7 research outputs found

    Direct Ranging in Multi-path Channels Using OFDM Pilot Signals

    Get PDF

    Optimal Information-Theoretic Wireless Location Verification

    Full text link
    We develop a new Location Verification System (LVS) focussed on network-based Intelligent Transport Systems and vehicular ad hoc networks. The algorithm we develop is based on an information-theoretic framework which uses the received signal strength (RSS) from a network of base-stations and the claimed position. Based on this information we derive the optimal decision regarding the verification of the user's location. Our algorithm is optimal in the sense of maximizing the mutual information between its input and output data. Our approach is based on the practical scenario in which a non-colluding malicious user some distance from a highway optimally boosts his transmit power in an attempt to fool the LVS that he is on the highway. We develop a practical threat model for this attack scenario, and investigate in detail the performance of the LVS in terms of its input/output mutual information. We show how our LVS decision rule can be implemented straightforwardly with a performance that delivers near-optimality under realistic threat conditions, with information-theoretic optimality approached as the malicious user moves further from the highway. The practical advantages our new information-theoretic scheme delivers relative to more traditional Bayesian verification frameworks are discussed.Comment: Corrected typos and introduced new threat model

    A survey on 5G massive MIMO Localization

    Get PDF
    Massive antenna arrays can be used to meet the requirements of 5G, by exploiting different spatial signatures of users. This same property can also be harnessed to determine the locations of those users. In order to perform massive MIMO localization, refined channel estimation routines and localization methods have been developed. This paper provides a brief overview of this emerging field

