati prije nego dođe do loma. U sklopu ovog rada se napravilo i matematičko modeliranje sa svrhom predviđanja mehaničkih svojstava kompozitnih materijala, točnije kod predviđanja vlačne čvrstoće i modula elastičnosti. Koristila su se dva najpoznatija modela koja se inače primijenjuju u slučaju kompozita ojačanih kratkim nasumično orijentiranim vlaknima. Hirschov model je pokazao relativno dobro poklapanje s eksperimentalnim rezultatima – kod određivanja vlačne čvrstoće predviđene vrijednosti su bile za 10 % manje od eksperimentalno određenih vrijednosti vlačne čvrstoće, dok je kod određivanja modula elastičnosti razlika bila veća, tj. predviđene vrijednosti su bile za 20 % veće od eksperimentalnih osim kod uzorka C3 čija je eksperimentalna vrijednost bila za 20 % veća od one predviđene matematičkim modelom. Prilikom ispitivanja termalnih svojstava kompozitnih materijala ojačanih referentnim i modificiranim vlaknima brnistre te korištenjem termogravimetrijske analize definirao se temperaturni raspon od 30 °C - 300 °C u kojem su ispitani materijali pokazali stabilnost. Uzorak C3 koji u svom sastavu ima i nanoglinu i limunsku kiselinu pokazao je puno bolje rezultate od uzorka C2 čiju lošu adheziju s polimerom potvrđuju i sve korištene metode ispitivanja. Određivanje energije aktivacije pokazalo je 41,7 % nižu energiju potrebnu za termalnu razgradnju. Određivanjem temperature staklišta uvidjelo se da dodatak vlakana snižava Tg, a ujedno se snižava i temperatura hladne kristalizacije, te uzorak C3 počinje kristalizirati na nižoj temperaturi od ostalih ispitanih materijala, točnije pri 100 °C. DSC grafički prikaz ponašanja kompozitnih uzoraka uslijed zagrijavanja pokazuje dvostruki pik taljenja koji ukazuje na prisustvo dva različita tipa kristala unutar uzorka, dok čisti PLA pokazuje samo jedan pik taljenja te najveću kristaličnost. Dodavanje nanogline u sustav utjecalo je na sniženje vrijednosti otpuštene topline, a time i na manju zapaljivost ovakvih materijala. C2 uzorak je otpustio 35 % manje topline u usporedbi s čistim PLA, dok je C3 otpustio 18 % manje topline. Uslijed ispitivanja razgradnje čistog PLA i njegovih kompozitnih materijala djelovanjem enzima različitih koncentracija pri temperaturi od 37 °C uvidjelo se da je nakon 5 dana enzimatske razgradnje najveći gubitak mase materijala nastao korištenjem enzima masene koncentracije 50 %, te je npr. kod uzorka C3 došlo do gubitka mase od 2,5 % u odnosu na početnu težinu materijala prije procesa razgradnje. FTIR ispitivanje uzoraka prije i nakon razgradnje potvrdilo je test ispitivanja gubitka mase. Naime, za glavne pokazatelje razgradnje uzete su vrpce pri 1750 cm-1-1755 cm-1 i 1454 cm-1- 1455 cm-1 koje predstavljaju karbonilnu, odnosno metilnu skupinu. Pomak ovih vrpci prema višim frekvencijama (višim valnim duljinama) ukazuje na razgradnju uzorka. Također se izračunao karbonilni indeks (CI) koji je pokazao najvišu vrijednost kod uzoraka koji su bili podvrgnuti 20 wt% i 50 wt% enzima. Prilikom utvrđivanja potencijala ostataka brnistre nakon ekstrakcije vlakana kod korištenja za neposredno izgaranje utvrđen je nizak sadržaj vode (6,5 % - 7,5 %) i pepela (ispod 5 %). Sadržaj fiksiranog ugljika i hlapivih tvari iznosio je 13,2 % i 75 %. Gornja ogrjevna vrijednost, kao najvažniji parametar, iznosila je 17,2-18,8 MJ/kg što ukazuje na kvalitetnu biomasu koja se može upotrijebiti za proizvodnju krutih goriva. Maceracija vlakana uz obradu s natrijevom lužinom pod djelovanjem mikrovalova može se primijeniti u proizvodnji vlakana brnistre uz značajno smanjenje utroška energije i vremena proizvodnje. Površinska modifikacija vlakana korištenjem lužine i nanočestica uz umrežavanje s ekološki pogodnim sredstvom utjecala je na poboljšanje adhezije vlakna i polimera, te na smanjenje zapaljivosti vlakana brnistre, a ujedno su modificirana vlakna pokazala i najveći sadržaj celuloze. Kompozitni materijal ojačan najuspješnije modificiranim vlaknima pokazuje povećanje čvrstoće i modula elastičnosti za 135