    Position estimation for IR-UWB systems using compressive sensing

    Get PDF
    Recently, a growing interest in precise indoor wireless locating systems has been observed. Indoor environments are typically complex wireless propagation channels with numerous multi-paths created by closely spaced scattering objects. The ability to resolve these multi-paths is very important for good ranging resolution and positioning accuracy. Impulse-Radio Ultra-Wideband (IRUWB) is a promising technology to fulfill these requirements in harsh indoor propagation environments due to its great time resolution and immunity to multipath fading. One of the major IRUWB signal processing challenges is the high sampling demands of IR-UWB digital receivers, which greatly elevates the cost and power consumption of IR-UWB systems . Compressive Sensing provides a solution by allowing them to sample IR-UWB signals at a lower rate than the Nyquist sampling limit. The CS approach relies on the fact sparse representations are possible in the localization context. Basically two sparsity patterns can be exploited: Firstly, transmitting an ultra-short pulse through a multipath UWB channel leads to a received UWB signal that can be approximated by a linear combination of a few atoms from a pre-defined dictionary, yielding thus a sparse representation of the received UWB signal. Secondly, the inherent spatial sparsity of scene can be introduced through the use of an overcomplete basis or dictionary that enables to jointly evaluate all multiple location hypothesis. In this degree thesis, three novel data-acquisition and positioning methods exploiting different sparse representations for IR-UWB signals under challenging indoor environments are presented. Essentially, through the formulation of sparsity-based reconstruction techniques it is viable to localize targets while reducing the computational load and sampling requirements. Their performance is assessed and compared under the framework of the IEE.802.15.14a channel models, which is a standard developed specifically for UWB wireless positioning.Recientemente, se ha observado un interés creciente en los sistemas de localización pasiva inalámbrica para edificios interiores como oficinas o naves industriales. Típicamente, los ambientes de interiores son canales de propagación inalámbricos complejos con numerosas reflexiones creadas por objetos dispersivos muy próximos entre sí. La capacidad de resolver estos múltiples caminos es muy importante para una buena resolución de alcance y precisión de posicionamiento. Impulso-radio de banda ultra-ancha (UWB-IR) es una tecnología prometedora para cumplir con estos requisitos en entornos de propagación interiores debido a su gran resolución temporal y la inmunidad al desvanecimiento por múltiples caminos. Uno de los principales retos de procesamiento de señales IR-UWB es la alta demanda de muestreo de receptores digitales IRUWB, lo que eleva considerablemente el costo y el consumo de energía de los sistemas IR-UWB. Compressive Sensing proporciona una solución que permite muestrear señales IR-UWB a un ritmo menor que el límite de muestreo propuesto por Nyquist. El enfoque de este problema con Compressive Sensing se basa en el hecho de que representaciones dispersas son posibles en el contexto de la localización. Básicamente dos patrones de dispersión pueden ser explotados: En primer lugar, la transmisión de un pulso ultra corto, través de un canal de banda ancha donde la señal experimenta trayectos múltiples, conduce a una señal de UltraWideband recibida que puede ser aproximada por una combinación lineal de unos pocos átomos de un diccionario predefinido, obteniéndose así una representación dispersa de la señal de UWB recibida. En segundo lugar, la escasez de objetivos a localizar de la escena se puede utilizar mediante el uso de un diccionario sobre-completo que permita evaluar conjuntamente las múltiples hipótesis de ubicación en un escenario bidimensional, adquiriendo así una representación dispersa, con pocos elementos. En este proyecto final de carrera, se presentan tres nuevos métodos de adquisición de datos y posicionamiento que explotan diferentes representaciones dispersas para señales IR-UWB bajo ambientes interiores. En esencia se plantea, mediante la formulación de técnicas de reconstrucción de Compressive Sensing, que es viable localizar objetivos y al mismo tiempo reducir los requisitos de carga computacional y altos ritmos de muestreo. El rendimiento de los algoritmos propuestos se evalúa y se compara en el marco de los modelos de canal IEE.802.15.14a, que es un estándar desarrollado específicamente para el posicionamiento inalámbrico en sistemas UltraWideband.Recentment, s'ha observat un interès creixent en els sistemes de localització passiva sense fil per a edificis interiors com oficines o naus industrials. Típicament, els ambients d'interiors són canals de propagació complexos amb nombroses reflexions creades per objectes dispersius molt pròxims entre si. La capacitat de resoldre aquests múltiples camins és molt important per a una bona resolució d'abast i precisió de posicionament. Impuls-ràdio de banda ultra-ampla (UWB-IR) és una tecnologia prometedora per complir amb aquests requisits en entorns de propagació interiors a causa de la seva gran resolució temporal i la immunitat al esvaniment per múltiples camins. Un dels principals reptes de processament de senyals IR-UWB és l'alta demanda de mostreig dels receptors digitals IR-UWB, el que eleva considerablement el cost i el consum d'energia dels sistemes IR-UWB. Compressive Sensing proporciona una solució en la qual permet mostrejar senyals IR-UWB a un ritme menor que el límit de mostreig proposat per Nyquist. L'enfocament d'aquest problema amb Compressive Sensing es basa en el fet que representacions disperses són possibles en el context de la localització. Bàsicament dos patrons de dispersió poden ser explotats: En primer lloc, la transmissió d'un pols de molt poca duració a través d'un canal de banda ample on la senyal experimenta múltiples trajectes, això condueix a una senyal de UltraWideband rebuda que pot ser aproximada per una combinació lineal d'uns pocs àtoms d'un diccionari predefinit, obtenint-se així una representació dispersa. En segon lloc, l'escassetat de objectius a localitzar en l?escena es pot utilitzar mitjançant l'ús d'un diccionari sobre-complet que permeti avaluar conjuntament les múltiples hipòtesis d'ubicació en un escenari bidimensional, adquirint així una representació dispersa. En aquest projecte final de carrera, es presenten tres nous mètodes d'adquisició de dades i posicionament que exploten diferents representacions disperses per senyals IR-UWB sota ambients interiors. En essència es planteja, mitjançant la formulació de tècniques de reconstrucció de Compressive Sensing, que és viable localitzar objectius i al mateix temps reduir els requisits de càrrega computacional i alts ritmes de mostreig. El rendiment dels algoritmes proposats s'avalua i es comparen en el marc dels models de canal IEE.802.15.14a, que és un estàndard desenvolupat específicament per al posicionament sense fil en sistemes UltraWideband

    Optimization methods for active and passive localization

    Get PDF
    Active and passive localization employing widely distributed sensors is a problem of interest in various fields. In active localization, such as in MIMO radar, transmitters emit signals that are reflected by the targets and collected by the receive sensors, whereas, in passive localization the sensors collect the signals emitted by the sources themselves. This dissertation studies optimization methods for high precision active and passive localization. In the case of active localization, multiple transmit elements illuminate the targets from different directions. The signals emitted by the transmitters may differ in power and bandwidth. Such resources are often limited and distributed uniformly among the transmitters. However, previous studies based on the well known Cramer-Rao lower bound have shown that the localization accuracy depends on the locations of the transmitters as well as the individual channel gains between different transmitters, targets and receivers. Thus, it is natural to ask whether localization accuracy may be improved by judiciously allocating such limited resources among the transmitters. Using the Cr´amer-Rao lower bound for target localization of multiple targets as a figure of merit, approximate solutions are proposed to the problems of optimal power, optimal bandwidth and optimal joint power and bandwidth allocation. These solutions are computed by minimizing a sequence of convex problems. The quality of these solutions is assessed through extensive numerical simulations and with the help of a lower-bound that certifies their optimality. Simulation results reveal that bandwidth allocation policies have a stronger impact on performance than power. Passive localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor geolocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization relying on intermediary parameters such as time-of-arrivals, time difference of arrivals or received signal strengths, are unsatisfactory. This dissertation models the localization of known waveforms over unknown multipath channels in a sparse framework, and develops a direct approach in which multiple sources are localized jointly, directly from observations obtained at distributed sources. The proposed approach exploits channel properties that enable to distinguish line-of-sight (LOS) from non-LOS signal paths. Theoretical guarantees are established for correct recovery of the sources’ locations by atomic norm minimization. A second-order-cone-based algorithm is developed to produce the optimal atomic decomposition, and it is shown to produce high accuracy location estimates over complex scenes, in which sources are subject to diverse multipath conditions, including lack of LOS