    RAZVOJ NAPREDNIH NANOBIOKOMPOZITA IZRAĐENIH OD POLILAKTIDNOG POLIMERA OJAČANOG VLAKNIMA BRNISTRE

    Get PDF
    The main goal of this thesis was to develop biodegradable composite material of sustainable origin for possible usage in automotive industry. Increased demand for usage of sustainable and biodegradable natural materials initiated wider production of biocomposites. For that reason, composite materials made of sustainable polylactide (PLA) polymer and Spartium junceum L. (SJL) bast fibres were designed and produced in the course of research for this thesis. Three fibre extraction (maceration) methods were investigated: water retting (WR), osmotic degumming (OD) and alkali retting under the influence of microwave energy (MW). It was proven that long lasting conventional maceration method can be succesfully replaced by ecologically favourable method using microwaves. Tensile strength of MW treated fibres show approximately 60 % higher strength compared to conventional WR and 30 % compared to novel OD method. Functionalization of fibres was carried out using montmorillonite (MMT) nanoclay particles added as a flame retardant nanofiller, and citric acid (CA) as an environmentally friendly crosslinker. Effectiveness of the conducted modifications was examined according to the relevant standardized methods used in current industrial and manufacturing processes (testing of morphological, mechanical, chemical and thermal properties of the final composite material). MMT/CA modified fibres show better thermal stability in comparison to the reference fibre (MWR) which is confirmed with the increase in crystallinity and proved by thermogravimetric analysis by shifting of fibre's onset decomposition temperature to higher value. Fibre/polymer interface was also positively influenced by MMT/CA fibre modification. Therefore, such material has showed higher decomposition temperature at certain weight loss, as well as higher strength and modulus values in comparison to samples without CA. The results indicate formation of crosslinking caused by interactions between the carboxylic acid and –OH groups of cellulose fibre or PLA. Biodegradability of developed composite materials was examined with serine endopeptidase. Concentration of 50 wt% enzyme reveals very positive result of composite degradation. After 5 days of enzymatic treatment, composite material reinforced with MMT/CA modified fibres lost 2.5 % of its initial weight. Additionally, the possibility of residue stem utilization in bioenergy production was investigated. Proximate and ultimate analysis of residues after MW maceration showed increase in content of positive biomass quality indicators. The obtained results confirmed SJL biomass as promising feedstock for solid biofuel production. The significance of the proposed research lies in the application of innovative, sustainable raw materials for the production of new advanced products of wide application.Glavni cilj ovog rada bio je razvoj biorazgradivog kompozitnog materijala održivog porijekla koji bi se mogao koristiti u automobilskoj industriji. Naime, upotrebi ovakvih materijala u automobilskoj industriji pogoduje Direktiva 2000/53/EC Europske unije koja traži da zemlje članice do 2015. godine nanovo iskoriste minimalno 95 % otpadnog vozila čime bi se osiguralo da na deponiju završi manje od 5 % otpadnog vozila. Povećana potražnja za