    Méthodes d'Optimisation pour la Localisation Active et Passive

    Get PDF
    La localisation active et passive par un réseau de capteurs distribués est un problème rencontré dans différents domaines d’application. En localisation active, telle que la localisation par radar MIMO (Multiple Input Multiple Output), les émetteurs transmettent des signaux qui sont réfléchis par les cibles visées, puis captés par les antennes réceptrices, alors qu’en localisation passive, les capteurs reçoivent des signaux transmis par les cibles elles-mêmes. L’objectif de cette thèse est d’étudier différentes techniques d’optimisation pour la localisation active et passive de haute précision. Dans la première partie de la thèse, on s’intéresse à la localisation active, où de multiples émetteurs illuminent les cibles depuis différentes directions. Les signaux peuvent être émis avec des puissances ou des largeurs de bande différentes. Ces différentes ressources, par nature en général fortement limitées, sont souvent, par défaut, réparties de façon uniforme entre les différents émetteurs. Or, la précision de la localisation dépend de la position des émetteurs, ainsi que des paramètres (les gains notamment) des différents canaux existant entre émetteurs, cibles, et capteurs. En utilisant comme critère d’optimisation la borne de Cramér-Rao sur la précision de la localisation de cibles multiples, nous proposons une méthode fournissant des solutions approchées aux problèmes d’allocation optimale de puissances seules, de largeurs de bande seules, ou au problème d’allocation conjointe de puissances et de largeurs de bande. Ces solutions sont obtenues en minimisant une suite de problèmes convexes. La qualité de ces solutions approchées est évaluée au travers de nombreuses simulations numériques, mais également par la comparaison avec une borne inférieure définie comme la solution d’un problème d’optimisation avec contraintes relaxées, cette borne pouvant être calculée de façon exacte (numériquement). Cette comparaison permet de constater la proximité de la solution approchée fournie par l’algorithme proposé par rapport à la solution théorique. D’autre part, les simulations ont montré que l’allocation de bande joue un rôle plus important dans les performances de localisation que l’allocation de puissance. Dans la seconde partie de la thèse, on considère le cas de la localisation passive de sources multiples dans un environnement multi-trajet. Ce problème se rencontre notamment dans le cadre de la géolocalisation indoor ou outdoor. Dans ce cas de figure, les approches généralement proposées dans la littérature sont basées sur une méthode ad-hoc de réduction d’interférence couplée à une localisation indirecte obtenue par une estimation de paramètres comme les temps d’arrivée des signaux ou les différences de temps d’arrivée, ou la puissance des signaux reçus. Cependant, les performances de ces approches sont limitées, notamment par le fait que la localisation indirecte d’une cible donnée ne prend pas en compte le fait que les signaux reçus par les différents capteurs émanent d’une seule et même source. Dans cette thèse, nous proposons une modélisation parcimonieuse des signaux reçus. Cette modélisation nous permet, en supposant les formes d’onde connues mais les canaux multi-trajets totalement inconnus, de développer une méthode de localisation directe de l’ensemble des cibles. Cette approche exploite certaines propriétés des canaux, qui permettent de séparer les trajets directs des trajets indirects. Un algorithme d’optimisation conique de second ordre est développé afin d’obtenir une décomposition dite atomique optimale, qui permet d’obtenir une localisation de très bonne précision dans des conditions de propagation difficiles, présentant un phénomène de multi-trajet important et/ou une absence de trajets directs. Nous montrons alors que la technique de localisation directe ainsi proposée présente de meilleures performances de localisation que les méthodes indirectes développées pour un environnement multi-trajet, mais aussi que la méthode de localisation directe la plus efficace proposée dans la littérature, qui n’est adaptée qu’au cas d’une transmission sans multi-trajet. ABSTRACT : Active and passive localization employing widely distributed sensors is a problem of interest in various fields. In active localization, such as in MIMO radar, transmitters emit signals that are reflected by the targets and collected by the receive sensors, whereas, in passive localization the sensors collect the signals emitted by the sources themselves. This dissertation studies optimization methods for high precision active and passive localization. In the case of active localization, multiple transmit elements illuminate the targets from different directions. The signals emitted by the transmitters may differ in power and bandwidth. Such resources are often limited and distributed uniformly among the transmitters. However, previous studies based on the well known Crámer-Rao lower bound have shown that the localization accuracy depends on the locations of the transmitters as well as the individual channel gains between different transmitters, targets and receivers. Thus, it is natural to ask whether localization accuracy may be improved by judiciously allocating such limited resources among the transmitters. Using the Crámer-Rao lower bound for target localization of multiple targets as a figure of merit, approximate solutions are proposed to the problems of optimal power, optimal bandwidth and optimal joint power and bandwidth allocation. These solutions are computed by minimizing a sequence of convex problems. The quality of these solutions is assessed through extensive numerical simulations and with the help of a lower-bound that certifies their optimality. Simulation results reveal that bandwidth allocation policies have a stronger impact on performance than power. Passive localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor geolocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization relying on intermediary parameters such as time-of-arrivals, time difference of arrivals or received signal strengths, are unsatisfactory. This dissertation models the localization of known waveforms over unknown multipath channels in a sparse framework, and develops a direct approach in which multiple sources are localized jointly, directly from observations obtained at distributed sources. The proposed approach exploits channel properties that enable to distinguish line-of-sight (LOS) from non-LOS signal paths. Theoretical guarantees are established for correct recovery of the sources’ locations by atomic norm minimization. A second-order-cone-based algorithm is developed to produce the optimal atomic decomposition, and it is shown to produce high accuracy location estimates over complex scenes, in which sources are subject to diverse multipath conditions, including lack of LOS
    corecore