korištenjem održivih i biorazgradivih prirodnih materijala, čime se ujedno smanjuje onečišćenje okoliša, potaknula je širu proizvodnju biokompozita. Iz tog razloga su se dizajnirali i proizveli kompozitni materijali izrađeni od održivog polilaktidnog (PLA) polimera i Spartium junceum L. (SJL) stabljičnih vlakana koja su se koristila kao ojačalo cijelog sustava. Prirodna vlakna koja se koriste kao ojačala u kompozitnim materijalima su: lan, juta, konoplja, sisal, ramija, kenaf, abaka, kokosova vlakna, vlakna ananasa, šećerne repice, vlakna iz rižine ljuske, itd. Izbor vlakana ovisi o svojstvima koje određeno vlakno posjeduje, ali i o njihovoj dostupnosti. Kompozitni materijal će biti jeftiniji ukoliko su sirovine koje se koriste u njegovoj proizvodnji lokalno dostupne. Oko 30 % ukupnih vlakana koja se koriste u Europskoj autoindustriji se proizvodi u zemljama članicama EU, a 70 % se uvozi iz Istočne Europe i Azije. U gospodarsko nerazvijenijim dijelovima Hrvatske (otoci i Dalmatinsko zaleđe) raste brnistra (Spartium junceum L.) – samonikla biljka od koje se dobivaju vlakna izuzetne čvrstoće. Brnistra većinom raste u Mediteranskim zemljama. Kroz povijest je imala široki spektar namjena (izrada mirisa i boja od cvjetova, košara od stabljika, tekstilnih materijala od vlakana). Vlakna su ipak njen najvažniji produkt pa se u današnje vrijeme ponovno javio interes za njihovom proizvodnjom. Istražene su tri metode ekstrakcije vlakana (maceracija): močenje u vodi, osmotsko degumiranje (OD) i močenje u alkalnom mediju pod utjecajem energije mikrovalova (MW). Dokazano je da se tradicionalni način maceracije stabljike SJL (brnistre) močenjem u vodi koji se koristio do sada, može uspješno zamijeniti ekološki povoljnom metodom korištenjem mikrovalova. S obzirom da prirodna vlakna ne pokazuju dobru kompatibilnost s nepolarnim polimernim matricama potrebno je modificirati vlakna ili matricu kako bi se postigla dobra svojstva prijanjanja između vlakna i matrice te kako bi takav kompozitni materijal imao poboljšana svojstva. U ovom radu vlakna brnistre su oplemenjena korištenjem tri metode modifikacije: dodatna obrada s lužinom niske koncentracije (1F), obrada s lužinom i nanoglinom (2F) te obrada s nanoglinom i limunskom kiselinom (3F). Montmorilonitna nanoglina (MMT) se koristila u ulozi usporivača gorenja, a limunska kiselina (CA) kao ekološki pogodno sredstvo za umrežavanje. Kompozitni materijal se izradio metodom kompresijskog prešanja polimera u obliku peleta te kratkih nasumično orijentiranih vlakana brnistre pri temperaturi od 170 °C. Ispitala su se njegova strukturna, mehanička i termalna svojstva kako bi se utvrdila mogućnost zadovoljavanja minimalnih zahtjeva automobilske industrije. S obzirom na sve veću osviještenost o okolišu i problemima globalnog rasta otpada, te zbog potrebe za pronalaženjem obnovljivih rješenja ispitala se i mogućnost razgradnje ovakvog materijala primjenom enzima endopeptidaze koja pripada skupini proteaza zaslužnih za biorazgradnju PLA. Dodatno, kako je već poznato da proizvodnja prirodnih vlakana za sobom ostavlja popriličnu količinu otpada koji je tijekom procesa maceracije najčešće kemijski tretiran, potrebno je naći rješenje njegove oporabe. Kod ekstrakcije vlakana brnistre metodom močenja u lužini uz korištenje mikrovalne energije količina takvog otpada iznosila je oko 90 % te se stoga istražila i mogućnost upotrebe takvog otpada kao biomase u proizvodnji krutih biogoriva. Prilikom utvrđivanja optimalne metode ekstrakcije vlakana brnistre napravljeno je močenje u vodi u trajanju od 480 sati pri rasponu temperature od 30,6 °C do 33,0 °C nakon čega je slijedila mehanička obrada uklanjanja drvenastih dijelova močene stabljike kako bi se dobila vlakna. Metoda osmotskog degumiranja rađena je pri 30 °C u trajanju od 672 sata nakon čega je ponovno slijedila mehanička obrada sa svrhom dobivanja vlakana. U trećoj metodi je brnistra močena u 5 % otopini natrijeve lužine i podvrgnuta mikrovalnoj energiji snage 900 W i frekvenciji od 2,45 GHz u trajanju od 10 minuta nakon čega su se vlakna jednostavno izdvojila pod mlazom vode. Kompozitni materijal se izradio postupkom kompresijskog prešanja PLA polimera i vlakana (masenog udjela 20 %) pri temperaturi 170 °C, opterećenju od 3,9 kN/m2 te vremenskom trajanju od 5 minuta. Prilikom ispitivanja mogućnosti biorazgradnje PLA i kompozitnog materijala korišteno je približno 20 mg uzorka koji se tijekom 5 dana pri temperaturi 37 °C obrađivao u puferskoj otopini različitih koncentracija enzima uz omjer kupelji 1:50. U izradi ovog rada korišten je niz metoda ispitivanja vlakna i kompozitnog materijala. Kemijske komponente neobrađenih i obrađenih vlakana poput celuloze, hemiceluloze, lignina, pepela i ekstrahiranih tvari određene su uvriježenim biotehničkim metodama TAPPI T211 om-02, TAPPI T204 cm-97 i TAPPI T222 om-11. Primjenom vibracijske metode ispitivanja, uz korištenje ''Vibroskop'' i ''Vibrodyn'' uređaja (Lenzing Instruments GmbH, Gampern, AT) ispitale su se finoća i vlačna čvrstoća pojedinačnih vlakana brnistre prema normi HRN EN ISO 5079:2003 – Tekstilna vlakna – Određivanje prekidne sile i prekidnog istezanja pojedinačnih vlakana, te HRN EN ISO 1973:2008 - Tekstilna vlakna - Određivanje duljinske mase -- Gravimetrijska metoda i titrajna metoda. Predopterećenje, brzina ispitivanja, te duljina ispitivanog uzorka iznosile su redom 1500 mg, 3 mm/min, odnosno 5 mm. Morfologija vlakana i njihovih kompozita, kao i kemijska analiza određeni su primjenom skenirajućeg elektronskog mikroskopa FE-SEM (Tescan GmbH, Brno, CZ) pri 20 kV i različitim povećanjima, uz detektor za energijski razlučujuću rendgensku spektrometrijau EDS (Bruker Nano GmbH, Berlin, DE). Prije mikroskopiranja uzorci su se pripremili naslojavanjem u uređaju za ''naparivanje'' (Quorum Technologies Ltd, Laughton, UK) s tankim slojem Au/Pd kako bi se povećala njihova električna vodljivost neophodna za ovakvo ispitivanje. Kako bi se ispitala efikasnost predobrada prirodnog vlakna iz brnistre, a kasnije i svojstva adhezije vlakno/polimer u kompozitnom materijalu, koristila se infracrvena spektroskopija s Fourierovom transformacijom (FTIR), uz ATR metodu. Svi spektri su snimljeni u području 4000 cm-1-380 cm-1, uz rezoluciju 4 cm-1, te su prikazani kao srednja vrijednost četiri mjerenja. FTIR se dodatno koristio i kao alat za određivanje efekata biorazgradnje uz pomoć određivanja karbonilnog indeksa, pri istim uvjetima kao i za sva prethodna ispitivanja. Određivanje hidrofilnosti vlakna napravljeno je određivanjem zeta potencijala primjenom uređaja za elektrokinetičku analizu SurPASS (Anton Paar GmbH, Graz, AT). Termalne karakteristike vlakana i njihovih kompozita ispitane su korištenjem termogravimetrijske analize i kalorimetrije. TGA analiza (Perkin Elmer Ltd, Beaconsfield, UK) je odrađena pri uvjetima zagrijavanja uzorka od 30 °C do 800 °C s brzinom zagrijavanja 10 °C/min u struji plinovitog dušika brzine protoka 30 ml/min, dok je kalorimetrija sagorijevanja odrađena u skladu s normom ASTM D7309. Vlačna čvrstoća kompozita se ispitala na univerzalnom uređaju za ispitivanje Instron 5584 (Instron GmbH, Darmstadt, DE) pri brzini ispitivanja 3 mm/min i radnoj udaljenosti 20 mm. Biorazgradnja uzorka djelovanjem enzima istražena je određivanjem gubitka mase uzorka pri čemu se koristila analitička vaga uz preciznost očitanja 0.0001 g. Istraživanje mogućnosti upotrebe ostataka brnistre nakon maceracije obuhvatilo je sljedeće metode ispitivanja: određivanje sadržaja vode prema normi HRN EN 18134-2:2015, pepela prema normi HRN EN ISO 18122:2015, koksa prema normi EN 15148:2009, fiksiranog ugljika računskom metodom prema normi EN 15148:2009, te sadržaja hlapive tvari prema HRN EN 18123:2015. Ukupni sadržaj ugljika, vodika, dušika i sumpora proveden je metodom suhog spaljivanja na Vario, Macro CHNS analizatoru (Elementar Analysensysteme GmbH, Langenselbold, DE) prema protokolima za ugljik, vodik i dušik HRN EN 16948:2015 te sumpor HRN EN 15289:2011, dok je sadržaj kisika određen računski. Gornja ogrjevna vrijednost je utvrđena prema HRN EN 14918:2010 normi pomoću adijabatskog kalorimetra IKA C200 (MZ - Analysentechnik GmbH, Mainz, DE). Sadržaj makro elemenata je određen prema HRN EN 16967:2015 normi korištenjem atomskog apsorpcijskog spektroskopa Analyst 400 (Perkin Elmer Ltd, Beaconsfield, UK) s uzorcima prethodno pripremljenim mikrovalnom digestijom prema HRN EN 16968:2015 normi. Istraživanje u sklopu ovog doktorskog rada započelo je određivanjem najpogodnije metode maceracije u smislu ekološke i ekonomske isplativosti. S obzirom na činjenice koje su učvrstile svoje temelje još u dalekoj prošlosti, vlakna brnistre su se smjestila u skupinu prirodnih stabljičnih vlakana, te su se u ispitivanju koristile metode maceracije karakteristične za dobivanje vlakana lana, a samim time su se i uspoređivala svojstva vlakana iz brnistre i lana kako bi se utvrdila moguća područja njihove primjene. Obrada vlakana u alkalnom mediju niske koncentracije primjenom mikrovalne energije pokazuje najbolje rezultate, i to ne samo u ekološko-ekonomskom smislu već i u kvalitativnom. Čvrstoća, na ovaj način dobivenih vlakana, se povećala za 60 % i 30 % u usporedbi s ostale dvije ispitane metode maceracije – močenje u vodi i osmotsko degumiranje. Vlakna proizvedena pomoću mikrovalne energije su finija od drugih ispitanih vlakana za 10 %, a pokazuju najveće prekidno istezanje od 6,03 %. Repriza ovakvog vlakna se kreće u rasponu od 7 do 8 %. FTIR spektri brnistrinih vlakana nastali različitim metodama maceracije potvrđuju efektivnost mikrovalno potpomognute maceracije što je vidljivo iz odsustva vrpci poput 2850 cm-1, 1730 cm-1, 1537 cm-1, 1239 cm-1 koje redom predstavljaju voskove i ulja, pektin i lignin, te iz povećanog intenziteta pikova pri 1000 i 985 cm-1 koji ukazuju na bolji razvoj sekundarne stanične stijenke što između ostalog pridonosi i većoj čvrstoći takvih vlakana. Nakon što su se ispitala svojstva vlakana uvidjela se mogućnost njihove primjene u izradi kompozitnih materijala u kojima bi vlakno brnistre imalo ulogu ojačala polimerne matrice. S obzirom da su neki od najvažnijih faktora koji utječu na učinkovitost ovakvih kompozitnih materijala kemijski sastav, struktura, mehanička svojstva njegovih komponenata kao i njihova međusobna interakcija koja je otežana činjenicom da je prirodno vlakno hidrofilnije od polimerne matrice, potrebno je dodatno utjecati na navedena svojstva. Vlakna dobivena maceracijom u lužini su predstavljena kao referentna vlakna (MWR), a modifikacije su uključivale dodatnu obradu s lužinom (1F), obradu s montmorilonitnom nanoglinom i lužinom (2F), te obrada s nanoglinom i limunskom kiselinom (3F). 3F vlakna su pokazala porast u sadržaju celuloze, te smanjen sadržaj hemiceluloze s obzirom na druga modificirana vlakna, a u usporedbi s MWR te su vrijednosti iznosile 0,6 %, odnosno 12,4 %. SEM i EDS analize površine vlakana potvrdile su promjene uslijed modifikacija. SEM slike ukazuju na povećanje hrapavosti koja je posljedica nanosa MMT čestica na površinu vlakana, što je potvrđeno i EDS analizom. FTIR spektar vlakna MWR pokazuje veći intenzitet vrpci (pika) pri 2844 cm-1 i 2900 cm-1 u odnosu na druga vlakna što ukazuje na dodatno uklanjanje pektina, voskova i masti uslijed kemijskih modifikacija. Također se kod MWR vlakna, za razliku od ostalih, pojavljuje pik pri 1506 cm-1 karakterističan za lignin dok su ostali pikovi vezani za lignin neprimjetni ili pokazuju mali intenzitet. Prema vrijednostima indeksa ukupne kristalnosti (TCI) koji je proporcionalan stupnju kristaliničnosti celuloze, te indeksa lateralne sređenosti (LOI) koji se odnosi na stupanj sređenosti bočnih lanaca celuloze, vlakno 3F pokazuje veću kristaličnost, kao i bolji poredak u odnosu na MWR, i to za 11,2 %, odnosno 19,6 %. Određivanjem zeta potencijala uočeno je da obrada s MMT i CA utječe na smanjenje hidrofilnosti, te su također 3F vlakna pokazala bolju termalnu stabilnost u odnosu na MWR što je vidljivo u pomaku početne temperature razgradnje s 355 °C na 357 °C. Vlakna 2F pokazuju čvrstoću veću za 6,8 % , a vlakna 3F povećanje za 4,6 % u odnosu na MWR. Nižu čvrstoću uzorka 1F najvjerojatnije je uzrokovalo dugotrajnije izlaganje natrijevoj lužini prilikom njegove modifikacije. Ispitivanjem finoće vlakana nakon modificiranja, uzorak 3F je pokazao nešto grublja vlakna te je 63,3 % vlakana iz ove skupine imalo finoću u rasponu 35-45 dtex. Modificirana vlakna su se koristila kao ojačala za PLA matricu te su izrađeni sljedeći kompozitni materijali: kompozit izrađen od MWR vlakana i PLA (CR), kompozit izrađen od 1F vlakana i PLA (C1), kompozit izrađen od 2F vlakana i PLA (C2) te kompozit izrađen od 3F vlakana i PLA (C3). Vrsta provedene modifikacije vlakana utjecala je na čvrstoću kompozitnog materijala. Kompozit ojačan vlaknima 2F pokazuje najnižu čvrstoću uzrokovanu neadekvatnom adhezijom vlakna i polimera. Iako vlakna 1F pokazuju smanjenje čvrstoće uslijed ponovljene obrade s lužinom, kompozit ojačan ovakvim vlaknima pokazuje porast čvrstoće za 115 % u odnosu na C2. Kompozitni materijal ojačan vlaknima 3F pokazuje najveći porast čvrstoće i to za 135 % u odnosu na C2 ukazujući na istovremeni porast žilavosti ovakvih materijala. Razlika u čvrstoći kompozita ojačanih vlaknima 2F i 3F uzrokovana je dodatkom limunske kiseline pri modificiranju vlakana 3F što je potvrđeno i SEM analizom poprečnog presjeka kompozitnog materijala. Uočilo se smanjeno izvlačenje vlakana te njihova bolja adhezija s PLA matricom nego što je to uočeno kod ostalih ispitanih kompozita. FTIR analiza također potvrđuje bolju adheziju kod uzorka C3 što je vidljivo iz jačeg intenziteta pika pri 1750 cm-1 značajnog za C=O istezanje te smanjenog intenziteta pika pri 1645 cm-1 karakterističnog za –OH vibacije istezanja čime se potvrđuje čvršća povezanost vlakna, polimera i punila. FTIR analiza kod uzorka C2 pokazuje mali intenzitet pikova u području 1030-460 cm-1 koje je karakteristično za metalne okside što nam potvrđuje nedovoljno jaku vezu između vlakana brnistre, PLA i nanogline. Prekidno istezanje svih ispitanih kompozita je veće nego što je kod čistog PLA. Uzorak C3 je pokazao najveće prekidno istezanje, čak za 43,7 % veće od čistog PLA što ukazuje na žilaviji materijal koji se može deformirati prije nego dođe do loma. U sklopu ovog rada se napravilo i matematičko modeliranje sa svrhom predviđanja mehaničkih svojstava kompozitnih materijala, točnije kod predviđanja vlačne čvrstoće i modula elastičnosti. Koristila su se dva najpoznatija modela koja se inače primijenjuju u slučaju kompozita ojačanih kratkim nasumično orijentiranim vlaknima. Hirschov model je pokazao relativno dobro poklapanje s eksperimentalnim rezultatima – kod određivanja vlačne čvrstoće predviđene vrijednosti su bile za 10 % manje od eksperimentalno određenih vrijednosti vlačne čvrstoće, dok je kod određivanja modula elastičnosti razlika bila veća, tj. predviđene vrijednosti su bile za 20 % veće od eksperimentalnih osim kod uzorka C3 čija je eksperimentalna vrijednost bila za 20 % veća od one predviđene matematičkim modelom. Prilikom ispitivanja termalnih svojstava kompozitnih materijala ojačanih referentnim i modificiranim vlaknima brnistre te korištenjem termogravimetrijske analize definirao se temperaturni raspon od 30 °C - 300 °C u kojem su ispitani materijali pokazali stabilnost. Uzorak C3 koji u svom sastavu ima i nanoglinu i limunsku kiselinu pokazao je puno bolje rezultate od uzorka C2 čiju lošu adheziju s polimerom potvrđuju i sve korištene metode ispitivanja. Određivanje energije aktivacije pokazalo je 41,7 % nižu energiju potrebnu za termalnu razgradnju. Određivanjem temperature staklišta uvidjelo se da dodatak vlakana snižava Tg, a ujedno se snižava i temperatura hladne kristalizacije, te uzorak C3 počinje kristalizirati na nižoj temperaturi od ostalih ispitanih materijala, točnije pri 100 °C. DSC grafički prikaz ponašanja kompozitnih uzoraka uslijed zagrijavanja pokazuje dvostruki pik taljenja koji ukazuje na prisustvo dva različita tipa kristala unutar uzorka, dok čisti PLA pokazuje samo jedan pik taljenja te najveću kristaličnost. Dodavanje nanogline u sustav utjecalo je na sniženje vrijednosti otpuštene topline, a time i na manju zapaljivost ovakvih materijala. C2 uzorak je otpustio 35 % manje topline u usporedbi s čistim PLA, dok je C3 otpustio 18 % manje topline. Uslijed ispitivanja razgradnje čistog PLA i njegovih kompozitnih materijala djelovanjem enzima različitih koncentracija pri temperaturi od 37 °C uvidjelo se da je nakon 5 dana enzimatske razgradnje najveći gubitak mase materijala nastao korištenjem enzima masene koncentracije 50 %, te je npr. kod uzorka C3 došlo do gubitka mase od 2,5 % u odnosu na početnu težinu materijala prije procesa razgradnje. FTIR ispitivanje uzoraka prije i nakon razgradnje potvrdilo je test ispitivanja gubitka mase. Naime, za glavne pokazatelje razgradnje uzete su vrpce pri 1750 cm-1-1755 cm-1 i 1454 cm-1- 1455 cm-1 koje predstavljaju karbonilnu, odnosno metilnu skupinu. Pomak ovih vrpci prema višim frekvencijama (višim valnim duljinama) ukazuje na razgradnju uzorka. Također se izračunao karbonilni indeks (CI) koji je pokazao najvišu vrijednost kod uzoraka koji su bili podvrgnuti 20 wt% i 50 wt% enzima. Prilikom utvrđivanja potencijala ostataka brnistre nakon ekstrakcije vlakana kod korištenja za neposredno izgaranje utvrđen je nizak sadržaj vode (6,5 % - 7,5 %) i pepela (ispod 5 %). Sadržaj fiksiranog ugljika i hlapivih tvari iznosio je 13,2 % i 75 %. Gornja ogrjevna vrijednost, kao najvažniji parametar, iznosila je 17,2-18,8 MJ/kg što ukazuje na kvalitetnu biomasu koja se može upotrijebiti za proizvodnju krutih goriva. Maceracija vlakana uz obradu s natrijevom lužinom pod djelovanjem mikrovalova može se primijeniti u proizvodnji vlakana brnistre uz značajno smanjenje utroška energije i vremena proizvodnje. Površinska modifikacija vlakana korištenjem lužine i nanočestica uz umrežavanje s ekološki pogodnim sredstvom utjecala je na poboljšanje adhezije vlakna i polimera, te na smanjenje zapaljivosti vlakana brnistre, a ujedno su modificirana vlakna pokazala i najveći sadržaj celuloze. Kompozitni materijal ojačan najuspješnije modificiranim vlaknima pokazuje povećanje čvrstoće i modula elastičnosti za 135

    Articles indexats publicats per investigadors del Campus de Terrassa: 2013

    Get PDF
    Aquest informe recull els 228 treballs publicats per 177 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2013Preprin
    corecore